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Abstract

The consensus algorithm is the core component of a
blockchain system, which determines the efficiency, security,
and scalability of the blockchain network. The representative
consensus algorithm is the proof of work (PoW) proposed in
Bitcoin, where the consensus process consumes large amount
of compute in solving meaningless Hash puzzel. Meanwhile,
the deep learning (DL) has brought unprecedented perfor-
mance gains at heavy computate cost. In this demo, we chan-
nels the otherwise wasted computational power to the prac-
tical purpose of training neural network models, through
the proposed proof of learning (PoLe) consensus algorithm.
In PoLe, the training/testing data are released to the entire
blockchain network (BCN) and the consensus nodes train NN
models on the data, which serves as the proof of learning.
When the consensus on the BCN considers a NN model to be
valid, a new block is appended to the blockchain. Through our
system, we investigate the potential of enpowering machine
learning with consensus building on blockchains.

Introduction
A blockchain network (BCN) is a decentralized distributed
system where participants are not necessary to trustwor-
thy but able to collectively maintain a consistent database
or ledger (Tapscott and Euchner 2019). The core compo-
nent of a BCN is the consensus algorithm. The pioneering
BCN is Bitcoin and its consensus algorithm is proof of work
(PoW) (Nakamoto 2008). The PoW has been applied in var-
ious applications scenerios, such as financial services, and
alternative cryptocurrency. However, a major drawback of
a PoW based BCN is that the system consumes massive
amount of compute and energy. Most of the energy is spent
on calculating the nonce of hash functions, which serves no
real purposes other than being difficult to compute.

On the other hand, machine learning, especially deep-
learning, has been widely applied in many fields, such as
business and manufacturing (Khan et al. 2020; Lin et al.
2020; Gai et al. 2020). Deep learning uses labeled data to
train deep learning models in the way of iteratively updat-
ing network weights. A well structured deep learning model
can fit any function, which makes deep-learning present
strong productivity in solving specific problems. However,
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the training of deep learning model usually consumes a lot
of computing resources. With the extensive application of
deep learning, the demand of computing power will be more
and more. Meanwhile, significant performance gain in deep
learning has been derived from scaling up the network and
training data (Mahajan et al. 2018; Radford et al. 2019; De-
vlin et al. 2019; Yalniz et al. 2019) and automatic design of
neural network (NN) architectures (So et al. 2019; Real et al.
2019). These trends have created an ever-growing demand
for computational power.

In this demo, we present a system which directs the com-
putation and energy spent on blockchain consensus to the
practical function of training machine learning models. We
build the system based on our proposed proof of learning
(PoLe) consensus algorithm where an asymmetric puzzle is
designed to generate tampering prevention blocks (Lan, Liu,
and Li 2020). The proposed PoLe-based BCN provides a
platform on which users may commission a neural network
model that meets their requirements. The BCN contains two
types of participants, data nodes which announce tasks with
a reward, and consensus nodes or miners which work to
solve the announced tasks. After a data node announces a
task, consensus nodes may accept it and seek a model that
meets the announced minimum training accuracy. After re-
ceiving a valid solution which meets the training accuracy
criterion, the data node releases the test set. The consensus
nodes then collectively select the solution with the highest
generalization performance and distribute the task reward
accordingly. Thus, a PoLe-based blockchain can serve as a
decentralized database and a machine-learning platform si-
multaneously.

Related Work
Blockchain technology is a distributed paradigm to boost
construction of the Internet of value (Tapscott and Euchner
2019), which has gained tremendous momentum in the past
decade. Blockchain enables distributed parties who do not
fully trust each other to maintain a shared and consistent
ledger. Blockchain networks are characterized by unique
properties e.g. decentralization, transparency, tampering-
resistance and programmability (Dinh et al. 2018).

