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Abstract

To improve the user experience as well as business outcomes,
social platforms aim to predict user behavior. To this end,
recurrent models are often used to predict a user’s next be-
havior based on their most recent behavior. However, people
have habits and routines, making it plausible to predict their
behavior from more than just their most recent activity. Our
work focuses on the interplay between ephemeral and cycli-
cal components of user behaviors. By utilizing user activity
data from social platform Snapchat, we uncover cyclic and
ephemeral usage patterns on a per user-level. Based on our
findings, we imbued recurrent models with awareness: we aug-
ment an RNN with a cyclic module to complement traditional
RNNs that model ephemeral behaviors and allow a flexible
weighting of the two for the prediction task. We conducted
extensive experiments to evaluate our model’s performance on
four user behavior prediction tasks on the Snapchat platform.
We achieve improved results on each task compared against
existing methods, using this simple, but important insight in
user behavior: both cyclical and ephemeral components mat-
ter. We show that in some situations and for some people,
ephemeral components may be more helpful for predicting
behavior, while for others and in other situations, cyclical
components may carry more weight.

Introduction

Online social platforms such as Facebook, Twitter, and
Snapchat have become a ubiquitous and integral part of our
daily lives to communicate and interact with others, find en-
tertainment, and learn about current events. Content creators,
providers, and consumers benefit when the right content is
served to the right person at the right time. Additionally, bet-
ter content recommendation enhances user engagement and
interest on the platforms. Therefore, these social platforms
proactively customize and personalize content, interactive
features, and ads based on a user’s behavior and preferences,
to improve user satisfaction and engagement (Berkovsky,
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Kuflik, and Ricci 2008). A prerequisite for successful person-
alization is predicting user behavior ahead of time. How-
ever, human behavior is complex, and is confounded by
several on-platform and off-platform factors (Banovic et al.
2016). Those factors include time of the day (e.g. shorter chat
sessions during lunch time vs. longer chat sessions in the
evening) (Golder, Wilkinson, and Huberman 2007), day of
the week (binge content-watching on weekends), momentary
emotional state (exploring contents when bored) (Kapoor
et al. 2015a), social presence (sharing photos when meeting
with friends), and other factors (Habib, Shah, and Vaish 2019;
Koren 2009; Cheng et al. 2017).
Recent works on modeling user behavior have utilized

user activities in the recent past to make a prediction for
an upcoming session (Hidasi et al. 2015; Jing and Smola
2017; Beutel et al. 2018; Zhu et al. 2017; Saha et al. 2021b).
Hidasi et al. (Hidasi et al. 2015) utilized Recurrent Neural
Networks (RNNs) to model the dynamics on sequential be-
haviors. Jing and Smola incorporate timing of the sessions
and time-interval between consecutive sessions in a recurrent
model. A few recent works have shown better performance
by using Long Short-Term Memory (LSTM) networks with
time-gates (Zhu et al. 2017), and exploiting contextual infor-
mation, such as location and device (Beutel et al. 2018; Tang
et al. 2020). These methods exploit the recency or ephemer-
ality in user behavior to dynamically model the temporal
variation in online behavior, where ephemerality can be de-
fined as occasional or potentially fleeting behavior.
So behaviors do vary based on time, and predicting be-

havior from recent behaviors has proven valuable. There is,
however, another insight we can incorporate: as humans, we
imbibe into habits of what we do, how we do, and when we
do; arguably these habits make humans predictable. Habits
and routines are — among other drivers — driven by seasons,
circadian rhythms (Murnane et al. 2015), and school, work,
and workout schedules (Kooti et al. 2017). Given that our
offline and online behaviors are often intertwined, our on-
line activities exhibit daily, weekly, and monthly cycles (Saha
et al. 2021a). Previous works have demonstrated such regular-
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ities on multiple platforms (Grinberg et al. 2013; Zhang et al.
2013). Golder, Wilkinson, and Huberman (Golder, Wilkinson,
and Huberman 2007) demonstrated consistent weekly and
seasonal patterns of social interaction among college students
on Facebook. Grinberg et al. (Grinberg et al. 2013) identified
daily and weekly patterns of food consumption and nightlife
activity using Foursquare check-in data. A few methods have
utilized cyclicity by incorporating session-timing as contex-
tual information to capture the temporal dependency of user
behavior (Beutel et al. 2018; Jing and Smola 2017). However,
using time as a context with a fixed effect for all users limits
the predictive models from learning user-specific temporal
patterns. While this is probably less an issue for circadian
rhythms and seasonality effects, it may leave user-specific
variance unexplained.

In this work, we argue that existing methods cannot fully
exploit the cyclicity in user behavior, and through effective
utilization, better predictive performance can be achieved.
Moreover, although cyclicity is well-understood in global
engagement and platform metrics (Zhang et al. 2013; Golder
and Macy 2011), it is less understood on a per user-level.
Therefore, to address these two limitations, we guide our
work based on the following research questions:

• RQ1: Does individual user behavior on social platforms
exhibit cyclical properties, and does cyclicity vary across
users?

• RQ2: To what extent can user behavior prediction on a
social platform be improved by exploiting per user-level
cyclicity?

