
Democratizing Constraint Satisfaction Problems through Machine Learning

Mohit Kumar, Samuel Kolb, Clement Gautrais, Luc De Raedt
KU Leuven, Belgium

mohit.kumar@cs.kuleuven.be, samuel.kolb@cs.kuleuven.be, clement.gautrais@cs.kuleuven.be, luc.deraedt@cs.kuleuven.be

Abstract
Constraint satisfaction problems (CSPs) are used widely, es-
pecially in the field of operations research, to model various
real world problems like scheduling or planning. However,
modelling a problem as a CSP is not trivial, it is labour inten-
sive and requires both modelling and domain expertise. The
emerging field of constraint learning deals with this problem
by automatically learning constraints from a given dataset.
While there are several interesting approaches for constraint
learning, these works are hard to access for a non-expert user.
Furthermore, different approaches have different underlying
formalism and require different setups before they can be
used. This demo paper combines these researches and brings
it to non-expert users in the form of an interactive Excel plu-
gin. To do this, we translate different formalism for speci-
fying CSPs into a common language, which allows multiple
constraint learners to coexist, making this plugin more pow-
erful than individual constraint learners. Moreover, we inte-
grate learning of CSPs from data with solving them, making
it a self sufficient plugin. For the developers of different con-
straint learners, we provide an API that can be used to inte-
grate their work with this plugin by implementing a handful
of functions.

Introduction
In operations research as well as artificial intelligence, the
use of constraints is ubiquitous. Many problems can be cast
as a constraint satisfaction or optimisation problem. But
while there is a lot of work on using constraints, there is
only little work on learning them. This has changed in recent
years, there is now a substantial interest in constraint learn-
ing from examples (De Raedt, Passerini, and Teso 2018).
This is the problem of finding a set of constraints that satisfy
a given dataset. In this way, constraint learning from exam-
ples wants to alleviate the model construction bottleneck in
domains such as scheduling, rostering, transportation, etc.

Constraint learning techniques are emerging in many fla-
vors, a key distinction being the underlying representa-
tion they are using. For example, Bessiere (Bessiere et al.
2016) learns arbitrary constraint models, which includes
constraints on numeric variables, for example x ≤ y
or x 6= y, where x and y are integer variables. Mod-
elSeeker (Beldiceanu and Simonis 2016) takes a vector of

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

values as input and learns global constraints like “all val-
ues should be different” or “the values should follow a
sequence”. INCAL (Kolb et al. 2018) learns satisfiability
modulo theory from positive and negative examples, while
ARNOLD (Kumar, Teso, and De Raedt 2019) acquires in-
teger programs with polynomial inequalities using positive
examples. Some constraint learners focus on more specific
problems, for instance, COUNT-OR (Kumar et al. 2019)
learns constraints specific to rostering problems and requires
only positive examples, while TACLE (Paramonov et al.
2017) learns common spreadsheet formulae and relations.

Even though all these methods learn constraints, they dif-
fer in the type of constraints they can learn, the type of data
they can use, and that determines the kind of problems they
can be applied to. However, we often encounter datasets on
which many of these learners can be applied simultaneously
to uncover the underlying formalism. For instance, consider
the example shown in Figure 1. The table highlighted with
red shows the working schedule for different nurses in a
week, where each day has a morning and a night shift. The
other table (highlighted in yellow) shows the total number of
working shifts in the week for each nurse. Here we can ap-
ply COUNT-OR to learn scheduling constraints like: “Every
shift requires a Nurse”, and at the same time apply TaCLe
to learn that “the column in the second table is a sum of the
corresponding rows in the first one”. Therefore, combining
the constraints learned by different approaches would yield
a much more powerful model. To the best of our knowledge,
this approach of combining multiple algorithms has not yet
been pursued within constraint learning.

