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Abstract

We demonstrate a health-friendly speaker verification sys-
tem for voice-based identity verification on mobile devices.
The system is built upon a speech processing module, a
ResNet-based local acoustic feature extractor and a multi-
head attention-based embedding layer, and is optimized under
an additive margin softmax loss for discriminative speaker
verification. It is shown that the system achieves superior per-
formance no matter whether there is mask wearing or not.
This characteristic is important for speaker verification ser-
vices operating in regions affected by the raging coronavirus
pneumonia. With this demonstration1, the audience will have
an in-depth experience of how the accuracy of bio-metric ver-
ification and the personal health are simultaneously ensured.
We wish that this demonstration would boost the develop-
ment of next-generation bio-metric verification technologies.

Introduction
Speaker Verification (SV) (Hansen and Hasan 2015) tech-
nologies aim to confirm a claimed speaker by analyzing his
or her speech. It has been used in a wide range of real-world
applications such as call center, risk management, mobile
payment and smart device activation, etc.

In the face of contagious disease such as the coronavirus
pneumonia, traditional bio-metric authentication techniques
such as face verification put the users’ heath at risk since
masking wearing is not typically supported. In this demon-
stration, we propose a speaker verification system, which is
robust in complex scenarios where the speaker’s mouth and
nose might be affected by the masking wearing. Specifically,
the system is composed of a speech processing module,
a local acoustic feature extractor and an embedding layer.
In order for discriminative speaker embedding, the system
leverages a powerful ResNet (He et al. 2016) neural net-
work architecture as the feature extractor to models the lo-
cal short spans of acoustic features. In particular, a novel
multi-head attention embedding layer is introduced to inte-
grate the speaker-specific local patterns into speaker embed-
ding. The proposed embedding turns out to be more effective
than those based on statistical pooling (Snyder et al. 2018)
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1The video of the demo can be found online at https://youtu.be/
7brmUKbyJJc
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Figure 1: Architecture of the speaker verification system.

or attentive pooling (Okabe, Koshinaka, and Shinoda 2018).
Moreover, our system is optimized by an additive margin
softmax loss (Wang et al. 2018a) to discriminate between
speakers. Thus, it can capture more discriminative and ro-
bust speaker embedding than those general DNN-based SV
methods using cross entropy loss (Nagrani, Chung, and Zis-
serman 2017), triplet loss (Novoselov et al. 2018) or center
loss (Li et al. 2018). The demonstration shows that the sys-
tem is not only superior in traditional speaker verification
scenarios but also robust in complex scenarios such as mask
wearing.

System Architecture
The system architecture is illustrated in Figure 1. The system
mainly consists of three major components: (1) a speech pro-
cessing module that transforms the raw speech into acoustic
features (e.g. filter-bank and MFCC); (2) a local acoustic
pattern extractor that takes variable-length acoustic features
as input and encodes them as a sequence of frame-level rep-
resentations with respect to local patterns; (3) an embedding
layer that aggregates the frame-level features into a fixed-
dimensional utterance-level speaker embedding.

Specifically, given raw speech acquired from the micro-
phone in WAV format, the speech processing module first
employs Voice Activity Detection (VAD) to filter out non-
speech frames from the speech input, and then transforms
the speech into acoustic feature of log-scaled filter-banks.
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The acoustic features are also post-processed by Cepstral
Mean and Variance Normalization (CMVN).

The local acoustic pattern extractor is based on a 2D Con-
volutional Neural Network (CNN) modified from the well-
known ResNet-34 (He et al. 2016) architecture. It has 4
residual blocks, where each convolutional layer is followed
by a batch normalization (BN) layer and a ReLU activa-
tion function. Taking the filter-banks as input, the modified
ResNet-34 effectively extracts the local patterns with respect
to the speaker identity and outputs a sequence of frame-level
representations.

In order to aggregate the speaker-specific patterns in an
adapted manner, the embedding layer leverages a multi-head
attention mechanism (MHA) (Vaswani et al. 2017) to attend
to different discriminative patterns in the speech. By con-
catenating the outputs from different heads of Scaled Dot-
Product Attention (Vaswani et al. 2017), the MHA integrates
the frame-level representations into a utterance-level rep-
resentation. With another two consecutive fully-connected
layers, the utterance-level representation is further trans-
formed into the final speaker embedding. Given the speaker
embeddings of input speeches, we can measure their simi-
larities in terms of speaker identity through the cosine simi-
larities between the speaker embeddings.

For discriminative speaker embeddings, the speaker em-
bedding is optimized to classify speaker identity with
the additive margin softmax (AM-Softmax) loss (Wang
et al. 2018a,b). By forcing the cosine similarity toward the
ground-truth speaker identity to be at least a predefined mar-
gin more than those toward the false speakers, the system is
able to capture more discriminative and robust speaker em-
beddings.

The system is trained with a large dataset containing more
than 40,000 speakes and the dataset is composed of a wide
range of speech datasets, including VoxCeleb1 (Nagrani,
Chung, and Zisserman 2017), VoxCeleb2 (Chung, Nagrani,
and Zisserman 2018), Aishell-1 (Bu et al. 2017), Aishell-2
(Du et al. 2018), MAGIDATA2, etc. Evaluation on short du-
ration test speeches (i.e 10 second speech for register and 3
second speech for verification) reports an Equal Error Rate
(EER) of 0.076% in complex testing scenarios, showing the
superior performance of the system in speaker verification.

Demonstration
The demonstration shows the application of the speaker ver-
ification system on mobile devices. The snapshots are shown
in Figure 2. The main functions of the application includes
two phrases: register and testing. In the register phase, the
users need to register in the system with three different
speeches. Specifically, they can read the given numbers and
mottoes in the demo or speak any other texts they like. Each
registered speech should be at least 3 seconds to ensure ver-
ification performance. The system converts the registered
speeches into speaker embedding through the techniques
discussed in the previous section and stores it in the server.

In the testing phase, the users can speak the given texts or
any other text they like to verify their identity. And the ver-

2http://www.openslr.org/68
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Figure 2: Snapshots of the speaker verification system: (A)
Register; (B) Testing; (C) Verification passed and (D) Veri-
fication failed.

ification decision is made by comparing the speaker embed-
ding of the input speech with the registered speaker embed-
ding. Particularly, the demonstration examines the scenario
with mask wearing and finds that the system works as well
as general scenario, showing the accuracy and robustness of
the system.

The system is deployed on a machine with 126GB mem-
ory, 32 Intel Core Processor (Xeon) and CentOS. Dur-
ing demonstration, the audience can experience the system
through cellphone provided by us or through mini-program
service of their own cellphone if they have installed the
WeChat app.

Conclusion
In this demonstration, we present a health-friendly speaker
verification system on mobile device. We demonstrate the
superiority and robustness of the system in scenarios such
as wearing mask in registration or verification phase. The
demonstrated system has significant social impact under the
background of coronavirus pneumonia epidemic. We wish it
pave the way for better bio-metric techniques which priori-
tize personal health and public hygiene.
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