To answer the first research question, we aimed to uncover
the temporal dynamics of individual user-level behavior by
analyzing user activity from Snapchat, a popular multimedia-
driven online social platform. We demonstrated empirically
that user behavior is largely driven by regularities (cyclicity)
and ephemeral actions. We observed similar temporal varia-
tions of user activity level across user cohorts on a daily and
weekly basis. While examining regularities at the individual
user level, we also noticed varying levels of cyclicity across
users. The variations of temporal activity level across user
cohorts and the difference of cyclicity across users signify
the necessity of modeling cyclical temporal dynamics, at an
individual user level.
To answer the second research question, we aimed to

model cyclic and ephemeral behaviors jointly, by utilizing
a novel end-to-end neural framework which builds on well-
validated recurrent networks. We augmented the traditional,
ephemeral LSTM module with an additional LSTM head
that utilizes historical activity data over a longer period to
capture individual user level cyclicity. Specifically, we aggre-
gated user activities in a particular time-frame (i.e., hour of
the day) to capture cyclicity in the corresponding prediction
time-frame. We further employed an attention mechanism
to adaptively fuse information from both heads. We eval-
uated the performance of our model on two anonymized
user activity datasets collected from Snapchat. We defined
four behavior prediction tasks that are generalizable to other
platforms and compared the performance against existing

baseline methods to demonstrate that the simple addition of
cyclicity modeling can effectively lead to improved accuracy
from baselines on all four prediction tasks.

Through ablation studies, we examined the impact of each
module in our model. We also conducted post-hoc sanity anal-
ysis on improvements over users with higher cyclicity, atten-
tion on cyclic and ephemeral module when various amounts
of data are available, and the performance at different times
of the day. To summarize, our contributions are:

• We show that user behavior on social platforms is driven
by cyclicity and ephemerality, and the patterns and level of
cyclicity vary across users.

• We leverage per user-level cyclicity by adding a cyclic-
LSTM module along with the existing ephemeral-LSTM
architecture to jointly model cyclicity and ephemerality
through attention-based adaptive fusion.

• We leverage regularities in user-behavior to achieve per-
sonalization without using any personally identifiable in-
formation, which is a timely approach considering societal
concerns about data breaches.

• We outperform existing methods by on average 7% (up
to 10%) macro f1-score on four user behavior prediction
tasks using two real-world datasets from Snapchat. We
demonstrate that our model can effectively model cyclicity.

Related Works

User Behavior Modeling. Since the ever-increasing popu-
larity of social platforms, many studies have sought to un-
derstand, characterize and model people’s usage of these
platforms. Such efforts include user engagement prediction,
user churn rate prediction, user intention prediction, among
others (Tang et al. 2020; Kawale, Pal, and Srivastava 2009;
Yang et al. 2018; Liu et al. 2019; Verbeke, Martens, and Bae-
sens 2014; Lo, Frankowski, and Leskovec 2016). However,
the majority of these works focus on aggregated user activi-
ties in the context of a long period (or window) of time and
not on a session-level. Recent research revealed the potential
of accounting for person-centered modeling on user behav-
iors (Das Swain et al. 2019; Saha et al. 2021a). Related to
our problem space (Kooti et al. 2017) utilized first-minute
user activities in a Facebook session to predict the activity
duration for the rest of the session. Another closely related
work (Kurashima, Althoff, and Leskovec 2018) modeled the
action logging of mobile health app to predict the next action
based on the history of actions. This work formulated a proba-
bilistic temporal point process model that considers temporal
variation, short-term dependency, and long term periodic ef-
fect. However, they model time-varying action propensity on
a global level rather than on an individual level.

Regularities in Online Behavior. Several previous works
have explored regularities in online and offline human be-
havior and identified daily, weekly, monthly, and seasonal
patterns (Golder and Macy 2011; Culotta 2014; Murnane
et al. 2015). Golder and Macy identified diurnal and seasonal
patterns of individual mood based on Twitter posts (Golder
and Macy 2011). Golder, Wilkinson, and Huberman found
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consistent weekly and seasonal patterns of social interaction
among college students on Facebook (Golder, Wilkinson,
and Huberman 2007). Grinberg et al.(Grinberg et al. 2013)
show daily and weekly patterns of eating, drinking, shopping,
and nightlife in human behavior using Foursquare checkins.
Moreover, it has been shown that people tend to reply to
emails faster in the mornings and on weekdays (Kooti et al.
2015). Pierson, Althoff, and Leskovec proposed a Cyclic
Hidden Markov Model to detect and model cycles in human
menstrual cycle symptoms and physical activity tracking
data (Pierson, Althoff, and Leskovec 2018). A few other
works have studied regularities in the context of repeated
actions, for example repeated web search queries (Teevan
et al. 2006), web page revisitation patterns (Adar, Teevan, and
Dumais 2008), music listening (Kapoor et al. 2015b), and
video binge watching (Trouleau et al. 2016). Recently, Saha
et al. causally examined the effectiveness timing ads based
on person-centered contextualized modeling of user behavior
on online platforms (Saha et al. 2021b). Several recent works
have proposed models that exploit the recency or ephemeral-
ity of user behavior (Anderson et al. 2014; Benson, Kumar,
and Tomkins 2016; Kapoor et al. 2015b). Anderson et al.
modeled the dynamics of repeat consumption based on re-
cency. In contrast, user-level cyclicity has not been exploited
for user behavior modeling.

Recurrent Models for Behavior Modeling. In the recent
past, recurrent models have shown promising results in a
multitude of user behavior modeling tasks, mostly in the con-
text of recommendation systems (Hidasi et al. 2015, 2016;
Smirnova and Vasile 2017) with applications in next basket
(or item) recommendation (Jing and Smola 2017), streaming
content recommendation (Beutel et al. 2018), check-in loca-
tion prediction (Chen et al. 2018) etc. Jing and Smola utilized
the session time, time interval between sessions and contex-
tual information as features to improve performance. Zhu
et al. introduced time-gate for LSTM to model time intervals
between sessions to improve the recommendation perfor-
mance. Beutel et al. improved the contribution of contextual
features by using second order neural network to directly
modify the neural network hidden states. Although these
recurrent models consider recent temporal dynamics and con-
textual information, they are limited in their capability to
capture long term cyclical effects. Moreover, the majority of
these methods learn user embeddings for each user to incor-
porate user-centric features, which is both static and privacy
intrusive. These models are also limited in functionality for
new users in cold start situations.

