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Abstract
Thousands of scientific publications discuss evidence on the
efficacy of non-cancer generic drugs being tested for cancer.
However, trying to manually identify and extract such evi-
dence is intractable at scale. We introduce a natural language
processing pipeline to automate the identification of relevant
studies and facilitate the extraction of therapeutic associations
between generic drugs and cancers from PubMed abstracts.
We annotate datasets of drug-cancer evidence and use them
to train models to identify and characterize such evidence at
scale. To make this evidence readily consumable, we incor-
porate the results of the models in a web application that al-
lows users to browse documents and their extracted evidence.
Users can provide feedback on the quality of the evidence ex-
tracted by our models. This feedback is used to improve our
datasets and the corresponding models in a continuous inte-
gration system. We describe the natural language processing
pipeline in our application and the steps required to deploy
services based on the machine learning models.

Repurposing Generic Drugs for Cancer
Each year nearly 10 million people die from cancer (Can-
cer Research UK 2020) and the cost of cancer diagnosis
and treatment exceeds USD $1 trillion (Union for Interna-
tional Cancer Control 2014). Pharmaceutical research ex-
ploring new drugs to treat various cancers is an expen-
sive and time consuming process. In contrast, there are
many generic drugs available today that are inexpensive and
show promising results in treating different types of can-
cers. Moreover, there are already several drugs that were
successfully repurposed for cancer. For example, Thalido-
mide, a drug used to treat morning sickness in pregnant
women, was proven useful for treating skin lesions and mul-
tiple myeloma. Finding new therapeutic uses for inexpen-
sive generic drugs (“drug repurposing”) could rapidly create
affordable new treatments. Hundreds of non-cancer generic
drugs have shown promise for treating cancer, but it is un-
clear which drugs to be considered for repurposing.
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Scientific publications such as pre-clinical laboratory
studies and small-scale clinical trials present evidence on
generic drugs being used as cancer treatments. The Re-
purposing Drugs in Oncology (ReDO) project manually
inspected articles indexed by PubMed and found anti-
cancer evidence for more than 200 non-cancer generic drugs
(Pantziarka et al. 2017; Bouche, Pantziarka, and Meheus
2017; Verbaanderd et al. 2017). However, PubMed indexes
millions of articles and the collection is continuously up-
dated. Therefore, manual review to identify and analyze the
evidence is time-consuming and intractable at scale. It is
imperative to devise (semi)automated techniques to extract
and collate the existing evidence. Machine learning (ML)-
powered evidence synthesis could provide a comprehensive
and real-time view of drug repurposing data and enable ac-
tionable insights.

We have started an ambitious initiative to extract and syn-
thesize the plethora of scientific evidence on generic drugs
used for cancer treatment. Our goal is to identify the most
promising drugs to repurpose for different kinds of cancer.
Identifying drug-cancer evidence from scientific abstracts
is not trivial. The articles that discuss cancer interventions
use domain-specific jargon which makes the text hard to
comprehend by both humans with non-expert background
and machines that are not trained with domain-specific
data (Lehman et al. 2019). This endeavor requires close col-
laboration between experts in different disciplines, such as
cancer research (to provide guidance, annotate datasets, and
verify results), machine learning (to collect and process data
sets to be annotated, to devise machine learning models, and
evaluate their performance), and software engineering (to
deploy and run models as an end-to-end online application).
Ultimately, implementing repurposed therapies as the stan-
dard of care in medical practice requires definitive clinical
trials, new incentives and business models to fund them, and
engagement by various stakeholders such as patients, doc-
tors, payers, and policymakers.

In this paper, we highlight the key technical aspects of
identifying and extracting relevant evidence from PubMed
articles and describe the steps required to encapsulate, dis-
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Figure 1: Method overview: The input to the evidence extraction pipeline is a list of non-cancer generic drugs, and the output
is the published scientific evidence for each drug for treating various cancer types.

Retinoids can block cell proliferation and induce apoptosis in tumor
cells. The antitumoral effect of synthetic retinoids like Adapalene (ADA)
on hepatoma cells (HepG2, Hep1B) was investigated. ADA at 10(-4)M
efficiently induced apoptosis, reaching 61.7% in HepG2 and 79.1% in
Hep1B after 72 h incubation. This was accompanied by up-regulation of
pro-apoptotic bax and caspase 3, while bcl-2 was down-regulated,
shifting the bax/bcl-2 ratio to >2.3 in hepatoma cells. ADA inhibits
hepatoma cell growth in vitro and is a powerful inducer of hepatoma
cell apoptosis.

1

Figure 2: Sample relevant abstract annotation. PubMed #
15105045, Adapalene (in blue) is the non-cancer generic
drug, used to treat hepatoma (in brown) cells (liver cancer).
It is an in vitro pre-clinical study, and has an effective asso-
ciation. Evidence for association with phenotypic outcome
measured is italicized.

play and access the results via a service deployed in the
cloud.