Consensus algorithm is a method to achieve data consis-
tency among multiple distributed nodes. The most classical
and commonly used consensus algorithm is proof of work
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Figure 1: The Overview of the Proposed System

(PoW) proposed in Bitcoin white paper (Nakamoto 2008).
In Bitcoin network, PoW algorithm lets each node repeat-
edly generate nonces when “mining” a valid block, until the
hash value calculated by the nonce and content of the cur-
rent and previous blocks is less than a target value, which
is further used as the hash value of the current block. The
blockchain network always considers the longest chain to
be effective. When a node wants to change the content of a
previous block and makes its modification effective, it needs
to recalculate the hash value of all blocks after that block
and makes the length of the modified chain longer than the
unmodified chain. The computational power required by this
process is prohibitively high, which guarantees data security
and data consistency of blockchain networks.

Motivated to reduce the compute demand of PoW, proof
of stake (PoS) (King and Nadal 2012) and distributed
proof of stake (DPoS) (Larimer 2014) have been proposed.
Other alternative consensus mechanisms such as credit-
based PoW (Huang et al. 2019), proof of reputation (PoR)
(Qianwei Zhuang 2019) and proof of negotiation (PoN)
(Feng et al. 2020), DBFT (Liu et al. 2020) have been also
proposed in the literature. PoR studies a two-chain architec-
ture to construct the reputation of nodes in a separate chain
and the next block generator is determined by the reputation
chain (Qianwei Zhuang 2019). In PoN, the trustworthiness
of miners are evaluated and a random-honest miner is se-
lected based on negotiation rules. The PoN investigates par-
allel multi-block creation method to achieve high efficiency
than traditional consensus mechanisms in one-by-one block
creation (Feng et al. 2020). To date, PoW remains the most
popular and widely accepted choice (Gervais et al. 2016).

System Architecture
The proposed system is a decentralized peer-to-peer network
composed by two types of entities: data nodes and consensus
nodes, as shown Figure 1. Communications between nodes
are presented in Figure 2. A data node is a user who commis-
sions machine learning tasks via the blockchain. The con-
sensus nodes are the suppliers of the computational power
to the system; they compete to train a model that meets the
requirements as specified by the data node. The winner con-

Figure 2: The Communications among Nodes

sensus node receives the reward specified by the data node.
Besides rewards from data nodes, the blockchain also func-
tions as a decentralized data storage such as those used by
cryptocurrencies.

The roles of the data provider nodes and the consensus
nodes are asymmetric. Data nodes provide the monetary in-
centives to the consensus nodes and are assumed to be re-
sponsible users who will not abuse the mechanism. In com-
parison, consensus nodes can join and leave the system at
any time, and are assumed to be will to cheat when possible.

The test set should remain off the blockchain in order to
prevent malicious consensus nodes from using the test set
for training. Therefore, the data node only broadcasts the test
set after it starts to receive trained models. The data node can
decide to wait for a number of solutions to arrive before re-
leasing the test set. After the test set is released, no solutions
from consensus node will be accepted.

We design an encryption mechanism to prevent malicious
nodes from starting training before other nodes. We follow
inner-product functional encryption (Abdalla et al. 2015)
and propose a method for the data node to upload data af-
ter encryption and the consensus nodes to access the inner
product between user data and model parameters. A secure
mapping layer (SML) is designed between encrypted data
and the target neural network model.

The behavior of the consensus nodes follow the Proof-of-
Learning (PoLe) consensus algorithm.

Proof of Learning Consensus
The process of PoLe includes the following 4 steps: model
training, new block broadcasting, model verification, new
block confirmation,

Step 1: model training. A consensus node selects the
task with highest value from the task list in the last block
in its blockchain, and begins training the task. The value of
a task is determined by the average reward in a unit of time.
Since the task list is consistent, the highest value task should
be the same for all the miners. Since the generation of SML
is related with the current block hash, the malicious nodes
are unable to start mining in advance.