Task Description

We consider a general social platform where each user u
represents a registered user. Each user can engage with the
platform by using several in-platform features, such as chat-
ting with a friend in Snapchat, posting a tweet on Twitter,
watching video clips on Facebook, or reacting to photos on
Instagram; we call these user activities a. A session s con-
sists of a continuous sequence of activities, and two sessions
are separated by more than a specific time interval. Each
session is represented by a feature vector f , which contains

Figure 1: (top) Diurnal cyclicity in global user activity. The
y-axis represents fraction of activity that happens in each
weekday-hour over a single week, aggregated across all
users. (bottom) DISCOVER VIEW activity across user clusters
by hour (values are z-transformed), darker shades indicate
higher activity amount. Here, users are clustered based on
the aggregated value of their Snapchat activities (such as
frequency and amount of communication and content con-
sumption).

each activity’s aggregated amounts in that session. For exam-
ple, the number of photos shared and the number of videos
watched appear in f . We formulate a user activity prediction
task where, for each user, we have a sequence of previous
sessions consisting of session-activity features along with
the timing of the session. Let us consider a set of users U ,
and each user u 2 U has a sequence of historical sessions
Hu = Hu1 , Hu2 , ...HuN , where Hui = {(f, t)}. f repre-
sents the activity feature vector, and t represents the timing
of that session. Here, t < tI , tI = timing of the session
to be predicted. Our user behavior prediction task can be
formalized as follows:

Problem 1 (User Behavior Prediction) Given a set of
users U and sequences of historical session H; for an up-
coming session s at time t of user u, predict the amountm of
user activity a.

RQ1: Temporal Dynamics and Cyclicity in

User Behavior

In this section, we investigate two specific aspects of user
behavior (1) routine or cyclic behavior, (2) transient or
ephemeral behavior.
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(a) Cyclicity CDF. (b) Bucket [-1, 0] (c) Bucket [0, 0.25]

(d) Bucket [0.25, 0.50] (e) Bucket [0.50, 0.75] (f) Bucket[0.75, 1]

Figure 2: (a) Shows the cyclicity CDF; here, most users are cyclic, with more than 80% of users having a cyclicity score of more
than 0.25. (b)-(f) show hourly average activity (session duration) in the first three weeks (history) and fourth week (current) for
five example users, each selected from one of the correlation value buckets ([-1, 0], [0, 0.25], [0.25, 0.50], [0.50, 0.75], [0.75,
1]), as designated with dashed lines in (a). Here, corresponding with the increasing cyclicity score from (b)-(f), the similarities
between historical and current activity increases, too.

Dataset Description

To examine dynamics and patterns of user behavior in so-
cial platforms, we conduct our study on an anonymized user
activity dataset from the smartphone app Snapchat, a popu-
lar social, multimedia, instant messaging platform used by
more than 230M users worldwide (Statista 2020). First, we
randomly sample 20K users who were active at least once
in each month over the span of seven weeks from January 6,
2020 to February 23, 2020. Subsequently, we collect longi-
tudinal user activity data for these users in the same period.
The longitudinal nature of data allows us to study each user’s
on-platform activity spread across several “sessions” of par-
ticipation on Snapchat. Our study defines a session to start
when a user opens the app, and a session to end when they
close the app or they leave the app inactive for 15 seconds.
We use the first four weeks of data for making empirical
observations to motivate our modeling approach. Later (in
Section ), we use these four weeks of data to train our pre-
dictive models, and hold-out the subsequent three weeks to
evaluate our models.

Cyclicity

Human behavior is largely affected and controlled by circa-
dian rhythms, sleep habits, work, and leisure schedules (Kooti
et al. 2017), which is also reflected in online behaviors (Mur-
nane et al. 2015). Consequently, people’s activities on on-
line social platforms often show diurnal and weekly cy-
cles (Golder, Wilkinson, and Huberman 2007). To explore
regularities at an aggregated level, in Figure 1 (top), we show

the global usage pattern for three major Snapchat in-app ac-
tivities (DISCOVER VIEW, STORY POST, SNAP SEND) for all
users in our dataset. We can observe obvious daily patterns
and notable hourly variation in all three activity types. The
observed hourly variation in activity level is highly aligned
with the human circadian rhythm and work-leisure sched-
ule. Both STORY POST and SNAP SEND activities get higher
traction as the day progresses and work-to-leisure transition
happens. Additionally, DISCOVER VIEW shows irregularity
on weekends with spikes in the mornings that correspond to
leisure hours.