NLP Pipeline for Drug-Cancer Discovery
We propose a natural language processing (NLP) pipeline
that identifies the type of information in scientific publica-
tions relevant to our drug repurposing goal (Subramanian
et al. 2020). A schematic view of the pipeline is presented in
Figure 1. First, we query PubMed using queries inspired by
the Cochrane highly sensitive search (CHSS) strategy (Dick-
ersin, Scherer, and Lefebvre 1994) to narrow the collection
of articles we analyze. For our purpose, we deem as relevant
only the abstracts that discuss non-cancer generic drugs for
cancer treatment and present results of phenotypic outcomes
(e.g., tumor growth/reduction, patient survival, apoptosis).
We start with filtering out the irrelevant documents 1 We are
currently experimenting with models for abstract filtering
based on different variants of BERT-based models (Devlin
et al. 2019); our filtering accuracy is 90-95%, depending on
the model used.

Next, cancer types and drugs are identified using named
entity recognition (NER) and entity linking using Scis-
paCy (Neumann et al. 2019). The recall of our models is
90%. Finally, for each abstract that is deemed relevant, we
classify the therapeutic association and the type of study. We

1Note that querying PubMed, even with a sophisticated query,
may not yield only relevant articles. For instance, some abstracts
discuss the mechanism in which the drug affects the cancer with-
out discussing the actual effect on cancer; such documents are not
relevant for our purpose.

Figure 3: The interface can be used for browsing the drug-
cancer evidence and also providing feedback on the quality
of the predictions. In this example, a negative feedback is
provided with a selection from the text as supporting evi-
dence.

refer to the drug, cancer, therapeutic association, and study
type as the evidence presented in the PubMed abstract. An
example of the evidence in an abstract is shown in Figure 2.

The therapeutic association schema contains the follow-
ing classes: A. Effective: the drug was shown to be effective
for treating the cancer; B. Detrimental: the drug has a detri-
mental effect on the cancer; C. No effect: the drug has no
effect on the cancer; D. Inconclusive: the results of the study
are inconclusive. Due to the difficulty in finding articles that
discuss studies that are non-effective (either with no effect,
negative effect or inconclusive results), we collapse all ini-
tial classes into two: effective and non-effective. We are cur-
rently experimenting with models based on RoBERTa (Liu
et al. 2019) and BERT (Devlin et al. 2019) variants. In the 2-
class setting, the accuracy of the model varies between 75%-
83% accuracy depending on the class.

The study types we consider are: 1. pre-clinical studies (in
vitro, in vivo), 2. clinical case reports, and 3. clinical trials.
We train random forest models with bag of words represen-
tations for the abstract text, publication type, and metadata
that are available as tags for the PubMed abstracts. This task
gets executed successfully with an accuracy of 95%.

Web Application
The model predictions are made available in a web appli-
cation that allows browsing the abstracts with the extracted
evidence (i.e., relevance, drug, cancer, therapeutic associa-
tion and study type). Figure 3 shows a print screen of the
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application.
A continuous integration pipeline has been built that

trains each model, runs the model on a large subset of
PubMed abstracts and stores the predicted information in
an ElasticSearch database. To coordinate the model train-
ing and predictions by the model, we employ a Kube-
flow pipeline (Kubeflow.org 2020) that has the following
stages: first, the model that determines document relevance
is trained; second, a validation stage that determines whether
training was successful based on the performance results on
a small, development dataset; third, a model for therapeutic
association and the study type is trained and validated; lastly,
the relevant model is used to select a large set of documents
from PubMed, and the therapeutic association and the study
type are predicted for this dataset. The results are stored in
ElasticSearch, which acts as the application back-end.

Users can sign up to access the web application and are
authenticated by a service during sign in. ElasticSearch APIs
enable searching and browsing the documents in our collec-
tion using free-form queries. Users can enter search terms
(drug name, cancer type) in the application search bar and
the results are furnished by the ElasticSearch APIs. We al-
low role based access to the different components of the ap-
plication; users with an ’Annotator’ role can view whether
the evidence from an abstract was deduced from ’anno-
tations’ or ’predictions’, whereas the feature is hidden to
users with a ’Practitioner’ role. Based on the type of evi-
dence (e.g., drug, cancer and its types, therapeutic associa-
tion, study type), we implement different ways to filter the
search results. For each abstract that we display, users can
provide feedback expressing either agreement or disagree-
ment with the extracted evidence. For providing disagree-
ment, we further allow the user to correct any of the fields
in the extracted evidence and provide the snippets from the
abstract text to support their reasoning.

We intend to use this tool to not only make the automat-
ically extracted evidence consumable by stakeholders, but
also as a way to verify the information extracted by our mod-
els. We collect corrections and create a feedback loop that
takes the corrected data and incorporates it back to the train-
ing datasets to be used for model retraining.

Conclusion
We showcase an end-to-end evidence discovery NLP
pipeline that fetches potential candidate abstracts from
PubMed for further evaluation. The goal is to identify non-
cancer generic drug evidence for different cancer types. We
make this evidence available in a web application that al-
lows stakeholders to both consume the evidence and provide
feedback on the quality of the extracted information.
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