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Abstract

The simulated driving environment provides a low cost and
time-saving platform to test the performance of the au-
tonomous vehicle by linkage with existing machine learn-
ing approaches. However, most of existing simulated driv-
ing environments focus on building flat roads in urban ar-
eas. Still, they neglected to endeavour the tough steep, curvy
hill roads, such as mountain paths around suburban areas.
In this study, by deploying in Unity engine, we developed
the first complex mountain driving simulated environment
with characterizing continuous curves and up/downhill. Then,
two state-of-art reinforcement learning (RL) algorithms are
used to train a vehicle agent and test the performance of au-
tonomous vehicles in our developed simulated environment.
Also, we set 5 different levels of vehicle’s speeds and ob-
serve the cumulative rewards during the vehicle agent train-
ing. Our demonstration presents the developed environment
supports for complex mountain scenario configurations and
RL-based autonomous vehicles, and our findings show that
the vehicle agent could achieve high cumulative rewards dur-
ing the training stage, suggesting that our work is a poten-
tial new simulation environment for autonomous vehicles re-
search. The demonstration video can be viewed via the link:
https://youtu.be/0wSqGeCn-NU.

Introduction
Since training a vehicle agent to learn driving behaviours
in the real world is uneconomical and time-consuming, it
is necessary to initially use a driving simulation environ-
ment to develop autonomous driving technologies (Kiran
et al. 2020). The simulator builds some synthesis environ-
ment with multiple scenarios that allow us to collect a large
number of training datasets from the vehicle agent without
considering unsafe behaviours. The existing simulators have
been widely deployed for various purposes, especially in tar-
geting urban transportation issues, such as CARLA (Doso-
vitskiy et al. 2017), SUMO (Lopez et al. 2018), AIRSIM
(Shah et al. 2018), and DeepDrive (Quiter and Ernst 2018),
as shown in Figure 1-A. In specific, CARLA, AIRSIM, and
DeepDrive simulators provide the urban environment and
reproduce the low-speed, flat and wide road scenarios, which
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Figure 1: A: Four existing driving simulators: CARLA,
SUMO, AIRSIM, and DeepDrive. B: Our developed moun-
tain routes for autonomous vehicles in Unity.
are used to evaluate the performance of traditional control-
ling or machine learning based-agent for motion planning
and decision making. SUMO is known for simulating urban
traffic environment and planning sports.

However, the above simulators still cannot cover all of
the circumstances for automatic vehicles. Thus, it is worth
to develop a novel simulation environment that can generate
suburban scenarios with changes in road altitudes and cur-
vatures that have with flexibility and scalability, and meet
the growing demand of machine learning approaches to sup-
port autonomous driving tasks (Osinski et al. 2019). In this
study, we develop a suburban driving simulator with steep,
curvy, narrow paths, such as mountain roads, which expects
to simulate suburban driving environment areas that contain
challenging road types, such as continuing steep, curvy hill
roads.

In terms of training an autonomous vehicle, in such a
complex curvy hill road driving environment that we pro-
posed, a self-sustaining driving model may require a high
driving precision with multiple perception-level tasks (Kiran
et al. 2020). Traditional control approaches may be challeng-
ing to handle these circumstances, such as optimal trajecto-
ries of a vehicle, speed controls, and obstacle avoidances on
a mountain road. In a high dimensional sequential decision
process, reinforcement learning (RL) is recommended to be
used for an agent training and building an autonomous ve-
hicle model (Sallab et al. 2017). Thus, we assume that state
of the art (SOTA) RL algorithms, such as Proximal Policy
Optimization (PPO) (Schulman et al. 2017) and Soft Actor-
Critic (SAC)(Haarnoja et al. 2018), could also be a promis-
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Figure 2: The road types of the mountain paths (A, B, and
C) and the autonomous vehicle (D).
ing solution for autonomous driving in specific to mountain
roads.