Next, we explore temporal patterns at the user cohort level.
First, we use k-means clustering (k = 10) to cluster users
based on the aggregated value of their Snapchat activities
(such as frequency and amount of communication and con-
tent consumption). We use the Elbow heuristic (Satopaa et al.
2011) to select the optimal cluster numbers. To visually ex-
amine the temporal variability of activities across clusters,
in Figure 1(bottom), we plot a heatmap of mean aggregated
DISCOVER VIEW activity (z normalized) for each cluster over
the hours, where the vertical axis represents each cluster of
users. Here, we observe that DISCOVER VIEW activity varies
strongly both across and within clusters over the hours. We
observed similar distinct usage patterns across user cohorts
for several other app activities.
Intrigued by the global cyclicity and temporal variations

across cohorts, we further investigate cyclicity on a per-user
level. To quantify individual user’s cyclical usage patterns,
we define a metric, cyclicity, that captures regularities in
user behavior. We operationalize the metric per user cyclicity
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(a) SESSION TIME

(b) DISCOVER VIEW

Figure 3: We show the correlation of user’s activity level
between consecutive sessions. We categorize each session
into three categories based on the level of activity. We show
the distribution of current session’s activity level in relation
to the previous session’s activity level for two cases; (a) SES-
SION TIME, (b) DISCOVER VIEW. In both cases, consecutive
sessions are more likely to belong to the same category.

by assigning each user a score, defined as the Pearson cor-
relation of users’ average hourly activity level for the first
three weeks and their average hourly activity level in the
fourth week.In Figure 2a, we plot the cumulative distribution
functions (CDFs) of cyclicity calculated based on SESSION
TIME and DISCOVER VIEW. We notice that user behavior is
more cyclic based on SESSION TIME than DISCOVER VIEW,
which is intuitive as the former encompasses all forms of
in-app activities contrary to one specific use case with the
latter. From here on, cyclicity refers to cyclicity calculated
with session-time, unless otherwise specified. Overall, most
users display a certain extent of cyclicity, where 80% of users
have a cyclicity score of more than 0.25. Notably, 25% of
users have a cyclicity score of more than 0.75. As motivat-
ing examples of varying levels of cyclicity across users, in
Figure 2b-2f, we show hourly average SESSION TIME in the
first three weeks (history) and fourth week (current) for five
randomly sampled users from each bucket.

Ephemerality

Several previous works have demonstrated the continuity
of human action and intent in online behavior after a short
interval (Zhang et al. 2013; Teevan et al. 2007). For example,
Zhang et al. (Zhang et al. 2013) showed that a session’s

length can be an indicator of successive session length on the
popular music streaming platform Spotify. To infer this causal
relation, they correlated the length of two successive sessions.
Similarly, to explore ephemerality on social platforms, we
correlate consecutive session length in Snapchat. First, we
divide all sessions into three categories (low, mid, and high)
based on session duration. We select the session duration
thresholds to roughly have a similar number of sessions in
each category. Afterward, we calculate the distribution of
each category in relation to the previous session’s category.
In Figure 3a, in the percentage distribution plot, we notice
that for all three categories, their likelihood is highest when
the previous session is similar.
To further concretize the notion of ephemerality, we per-

form similar exploration on another core Snapchat activity,
DISCOVER VIEW. As before, we quantify the DISCOVER
VIEW activity sessions into three classes with equal class pro-
portions. In Figure 3b, we show the percentage distribution
of categorized DISCOVER VIEW depending on the previous
session’s category. Again, we observe that the successive
session’s DISCOVER VIEW activity level is similarly corre-
lated as it is for session length. Although these simplified
explorations do not consider the more complex dynamics
of ephemerality, e.g., the interplay of multiple consecutive
sessions or the effect of time-interval, as showcased in prior
related studies (Zhang et al. 2013), they can well justify the
presence of recency or ephemerality on a social platform in
an interpretable way.
Summary findings. (1) User behavior in Snapchat shows
strong daily patterns and continuity of activities in consecu-
tive sessions. (2) We observe distinct temporal patterns across
user cohorts. (3) We notice that users are in general cyclic;
however, the cyclicity level varies across users. These find-
ings motivate us towards our ensuing analyses where we
target to better predict user behavior in social platforms by
leveraging per user-level cyclicity.

RQ2: Jointly Leveraging Cyclicity &

Ephemerality

In this section, we formulate a user behavior prediction frame-
work on social platforms to answer the second research ques-
tion. To improve user behavior prediction by leveraging per
user-level cyclicity, we seek to model user behavior in a ses-
sion as a function of the user’s recent activity and user’s
historical activity around a particular time period (i.e., hour
of the day, day of the week). In a modular approach, we
model the user’s short-term ephemeral behavior and long-
term cyclic behavior separately by two independent modules,
termed as ephemeral module and cyclic module respectively,
and fuse both for final prediction in the end. Moreover, tra-
ditional user behavior models incorporate personalization
by utilizing user-typographic and demographic information,
which can be privacy-intrusive, biased, and exclusionary. By
exploiting the regularities in individual user behavior, we
achieve personalization in a privacy-preserving fashion, as it
only requires individual user’s cyclic activity history to learn
user-specific temporal preferences. Therefore, our method
does not require any user-centric information, identifier, or
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demographic data, which is a key strength of our method, to
which we return in the Discussion.

Ephemeral Module. Prior works on modeling sequential
user behavior data have shown the superiority of the Recur-
rent Neural Networks (RNNs) over latent variable models
(i.e., hidden Markov model) in capturing the short-term tem-
poral dynamics of user behavior (Hidasi et al. 2015; Jing
and Smola 2017). Inspired by these successful use cases,
we utilize an RNN to model the ephemerality in user be-
havior. In particular, we use the Long Short-Term Memory
(LSTM) network, an improved variant of traditional RNNs
that addresses the vanishing gradient problem by employing
a cyclic feedback mechanism from previous time steps. Due
to the sequential nature of user behavior data, LSTM can ef-
fectively capture their temporal evolution and dependencies.
Each LSTM unit is composed of a memory cell, a hidden and
three gating mechanism: input, output, and forget gate. The
input gate it, forget gate ft, output gate ot, memory cell ct
and hidden state ht at step t are computed as follows:

it = �(Wi · [ht�1, xt] + bi

�
,

ft = �(Wf · [ht�1, xt] + bf ),

ot = �(Wo · [ht�1, xt] + bo),

ct = ft � ct�1 + it � tanh(Wc · [ht�1, xt] + bc),

ht = ot � tanh(ct) (1)

