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Abstract

State-of-the-art commercial dialog platforms provide power-
ful tools to build a conversational agent. These platforms pro-
vide complete control to the dialog designer to model user-
agent interactions. However, a dialog designer needs to rely
on domain experts to manually build the dialog model – by
creating dialog flow nodes and modeling user intents. This
process is laborious, time consuming and expensive and does
not allow the designer to exploit human to human conversa-
tion logs effectively. In this work, we present a research pro-
totype that can ingest human-to-human conversation logs be-
tween an end-user and an agent, and suggest user-intents and
agent-responses, given a conversation context. We utilize hu-
man to human conversation logs to build two emulators: user
and agent. An agent emulator models an agent response given
the conversation context so far, and a user emulator outputs
possible user responses. Our system is able to recommend
conversational intents as well as conversation flow using em-
ulators based on real-world data, thus making the process of
designing a bot more efficient. To the best our knowledge this
is the first system that enables data-driven dialog model cre-
ation by emulating users and agents.

Introduction
Real-world deployments of dialog systems, use dialog-
authoring frameworks such as IBM Watson R© Assistant1, Di-
alogFlow2 and Microsoft R© Bot framework3. These frame-
works enable the Dialog Designer to specify user intents
and a dialog flow. Conversation models used by these frame-
works may be thought of as a tree of dialog nodes, where
each node expects a user intent as an input, generates an
agent response as an output, and updates the dialog state.

In this paper, we present a research prototype that boot-
straps dialog models using human-to-human conversation
logs. Manual specification of user intents and dialog flow
is time consuming and expensive. Our prototype offers a
method to ease this effort by using human-to-human conver-
sation logs between two participants: an end-user and sup-
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1https://www.ibm.com/cloud/watson-assistant
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3https://dev.botframework.com that allow manual specification

of dialog models

port agent effectively. We utilize the advances in deep learn-
ing to cluster semantically similar sentences using sentence
vectors (Cer et al. 2018) to help a dialog designer build a
conversation model with user-intents and dialog flow. Our
system ingests logs of human-to-human conversations be-
tween an end-user and an agent and starts by suggesting
user-intents to the Dialog Designer by triggering a user em-
ulator, which returns possible user responses given what has
been said so far. The designer may then browse through the
user-intent suggestions, include a few in the model, and ex-
plore them further to build the dialog-flow. Further explo-
ration of intents triggers an agent emulator, which models
an agent response. We further add a dialog node to the di-
alog flow with suggestions for possible agent-responses to-
wards the user-intents. To the best our knowledge this is the
first system that enables data-driven dialog model creation
by emulating users and agents.

We demonstrate our prototype by integrating it with IBM
Watson R© Assistant. Our prototype system offers the follow-
ing advantages over existing dialog frameworks: (i) cov-
erage and prioritization of conversational intents can be
grounded in real data, (ii) examples of intents represent real
user expression and are easy to surface, (iii) the created dia-
log flow better represents real conversational variations.

System Design
The main features of our system are:
• Suggest user intents: Our system can ingest human-to-

human conversation logs to suggest user-intents, condi-
tioned on the conversation context.

• Suggest agent responses: Exploit conversation logs to
suggest agent-responses given the previous conversation
context and a selected user-intent.

• Data-driven Dialog Model Creation: Our system thus
enables a dialog designer to interactively explore human-
to-human conversation logs to create a data-driven dialog
model quickly.

Implementation
We plugged our dialog-model bootstrapping system into a
customized instance of IBM Watson R© Assistant to facili-
tate the process of building a chatbot using user-agent con-
versation logs. A chatbot is intended to emulate a human
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Figure 1: Dialog Design Runtime: User Intents and agent responses surfaced from conversation logs for review by the bot
designer.

agent in responding to user utterances in a conversation con-
text. we represent conversation contexts as neural vectors
that are generated by pre-trained sentence encoders such as
(Cer et al. 2018).

For each training context corresponding to the response
universe U , we use a sentence encoder to generate a context
vector. We index each context vector using the open source
indexing library Annoy (Bernhardsson 2013) which is opti-
mized for vector based nearest neighbour search. To emulate
the dialog behavior, for an unseen conversation context C,
sentence encoder is used to generate a query vector q, which
is then used to search for the closest matching context vec-
tors indexed earlier. Corresponding responses are returned
as probable next utterances.

The Intent Generator could be seen as a function that con-
sumes a list of user utterances and returns a set of intents.
An intent is a group of similar utterances. In order to group
utterances, we need to convert each sentence into a feature
vector such that semantically similar sentences have simi-
lar feature vectors. We use the Universal Sentence Encoder
(USE) (Cer et al. 2018) to obtain sentence vectors. We then
cluster these sentence vectors using k-means clustering to
generate intents. Since USE generates a single vector irre-
spective of the length of the sentence, sentence vectors de-
grade in quality as the sentence length increases (Cer et al.
2018). We thus, observe that processing sentences in order
of sentence length (shortest sentence first) generates better
clusters. Finally, given that the screen space is limited and
we would like to reduce the cognitive load for dialog design-
ers, we use clustering along with determinantal point process
to get dominant and diverse suggestions for user and agent
responses.

User Experience
Conversation Logs: In order to bootstrap a dialog
workspace from human-to-human conversation logs, the
system exposes a service endpoint to upload conversa-
tion/chat logs. Specifically, the service expects conversation
logs in a CSV or JSON format with speaker-role annota-

tions, as well as dialog boundary markers. The system then
generates context-response pairs for both the ‘user’ and the
‘agent’ in the conversation logs.
Intent Suggestions: Once the conversation logs are up-
loaded, the system automatically processes them to extract
initial user-intents. These intents are derived using examples
from the user utterances at the first turn of the conversation.
The easy-to-use interface allows the designer to browse in-
tents along with example utterances from the conversation
logs, corresponding to each of those intents. A designer may
choose to import a selection of intents (along with related
selections of examples) into the conversation model.
Dialog Flow: On identifying an intent of interest, the bot
designer may choose to explore how an ‘agent’ would re-
spond. The exploration step creates a dialog node for the
intent and presents candidate agent-responses for the user-
intent from the conversation logs. Once the designer selects
a suitable agent-response (along with some linguistic vari-
ants), the modelling of one conversational exchange is com-
plete. The designer may now choose to explore subsequent
conversational exchanges by repeating the process of intents
and agent-response selection from the context of this dialog
node, leading to the construction of a dialog tree represent-
ing the conversational possibilities as demonstrated in the
chat logs. The Dialog Designer may remove, reorder, and
edit the suggested responses.

A video demonstrating our bootstrapping is system is
available at: http://ibm.biz/BootstrappingDemo.
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