Our Proposed Mountain Driving Environment
In this study, we used the Unity engine (Buyuksalih et al.
2017) as the platform to building the environment as it has
good flexibility and scalability for creating a simulated envi-
ronment and provide some basic games, such as Karting that
includes prototypes of essential vehicles and road models for
developers. Based on the advantages of Unity, we proposed
a new autonomous driving environment to simulate moun-
tain road 1 , as shown in Fig. 1-B.

The Creation of Mountain Paths
As shown in Figure 2-A, the simulated mountain route is
divided into two areas, the plain area and the mountainous
area. The plain area consists of two straight roads and a 90-
degree curve on the flat ground, as demonstrated in Figure
2-B. As partially presented in Figure 2-C, the mountain area
consists of with straight uphill roads, “S” curve uphill roads,
slightly curved roads, “S” curve downhill roads, and straight
downhill roads.

The Creation of Autonomous Vehicles
As shown in Figure 2-D, a vehicle agent is created, which
used 9 distance sensors to observe the surrounding obstacles
and determine the direction by detecting the checkpoints.
The outputs of this vehicle agent include 5 actions (left,
right, straight-forward, forward acceleration, and reversing
acceleration) to drive forward and avoid collisions. The ac-
celeration speed of agent sets as 2.78 m/s2, which is the
standard acceleration speed for physical vehicles. The max-
imum speed of the agent set at 5 different levels (36km/h,
47km/h, 60km/h, 79km/h, and 90km/h), where 47km/h is
the most commonly used speed for mountain roads.

For RL-agent training, the goal is to avoid collisions
and drive in the right direction as quickly as possible.
The rewards include a hit penalty of -1, a direction bonus
of +1, and a speed bonus of 0.02, the agent learned that
the main goal is to avoid collisions and drive in the right
direction as quickly as possible. Of note, we applied in the
Unity ML-Agents toolkit (Juliani et al. 2018), that allows
RL algorithms to communicate with Unity simulations
and evaluate the performance of the agent in a simulation

1Github repository: https://github.com/Xiaohu-LeoLee/
MountainRoad AD

Figure 3: A: The cumulative rewards (mean ± standard devi-
ation) of PPO and SAC training performance (random seed
= 3) with the setting of of maximum speed: 47km/h. B: The
cumulative rewards (mean ± standard deviation) of PPO
training performance (random seed = 3) with the setting of
five different levels of maximum speed: 36km/h, 47km/h,
60km/h, 79km/h, and 90km/h.
environment (Cao et al. 2020).

Experiments and Results
Experiment 1

Here, we expect to observe if an RL-agent can handle our
developed complex suburban mountain environment. Two
SOTA RL algorithms, PPO and SAC, are used to test the
vehicle agent’s performance with the setting of a maximum
speed 47km/h that is the most commonly used speed for
mountain routes. As shown in Figure 3-A, after 50k train-
ing steps, the cumulative rewards of SAC tends to be stabi-
lized while PPO continues to rise sharply. Both algorithms
achieved the positive and coverage cumulative rewards, im-
plying that the RL-agent allows being trained and tested in
our proposed simulated mountain route environment.

Experiment 2

As we set 5 different levels of maximum speeds (36km/h,
47km/h, 60km/h, 79km/h, and 90km/h) for the PPO vehi-
cle agent, for the second experiment, we expect to see how
dynamic changes of speed ranges influencing in RL train-
ing for our proposed simulated mountain route. As shown
in Figure 3-A, for the situations of the maximum speed over
60 km/h, the PPO algorithm will be challenging to handle
mountain roads due to the trade-off challenge between high
speeds and curve up/downhill roads.

Conclusions
In this study, we present a novel mountain driving unity sim-
ulated environment for autonomous vehicles, which makes
up for the existing driving simulators only focus on urban
traffic scenarios. Our developed environment is featuring
with complex curvy, narrow up/downhill scenarios, along
with deploying SOTA RL to train autonomous vehicles. The
experiment results show that our developed environment is
sufficient for autonomous vehicles training and testing, spe-
cific to complex mountain suburban areas.
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