Here, � is the logistic sigmoid function, tanh is the hyper-
bolic tangent function, � denotes the element wise multipli-
cation, and t is the time step for each individual session.
We implement a two-layer LSTM where the input is a

sequence of user activity feature vectors of the sessions pre-
ceding the current session of interest. We term these pre-
ceding sessions utilized to model the ephemerality in user
behavior as ephemeral sessions. In our implementation, we
limit the number of ephemeral sessions to a maximum of five
within the last four hours. We have varied both the number of
ephemeral sessions and ephemeral time-window but observed
no significant performance improvement in our joint model-
ing approach. In the case of less than five ephemeral sessions
within four hours, we perform zero paddings. We show the
ephemeral module in the bottom-right part of Figure 4, where
the ephemeral LSTM iterates through the input sequence for
five time-steps (each time step corresponds to one session).
The final hidden state output from the ephemeral module can
be considered as a latent representation of a user’s recent
activity summary.

Cyclic Module. Understanding the effect of time has been
critical for effective user behavior modeling (Jing and Smola
2017; Beutel et al. 2018). However, utilizing temporal dy-
namics in a user-agnostic manner cannot exploit the indi-
vidual user level cyclicity. To accommodate personalized
temporal preference, the traditional approaches (e.g., proba-
bilistic models) would require distinct parameters for each
user, which is not practically feasible to learn or maintain
(Kurashima, Althoff, and Leskovec 2018). In this regard, we
argue that a user’s time-specific historical activity can be
leveraged to capture personalized temporal preference. To

Ephemeral LSTM 
Module Cyclic LSTM ModuleContext 

Features

Ephemeral Embedding Cyclic EmbeddingModality 
Attention

Fused Embedding

Feed Forward 
Network

Prediction

Si-5 Si-4 Si-3 Si-2 Si-1 Dk-7 Dk-6 Dk-5 Dk-4 Dk-3 Dk-2 Dk-1

User’s past seven day’s 
same-hour activity feature

Activity feature of user’s last 
five sessions within four hours

Figure 4: Proposed model architecture.

complement the recurrent network used for the ephemeral
module and to facilitate end-to-end training, we propose to
utilize a recurrent network for this purpose. The intuition
behind this simplistic approach is to capture a user’s past
activity history at a specific time of the day into a latent rep-
resentation by iterating through these activity sequences. As
the recurrent networks employ cyclic feedback mechanism to
update the current hidden states based on both current input
and past hidden states, it is inherently suitable to aggregate
overall cyclic history in the final embedding. For instance,
for a user who typically engages in a long session at 5:00 pm
during his commute, this approach makes it possible to use
this knowledge for prediction.
Similar to the ephemeral module, we implement a two-

layer LSTM for the cyclic module. However, contrary to
the ephemeral module, here we use activities in a particular
time-frame (i.e., “hour of the day”, “day of the week”) in the
past few days or weeks to learn user’s activity preference in
that corresponding time-frame. Previous works have modeled
temporal dynamics as a function of “hour of the day” to cap-
ture daily patterns (Kurashima, Althoff, and Leskovec 2018),
and as a function of “hour of the day & day of the week (hour-
weekday)” to capture weekly patterns (Jing and Smola 2017).
In our empirical observation, we have observed both daily
and weekly patterns. Subsequently, we have experimented
with both scenarios to find the superiority of modeling daily
patterns. We average user activities in each hour in the prior
seven days to create an input sequence of length seven for the
cyclic LSTM. We term each of these hourly averaged feature
vectors as cyclic sessions. We show the cyclic module in the
bottom-left part of Figure 4, where the cyclic LSTM iterates
through the input sequence for seven time-steps (each time
step corresponds to one hourly averaged activity features).
The final hidden state output from the cyclic module can be
considered as a latent representation of a user’s cyclic activity
summary in a particular time-frame.
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Context Factors. Inspired by the previous successful use-
cases of contextual factors (i.e., location, device, software
client, or web browser for YouTube video recommenda-
tion (Beutel et al. 2018; Smirnova and Vasile 2017)), we
utilize four contextual factors related to Snapchat sessions,
which are: (1) device connectivity, whether the user is using
WiFi connection or not; (2) travel mode, if the user is using
the app in travel mode or not; (3) app open state, whether
a user is opening the app by clicking on an app notification
or not; (4) app status, whether the app was running in the
background or not. We merge this context information in the
one-hot encoded format with the output hidden embeddings
from the ephemeral and cyclic module before feeding into
a feed-forward neural network. Although these contextual
factors are specific to Snapchat, similar contextual factors
are prevalent across other social platforms. Moreover, other
contextual factors inherent to a particular platform can be
readily utilized in our architecture.

Modality Attention. The most intuitive and simplistic ap-
proach to aggregate multi-modal information is the naive
concatenation of each modality (Moon, Neves, and Carvalho
2018). However, this naive concatenation of ephemeral and
cyclic embedding treats both with equal importance in all
instances. Nevertheless, in practicality, one modality can be
more informative than the other. For example, while pre-
dicting a session, the user may not have any prior Snapchat
sessions within the last four hours or any historical activities
in the last seven days in that hour. Therefore, we employ a
generalized modality attention module to attenuate or prior-
itize each modality for each prediction instance adaptively.
This attention mechanism also enables us to quantitatively
gauge each modality’s impact on predictive modeling across
numerous dimensions, i.e., user cohort, time, etc. (see experi-
ments in section 6.5). We feed in the ephemeral (e), cyclic
(c), and context (o) vectors into the attention module as input
to generate a soft-attended attention vector for each modality
v 2 {e, c, o} calculated as Equation 2:

↵v =
exp (� (ev))P

⌫2{e,c,o} exp (� (e⌫))
, (2)

where, ev is the embedding vector of modality v, and �(·)
is a mapping function implemented as a feed-forward neu-
ral network. Finally, we pass the fused embedding vectors
through two feed forward neural networks before applying
softmax to obtain a final prediction. In center of Figure 4,
we show the modality attention fusing ephemeral, cyclic and
contextual information. In coherence with the attention based
joint modeling of cyclicity and ephemerality, we name our
model as CEAM: Cyclic Ephemeral Attention Model.