We make the following contributions. First, we intro-
duce an interactive Microsoft Excel c© plugin, named SYN-
THCSP, for synthesizing and solving CSPs. As the name
suggests, it combines both learning and solving of CSPs.
Second, SYNTHCSP integrates different constraint learn-
ers, such as TACLE (Paramonov et al. 2017) and COUNT-
OR (Kumar et al. 2019). This is made possible by encod-
ing all learned constraints in a common language, which
can then be solved using any off-the-shelf solver that sup-
ports that language. Finally, SYNTHCSP is independent of
the underlying methods used to acquire constraints and sup-
ports each of them, we provide an easy to use API to in-
tegrate any constraint learner. For this demo, we integrated
COUNT-OR and TACLE , but we are working on integrat-

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

16057



Figure 1: Dataset with two tables, first one representing a
schedule for nurses, while second one gives total number of
working shifts for each nurse.

ing further approaches such as ARNOLD (Kumar, Teso, and
De Raedt 2019) and INCAL (Kolb et al. 2018). We believe
these features will contribute towards democratizing the use
and learning of CSPs.

SYNTHCSP is part of VISUALSYNTH, a project that aims
at making data science available to spreadsheet users (Gau-
trais et al. 2020). VISUALSYNTH interacts with spread-
sheet users through visual hints, in the form of colored
cells or simply by monitoring user actions such as cell
editing, deletion or selection. Based on these interactions,
VISUALSYNTH can suggest data science tasks to perform,
such as wrangling, model learning, prediction or constraint
learning. In this paper, we focus on demonstrating the learn-
ing and solving of constraints in VISUALSYNTH, which has
never been presented before.

Learning and Solving CSP in Spreadsheet
Given a space of constraints S and data D, the problem of
constraint learning from examples boils down to finding a
set of constraints C ⊂ S, such that all constraints c ∈ C are
satisfied by the data D.1 Constraint learning is studied here
in the context of spreadsheets, which implies that the data D
takes the form of a set of tables. Secondly, we will require
that all constraints in the space S can be translated to a com-
mon language. We use Gurobi2, which is one of the leading
software to model mathematical programs, so we support all
the constraints that can be represented in Gurobi, which in-
cludes linear as well as quadratic constraints. So far, the opti-
misation criteria in Gurobi has been not exploited, although
in principle it would be easy to do this. The reason is that
the current constraint learners do not simultaneously learn
the optimisation criteria, but some recent work like (Kumar
et al. 2020) does this and we plan to integrate it as a fu-
ture work. Notice that, by changing the solver we can also
integrate other approaches which cannot be modelled using
Gurobi, this is also left as a future work.

Different constraint learners employ different strategies
for learning. For instance, TACLE (Paramonov et al. 2017)
and COUNT-OR (Kumar et al. 2019) use a clever generate-
and-test approach. They generate the constraints using a pre-
defined vocabulary and test it on the examples to acquire
a list of satisfied constraints, while making sure that only
relevant constraints are generated. On the other hand, ap-

1One could relax this using loss functions and allow for both
soft and hard constraints, cf. (De Raedt, Passerini, and Teso 2018).

2https://www.gurobi.com/

proaches such as ARNOLD (Kumar, Teso, and De Raedt
2019) combine a generality ordering on the constraints to
guide and direct the search towards those constraints that
are satisfied by the data. This approach allows for intelligent
pruning very much in the spirit of concept-learning and fre-
quent pattern mining. A third approach, used by works such
as INCAL (Kolb et al. 2018), is to encode the learning prob-
lem as an optimization problem and to solve it using an off-
the-shelf solver to acquire a constraint model satisfying the
data. SYNTHCSP can accommodate all of these strategies.

Once the constraints have been learned, the focus shifts to
the problem of constraint solving. Given data D with miss-
ing values and a set of constraints C, the aim is to fill out the
missing values such that all constraints c ∈ C are satisfied.
The whole pipeline can be broken down into 4 major steps:

Extract relevant examples: Every constraint learner needs
examples to learn the underlying constraints. The defini-
tion of example varies for different learners. For instance,
TACLE learns spreadsheet formulae and relations on tabu-
lar data and hence uses a table row as an example. COUNT-
OR learns constraints on multi-dimensional boolean data
and hence an example is a table with multiple headers and
values containing 0s and 1s. As soon as the user opens a
spreadsheet, SYNTHCSP looks for relevant examples corre-
sponding to each constraint learner.

