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Abstract

In recent years, Reinforcement Learning (RL), has become a
popular field of study as well as a tool for enterprises working
on cutting-edge artificial intelligence research. To this end,
many researchers have built RL frameworks such as openAI
Gym, and KerasRL for ease of use. While these works have
made great strides towards bringing down the barrier of en-
try for those new to RL, we propose a much simpler frame-
work called EasyRL, by providing an interactive graphical
user interface for users to train and evaluate RL agents. As it
is entirely graphical, EasyRL does not require programming
knowledge for training and testing simple built-in RL agents.
EasyRL also supports custom RL agents and environments,
which can be highly beneficial for RL researchers in evaluat-
ing and comparing their RL models.

Introduction
Reinforcement Learning (RL) is a popular formalism for
automated decision-making. It is a growing field with im-
pressive advances. However, existing RL techniques have
been mostly applied and evaluated on games (Mnih et al.
2015; Silver et al. 2016). Apart from a small number of real-
world applications that use RL solutions (Zeng et al. 2016;
Moriyama et al. 2018), RL is not a widely popular decision-
making model across all domains. RL training, in general,
is a cumbersome process. Several issues including (but not
limited to) hyper-parameter tuning, sample efficiency, and
training stability (Schulman et al. 2017) need to be carefully
addressed during the training process. It has therefore be-
come indispensable to have a solid background knowledge
in RL and sufficient software development skills to success-
fully develop and train RL agents. The above requirements
restrict the RL audience to only a handful of researchers who
are experts in RL. Although RL can solve decision-making
problems in other domains such as healthcare, transporta-
tion, networking, etc., people in these fields may find it cum-
bersome to train RL agents without sufficient expertise.

Our main goal is to build a RL framework that can be used
by diverse audiences from different domains. To this end,
we propose the EasyRL framework for both native as well
as non-native RL users to easily develop, train, and evalu-
ate RL agents. The existing RL frameworks Keras-RL, Ten-
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sorforce, Horizon, HuskaRL, SimpleRL, AI-ToolBox, and
Coach provide a range of built-in deepRL (deep reinforce-
ment learning) techniques and some of them, such as Coach,
create visualization of the training process for debugging
purposes (Winder 2019). However, they do not support a
user-friendly Graphical User Interface (GUI). Even the pop-
ular OpenAI gym only supports a range of environments to
evaluate RL agents. Further, all existing frameworks require
some amount of RL and programming knowledge.

Our EasyRL framework offers an interactive GUI to build,
train, and evaluate RL agents. It hosts a number of built-
in RL agents (algorithms) and environments. Additionally,
a user may develop his own custom RL agent or environ-
ment and add it to the framework. The EasyRL framework
requires no or minimal programming skills for training in-
built RL agents. This differs from many previously existing
RL frameworks by greatly simplifying access and reducing
the technical barrier of entry to training RL agents. As the
amount of personal computing resources has tremendously
increased, the applicability of RL techniques to well-defined
environments can be better leveraged to allow non-native RL
users to themselves train RL agents. By introducing the user
to RL and giving them the tools to create agents and environ-
ments themselves, our framework will improve the visibility
as well as applicability of RL across different domains.

Figure 1: Structure of the EasyRL Framework

The EasyRL Framework
The proposed EasyRL framework12 allows the training and
evaluation of RL agents on a variety of openAI gym as

1Source Code: https://github.com/easyRL/easyRL-v0
2Demo Video: https://youtu.be/Sc5phA TR o
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(a) Choosing Environment & RL Agent (b) Setting Hyper-Parameters & Visualizing Results

Figure 2: EasyRL Framework GUI

well as custom real-world environments. EasyRL follows a
highly modularized implementation with abstractions such
as Agent and Environment. The sequence diagram for navi-
gating through the framework is shown in Fig. 1. The GUI
for the framework is shown in Fig. 2. The user can select
from a variety of RL agents and environments (see Fig. 2a).
The user can then set the hyper-parameters for training (see
Fig. 2b). The training results are plotted using metrics such
as mean rewards and training loss. The graphs also show the
epsilon annealing process. The training environment is dy-
namically rendered on the screen. The rendering speed can
also be changed (see Display Episode Speed in Fig. 2b).

The trained RL model as well as results can be saved for
future use. The user can load a previously trained RL agent
using Load Model and run test cases as well as visualize the
results. The framework provides options to create custom
RL agents and environments using Load Agent and Load
Environment options in the File menu. The menu also has a
detailed help guide to assist the user with these commands.

Figure 3: API for Custom Environment

RL Algorithms & Environments
EasyRL currently hosts a list of model-free algorithms that
can handle both fully-observable environments such as Q-
learning (Watkins and Dayan 1992), SARSA (Rummery and
Niranjan 1994), DQN (Mnih et al. 2015), DDQN (Van Has-
selt, Guez, and Silver 2016), PPO (Schulman et al. 2017),
REINFORCE (Williams 1992) and partially-observable en-
vironments such as DRQN (Hausknecht and Stone 2015)

and ADRQN (Zhu et al. 2017). The off-policy deepRL tech-
niques mentioned above are implemented using standard ex-
perience replay for sampling experiences. It should be noted
that our framework also supports model-based RL agents.
The user is also allowed to create custom RL agents and im-
port them to the EasyRL framework (as a Python file).

The framework hosts a variety of OpenAI Gym environ-
ments (classic control and atari). The user can also cre-
ate a custom environment by following the API shown in
Fig. 3. We have implemented some custom environments,
e.g., seller selection in e-markets (Irissappane et al. 2014).

The EasyRL framework is highly modularized and exten-
sible (MVC design pattern). It is predominately written in
python and supports both Tensorflow as well as Pytorch deep
learning libraries. EasyRL also supports C++ native im-
plementations (see DRQNNative, DDQNNative) via CFFI,
which speeds up the training atleast by 5 times. The frame-
work, by default, uses local CPU/GPU during training, how-
ever, it can be easily configured to use resources remotely.
Further, EasyRL supports training multiple RL agents in par-
allel via the Python Threading library. The EasyRL frame-
work is easy to install and is supported by Windows, Linux
as well as iOS. We also provide a command-line interface,
offering the same functionality as the GUI.

Demo
Our demonstration2 will show how a GUI can greatly sim-
plify the process of developing, training, and testing a RL
agent. We will demonstrate our simple installation proce-
dure and show how a user with minimal knowledge of RL
and programming can successfully train a RL agent. In addi-
tion to training and testing different combinations of agents
and environments, we will show how to save and load pre-
trained RL agents along with the results from a training or
test run. We will demonstrate how to create custom envi-
ronments and RL agents and show the training results for
one such custom environment including the visualization
graphs. Furthermore, we will show how multiple agents can
be trained simultaneously and the improvement in training
speed when native C++ implementation is used.
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