Experiments

In this section, we evaluate the predictive performance of
CEAM using two user activity datasets from Snapchat. We aim
to answer the following experimental questions:
• EQ1: Can CEAM outperform existing methods in predicting
user behavior?

• EQ2: How does the ephemeral and cyclic module in CEAM
affect performance?

• EQ3: Can CEAM effectively model the cyclicity and
ephemerality in user behavior?

Datasets and Experimental Setup

We perform experimental evaluations using two datasets col-
lected from Snapchat. As mentioned previously (in Section
4.1), one dataset contains anonymized user activity data for a
set of 20K randomly sampled monthly active users who were
active at least once in each month from January 6, 2020 to
February 23, 2020 (MAU dataset). We also extract a second
dataset for 20K randomly sampled users who were active at
least once each day within the aforementioned period (DAU
dataset). In both cases, we collect 37 relevant user activity
features for each session augmenting the ones previous stud-
ies on Snapchat (Tang et al. 2020; Yang et al. 2018; Liu et al.
2019). We perform min-max normalization (Patro and Sahu
2015) of each feature independently before training and test-
ing. Both datasets span over seven weeks. We use the first
four weeks for training purposes and the subsequent three
weeks for testing.

Prediction Tasks. We define four specific user behavior pre-
diction tasks for the upcoming session, which are the follow-
ing:

• Task 1: Amount of time user will spend in the session.

• Task 2: Number of viewed discover stories.

• Task 3: User engagement with subscription content.

• Task 4: User engagement with recommended content.

Following Kooti et al.’s (Kooti et al. 2017) work on similar
behavior prediction in Facebook, we frame these prediction
tasks as classification problems by categorizing each behavior
into multiple classes. For the first two tasks, we categorize the
activity propensity into three classes: low, medium, and high,
proportional to activity level (session length and discover
view count). In both cases, the thresholds were selected to
maintain roughly equal class balance. However, for the latter
two tasks, we employ a binary classification scenario and
predict whether the user engaged with the particular content
category or not. We note that these user activities are also
common on other social platforms such as Instagram and
Tiktok, who display individual stories similar to Snapchat
and recommended and subscription-based content. Hence,
these prediction objectives can be easily transferred onto
other social platforms.
Evaluation Metrics. We use macro f1 score as our main
performance evaluation metrics. We run each training and
testing experiments ten times, and report the average.

Compared Methods

We compare the performance of our method against the fol-
lowing state-of-the art methods to validate the accuracy of
our user behavior prediction.
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• Copy Model (CM) (Anderson et al. 2014): Predicting
the current user behavior the same as users’ last session’s.
This can be deemed as the most naive version of ephemer-
ality based prediction.

• LSTM (Jing and Smola 2017): LSTM has shown promis-
ing results in several sequential user behavior modeling
tasks. We adopt the methods proposed in (Jing and Smola
2017). Similar to them, we generate embedding vectors
for timing and interval of ephemeral sessions after passing
through embedding layers and concatenate with the ses-
sion activity features. We implement a two-layer LSTM
that iterates over the ephemeral session’s feature vectors
and feeds the output hidden embedding into a two-layer
fully connected network to generate the prediction.

• TLSTM (Zhu et al. 2017): In (Zhu et al. 2017), TLSTM
has been introduced for user behavior modeling where the
time interval between two consecutive actions has been
used to moderate a gating mechanism to update the hidden
states of LSTM for improved performance. We implement
the architecture proposed in (Zhu et al. 2017), and feed
in the ephemeral sessions along with session interval of
consecutive sessions.

CEAM has access to contextual information to enhance predic-
tions. Although not utilized in the proposed LSTM (Jing and
Smola 2017) and TLSTM (Zhu et al. 2017), for a fair compar-
ison, in our implementation, we also include the contextual
information in the fully connected layers similar to CEAM.
Previously, latent variable models (e.g., Markov models, hid-
den Markov models) and Poisson process models have been
used for similar user behavior modeling. However, several
recent works employing LSTM based models have consis-
tently and significantly outperformed the aforementioned
approaches (Jing and Smola 2017; Kurashima, Althoff, and
Leskovec 2018). Hence, we omit the comparison against
these methods.

Model Implementations

We implement a two-layer LSTM network for the ephemeral
and cyclic module, with an embedding size of 32 in both
layers. We set the second layer’s dropout rate to 0.5 and
use ReLU as the activation function. We implement CEAM
and other neural models using PyTorch1. All the models
are optimized using Adam Algorithm (Boyd, Parikh, and
Chu 2011), with an initial learning rate of 0.001, and an L2
regularization of 1e�6. We set the batch size to 512. We train
all models to a maximum of 50 epochs with early stopping
on the validation set. All the hyper-parameters were selected
empirically using a grid search on a held-out validation set.