Step 2: block broadcasting. When training has produced
a model that meets the training accuracy specified by task
requesters, the miner broadcasts a new block declaring its
success.
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Figure 3: The UI for Data Nodes and Consensus Nodes

Step 3: model verification. After consensus nodes re-
ceive a series of blocks and end up receiving test data, they
first compare the test accuracy of these blocks and sort them
in a descending order of the test accuracy. Then, miners eval-
uate the validity of each block by verifying the test accuracy
of the trained model contained in the new block.

Step 4: block confirmation. A block firstly passes the
verification process, then the block become the winning
block to be accepted by other nodes.

When a new block is accepted as a winning block, the test
data is then appended in the body of the block and the re-
wards of the task is transferred to the block owner. The task
list in the new block is formed by subtracting the completed
task from the original list in the previous block and adding
the newly collected tasks. Consensus nodes will consider the
transactions contained in the winning block to be valid and
generate new blocks by attempting the next task from the
task list of the winning block. Readers can access a detailed
design of PoLe in (Lan, Liu, and Li 2020).

The Demonstration System
We have designed and implemented two end-user clients for
data nodes and consensus nodes respectively. In our system,
each user is identified with a unique address, which is gener-
ated in a similar mechanism as Bitcoin system. The account
balance of the user, assigned IP address, and history action
log are presented for users, as shown in Figure 3.

In the user interface for a data node in Figure 3(a), the
node can specify a customrized model or choose a model

Figure 4: Data Node Receiving Trained Model

from a predefined list. After setting up the model, the data
node sets the training incentive payment and expected accu-
racy. The dataset can also been customized. Then the data
node can push the training request to the blockchain consen-
sus network. It should be noted that the data is optimal to be
encrypted in the current version.

Consensus nodes, by launching their client, can join the
blockchain network at their will. The consensus nodes take
the same task from the unfinished training requests in the
previous block, and train the model according to the task
specification. The real-time status of consensus nodes is also
presented in their interface as shown in Figure 3(b).

The data nodes and consensus nodes form a peer-tp-peer
network to exchange trained models and blocks, as shown
in Figure 2. The new block generation follows the proposed
PoLe, where the consensus node with the highest perfor-
mance accuracy is rewarded with the task incentives through
generating an incentive transaction with its generated new
block. After the model has been trained well by the con-
sensus nodes, the data node will be informed with the new
model as in Figure 4. A full demo video is available in
youtube1 and youku2.

Discussion
The designed demo system serves like a platform on which
the data nodes post machine learning tasks by offering re-
wards and the consensus nodes compete for them.

The PoLe design encouranges the data node to accurately
estimate the time it takes to complete the training and pro-
vide proportional reward. A data node may be tempted to
intentionally overestimate the time limit in order to make
consensus nodes to do more work for the same reward. How-
ever, under the current mechanism design, this will lead to
low task priority. On the other hand, underestimating train-
ing time can lead to high task priority but cause training to
terminate prematurely, yielding poor-performing models.

The presented demo system bears some resemblances to
federated learning (Yang et al. 2019; Konecný et al. 2016)
where various participants with different data collaborate in
a secure and privacy-preserving manner to train one model.

1https://youtu.be/MOkLpWc2aMk
2https://v.youku.com/v show/id XNDcyNjU5MDk4NA
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However, when compared with conventional settings of fed-
erated learning, the proposed system differs in important
ways, including (1) collaboration versus competition among
the participants, and (2) release verse assume the partici-
pants’ participation intentions.

Conclusion
PoW-based Blockchain systems can effectively ensure data
security at the cost of wasting huge computer resources.
Meanwhile, rapid progress in deep learning has created
an unsatisfied demand for computation power. We demo
a system which channels otherwise wasted compute on
blockchain to the practical benefits of training machine
learning models. As neural network powered AI applications
and blockchain networks continue to grow in the foreseeable
future, we believe the PoLe consensus mechanism will con-
tribute to meeting their demands for compute and reducing
environmental impact from energy consumption.
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