Learn constraints: Next, SYNTHCSP allows user to learn
constraints using all approaches for which at least one rele-
vant example was found in the spreadsheet.

Add constraints to a model: After learning, SYNTHCSP
adds all learned constraints to a Gurobi model. To create
the model, it first generates the list of cells affected by the
learned constraints. Then it initializes a model in Gurobi
with each of these cells as a variable. Finally it adds each
constraint into the initialized model, making sure that the
constraints are expressed in terms of the cell variables.

Solve: Finally the inference engine is called for the built
model to complete any partial data or to generate new data.
The complete demo can be found at https://youtu.be/
7uM2Ap-Rv4Q. To add a constraint learner to SYNTHCSP,
any system can use our API to define these steps by imple-
menting a handful of functions.

Conclusion and Future Work
Constraint satisfaction problems are widely used to model
and solve various real world problems. In this demo we bring
the power of both learning and solving CSPs to spreadsheets.
As spreadsheets are used widely to store data, our plugin de-
mocratizes constraint learning approaches and makes them
easily accessible, also to the non-experts in this field. More-
over, as we provide a shared inference engine for multiple
constraint learners, we can use constraints learned using dif-
ferent constraint learning algorithms to complete a dataset,
this makes the plugin more powerful than individual con-
straint learners. As shown, our API can be used by any con-
straint learner to make their work easily accessible to the
public with a very little effort, as long as the constraints can
be represented in the common language. Going forward, we
aim to integrate more constraint learners as well as solvers
into SYNTHCSP.

16058



Acknowledgments
This work has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No.
[694980] SYNTH: Synthesising Inductive Data Models).
This research was also partially funded by the Data-driven
logistics project (FWO-S007318N) and the Flemish govern-
ment(AI research program).

References
Beldiceanu, N.; and Simonis, H. 2016. ModelSeeker: Ex-
tracting Global Constraint Models from Positive Examples.
In Data Mining and Constraint Programming - Foundations
of a Cross-Disciplinary Approach, 77–95. Springer.
Bessiere, C.; Daoudi, A.; Hebrard, E.; Katsirelos, G.;
Lazaar, N.; Mechqrane, Y.; Narodytska, N.; Quimper, C.-G.;
and Walsh, T. 2016. New approaches to constraint acquisi-
tion. In Data mining and constraint programming, 51–76.
Springer.
De Raedt, L.; Passerini, A.; and Teso, S. 2018. Learning
constraints from examples. In Thirty-Second AAAI Confer-
ence on Artificial Intelligence.
Gautrais, C.; Dauxais, Y.; Teso, S.; Kolb, S.; Verbruggen, G.;
and De Raedt, L. 2020. Human-Machine Collaboration for
Democratizing Data Science .
Kolb, S.; Teso, S.; Passerini, A.; and Raedt, L. D. 2018.
Learning SMT(LRA) Constraints using SMT Solvers. In
Proceedings of the Twenty-Seventh International Joint Con-
ference on Artificial Intelligence, IJCAI-18.
Kumar, M.; Kolb, S.; Teso, S.; and Raedt, L. D. 2020. Learn-
ing MAX-SAT from Contextual Examples for Combinato-
rial Optimisation. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, 4493–4500.
Kumar, M.; Teso, S.; Causmaecker, P. D.; and Raedt, L. D.
2019. Automating Personnel Rostering by Learning Con-
straints Using Tensors. In 31st IEEE International Confer-
ence on Tools with Artificial Intelligence, ICTAI 2019.
Kumar, M.; Teso, S.; and De Raedt, L. 2019. Acquiring
Integer Programs from Data. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelli-
gence, IJCAI-19.
Paramonov, S.; Kolb, S.; Guns, T.; and Raedt, L. D. 2017.
TaCLe: Learning Constraints in Tabular Data. In Proceed-
ings of the 2017 ACM on Conference on Information and
Knowledge Management, CIKM 2017, 2511–2514. ACM.

16059