Prediction Performance

To answer the first experimental question, we report the pre-
diction performance (macro f1-score) of CEAM along with the
compared methods for all four tasks on both datasets in Table
1. We observe that CEAM outperforms all the other methods
in all four tasks in both datasets. We note that both LSTM

1www.pytorch.org/

Task 1 Task 2 Task 3 Task 4

M
A
U

CP .375±.000 .296±.000 .320±.000 .321±.000
LSTM .480±.002 .482±.001 .685±.000 .700±.000
TLSTM .470±.005 .472±.003 .680±.003 .695±.002
CEAM .500±.001 .521±.001 .723±.000 .743±.000

D
A
U

CP .370±.000 .288±.000 .471±.000 .319±.000
LSTM .480±.001 .475±.002 .682±.000 .698±.000
TLSTM .478±.006 .469±.004 .680±.002 .694±.003
CEAM .500±.002 .518±.002 .722±.000 .744±.000

Table 1: Prediction performance (macro f1-score) of CEAM on
all tasks and both datasets MAU and DAU.

Task 1 Task 2 Task 3 Task 4

M
A
U

Ephemeral .479±.002 .479±.002 .683±.000 .701±.000
Cyclic .459±.003 .480±.001 .673±.000 .700±.000

Combined .500±.002 .519±.001 .721±.000 .741±.000
CEAM .501±.001 .521±.001 .723±.000 .743±.000

D
A
U

Ephemeral .478±.002 .474±.002 .680±.001 .694±.000
Cyclic .460±.002 .480±.001 .675±.000 .700±.000

Combined .499±.001 .517±.002 .720±.001 .742±.000
CEAM .500±.002 .518±.002 .722±.000 .744±.000

Table 2: Ablation studies to show the contribution to perfor-
mance improvement (macro f1-score) by different modules.

and tLSTM perform on a similar level. However, CEAM out-
performs both these models by at most 10%. Although both
LSTM and tLSTM uses session timing as contextual informa-
tion, they significantly underperform CEAM, which validates
our argument to model cyclicity at the individual user level.

Ablation Study

To answer the second experimental question, we perform
several ablation studies by developing three variations of the
proposed model. (1) EPHEMERAL: In the first variation, we use
only the ephemeral module and feed the output embedding
concatenated with the contextual embedding into a two-layer
fully connected network for prediction generation. In con-
trast with baseline LSTM, we do not utilize session-timing
or session interval as features in the ephemeral module. (2)
CYCLIC: Next, we use only the cyclic module in a similar
fashion (3) COMBINED: Then, we employ both cyclic and
ephemeral module and concatenate their output embedding
along with contextual embedding before feeding into the
fully connected layers. In Table 2, we report the prediction
performance for all variations. Here, we observe that both
cyclic and ephemeral module are in general predictive across
all tasks in both datasets. Their predictive accuracies are in a
similar range, with Ephemeral being higher in majority of
the cases. However, the combination of both shows consistent
performance improvements than each employed individually.
This further increases with the use of self-attention. We see
at most 10% performance improvement by CEAM over single
module approach. This improvement validates the presence
of complementary information in both behavioral dynamics
and the necessity of joint modeling.
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Model Sanity Check

To answer the third experimental question, we design multi-
ple experiments with the goal to understand for whom, how,
and when CEAM improves prediction performance. We per-
form these experiments on the MAU dataset. First, we investi-
gate for whom, CEAM shows better performance. The underly-
ing motivation behind modeling cyclicity on a per-user basis
is to capture an individual user’s app usage regularities for
improved predictability. Therefore, we would expect CEAM
to be more effective for more cyclic users. To quantify the
performance improvement in relation to a user’s cyclicity, we
separate users into two groups based on a median split on
cyclicity scores (defined in Section ). One group consists of
the top 50% cyclic users (more-cyclic), and the rest were in
the other (less-cyclic).

We introduce the CYCLIC module in predictions, and then
calculate the change in accuracy for the user’s prediction
in both the groups.We transform the raw accuracy change
values into z-score to reduce sensitivity to inconsistent mag-
nitudes of absolute values (Golder and Macy 2011), used
in prior related works (Saha and De Choudhury 2017). By
definition, z-score represents the distance between raw value
and population mean in units of standard deviation (Golder
and Macy 2011). In Figure 5a, we report the mean z-score
of accuracy change for both user groups for all four tasks.
Here, zero z-score refers to the mean accuracy improvement
for all the users (population) over the ephemeral module only
performance, which is ⇡10%. Above zero z-score indicates
greater improvement than the overall population mean im-
provement and vice versa. We observe that in all the four
tasks, more-cyclic users show greater accuracy improvement
than the population mean whereas less-cyclic users show
less accuracy improvement, which resonates with our initial
intuition about the model.

Next, we investigate how CEAM better exploits both cyclic
and ephemeral aspects of human behavior. In CEAM, we em-
ploy a self-attention mechanism to fuse information from
both these modalities. We ask whether the attention mod-
ule can adaptively prioritize one over the other depending
on the information of each modality. To quantify dynamic
preference, we calculate the shift in attention in relation to
the number of available sessions in each module. As exam-
ple, in Figure 5b, we show the variation of ephemeral and
cyclic attention weight as the number of ephemeral sessions
vary. Following the intuition, the cyclic module gets greater
attention in case of fewer ephemeral sessions. And as the
ephemeral session number increases, so does the attention
weight for the ephemeral module.

Lastly, we explore the temporal aspect of prediction perfor-
mance. In Figure 6a and 6b, we show the prediction accuracy
over hour of the day for Task-1&2 and Task-3&4 respectively.
We observe that, for all four tasks, the accuracy remains sim-
ilar from around 8 AM till midnight. However, there are
sharps drops between midnight to around 6 AM in the morn-
ing. To better understand it, we plot the average number of
ephemeral and cyclic sessions across the day in Figure 6c.
We notice that both ephemeral and cyclic session average

(a)

(b)

Figure 5: (a) Accuracy change (z-transformed, 0 shows mean
improvement) for more-cyclic and less-cyclic user groups
for all four tasks after adding the cyclic module. We gain
greater improvement for more-cyclic users. (b) The variation
in ephemeral and cyclic attention scores as the ephemeral
session number varies. The cyclic attention is greater in fewer
ephemeral sessions, and the ephemeral attention increases
along with the increase in ephemeral session number.

drops during late night to early morning compared to the rest
of the day, which correlates with the lower accuracy period.
Therefore, we can reasonably attribute the lower accuracy pe-
riod to the shortage of cyclic and ephemeral activities around
that time.

We further explore how CEAM exploits information from
both modalities to improve prediction across hours. In Fig-
ure 6d, we plot the hourly average attention weight for the
ephemeral and cyclic module along with hourly average ac-
curacy change after adding the cyclic module. Again, we uti-
lize the z-transformation for normalized comparison across
several measures. We observe a drop in ephemeral weight
and increment in both cyclic weight and accuracy change
between 4 AM to 8 AM. The positive increase in cyclicity in-
dicates that CEAM relying more on cyclic information around
that time period when there are fewer ephemeral sessions,
as shown in Figure 6c. And, due to this adaptive and better
utilization of cyclicity, we improve prediction.
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(a) (b)

(c) (d)

Figure 6: The hourly averaged accuracy for all four tasks (a)
Task 1 and Task 2, (b) Task 3 and Task 4. (c) The average num-
ber of ephemeral and cyclic sessions in each hour. (d) Hourly
average ephemeral and cyclic attention weight, and accuracy
change after incorporating cyclic module (z-transformed).

Figure 7: F1-score for user-agnostic vs. non user-agnostic
training and testing.

Discussion

Model Robustness

User agnostic. CEAM does not require any user specific in-
formation and does not learn any user-specific parameters.
Hence, our proposed model can be readily used for any new
users in cold-start situations (Schein et al. 2002). To drive this
point home, we simulated a similar scenario, where we only
evaluate for users that do not have sessions in the training
set. In Figure 7, we show the prediction F1-score for the user-
agnostic and non user-agnostic case. We observed similar
performance in both cases, which shows the usability of our
method in cold-start situations.

Ethical and Privacy Implications

Several recent data breaches and reported misuses of sen-
sitive and private user data, have resulted in growing pub-
lic concerns and increases in regulations (Cadwalladr and
Graham-Harrison 2018). Any experimental study dealing
with potentially sensitive data demands a statement regarding
ethical conduct and secure data handling. In our study, user

activity data from the social app Snapchat was used for em-
pirical and experimental purposes. Following Snapchat’s in-
house commitment towards user-privacy and data-protection
policies, our dataset was anonymized before our analyses and
was void of any form of personally identifiable demographic
or typographic information. Moreover, the user activity data
was only comprised of amounts and frequencies of activities:
no information such as communication content, type of con-
tent, or source of viewed content were used in any part of this
study. All the experiments were conducted within Snapchat’s
internal secure storage systems, and data was not stored on
local computers or outside the Snap Inc. ecosystem.

Given that our models well predicted user behavior without
using personally identifiable information and user attributes,
this modeling approach is applicable to several scenarios.
First, because our behavior modeling does not use any identi-
fiable user attributes, it may be preferable in highly sensitive
settings. Second, because the model uses no platform-specific
user attributes, it would be relatively straightforward to apply
this technique to other platforms. This could be useful to
technology designers (e.g. for modeling the behavior of users
in other mobile apps) or to online communities that stand to
benefit from user behavior modeling.

Limitations and Future Works

Our proposed method utilizes only the propensity of user
actions and activities while ignoring their qualitative aspects.
For example, we only consider the time spent viewing mul-
timedia content, but we disregard the nature of the content
being watched. In future works, the observed temporal ac-
tivity variations can be further explored to learn each user’s
preference towards certain content and ads across the day,
which can help in identifying suitable time-periods to dis-
tribute content and ads. Better personalized content allocation
without compromising privacy can benefit the 100B social
platform industry and the platforms’ users alike. Moreover,
our flexible modeling approach is suitable for integrating a
multitude of contextual factors (e.g., seasonality, weather,
location) when available, depending on the social platform,
to improve the prediction performance. Additionally, further
experiments can be conducted to examine how the time differ-
ence between consecutive sessions affects the ephemerality
aspect of user behavior. Future work might explore an on-
line training setting in which user behavioral modeling is
integrated with a real-time prediction mechanism.

Conclusion

In this paper, we explored one way to improve user behavior
modeling on online social platforms by including cyclical
behavior in the prediction. Using Snapchat data, we demon-
strated regularities in people’s behavior, both at the collective
and the individual level. We then proposed an end-to-end
neural framework that leverages both cyclic and ephemeral
aspects of people’s daily lives for improved prediction. Impor-
tantly, our method is personalized, but agnostic to privacy-
invasive data: We do not use any user-typographic or de-
mographic information, and we avoid any sort of long-term
data based user profiling. Short-term data and dynamically
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generated behavioral features are a more ethical approach
for responsible user modeling. We evaluated the efficacy
of our method using four prediction tasks on two datasets
from Snapchat. Our method outperforms existing methods
by on average 7% (up to 10%) (macro f1-score). Empirically,
we show that our model can successfully capture the cyclic-
ity in individual user behavior. While our work focuses on
Snapchat, the demonstrated insights and proposed modeling
approach can potentially motivate similar explorations and
modeling in other social platforms to increase business value
and deliver a better user experience.
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