
RecTen: A Recursive Hierarchical Low Rank Tensor Factorization Method to
Discover Hierarchical Patterns from Multi-modal Data

Risul Islam 1, Md Omar Faruk Rokon 2, Evangelos E. Papalexakis 3, Michalis Faloutsos 4

Dept of Computer Science, UC Riverside 1,2,3,4

risla002@ucr.edu 1, mroko001@ucr.edu 2, epapalex@cs.ucr.edu 3, michalis@cs.ucr.edu 4

Abstract

How can we expand the tensor decomposition to reveal a hi-
erarchical structure of the multi-modal data in a self-adaptive
way? Current tensor decomposition provides only a single
layer of clusters. We argue that with the abundance of multi-
modal data and time-evolving networks nowadays, the ability
to identify emerging hierarchies is important. To this effect,
we propose RecTen, a multi-modal hierarchical clustering ap-
proach based on tensor decomposition. Our approach enables
us to: (a) recursively decompose clusters identified in the pre-
vious step, and (b) identify the right conditions for terminat-
ing this process. In the absence of a well-established bench-
mark, we evaluate our approach with synthetic and five real
datasets. First, we test the sensitivity of the performance to
different scenarios and parameters. Second, we apply RecTen
on four online forums and a dataset that represents user inter-
action on GitHub. This analysis identifies meaningful and
interesting behaviors, which further increases our confidence
in the usefulness of our approach. For example, we iden-
tify some real events like ransomware outbreaks (55 users, 86
threads, December 2015, February 2016), the emergence of a
black-market of decryption tools (34 users, 12 threads, Febru-
ary 2016), and romance scamming (82 users, 172 threads,
March 2018). To maximize the impact of our work, we in-
tend to: (a) develop a usable tool, (b) make the tool and our
datasets publicly available. However, RecTen is a hierarchi-
cal clustering approach that can be used to take the pulse of
large multi-modal data and let the data reveal its own hidden
structures.

Introduction
Tensor decomposition has emerged as a powerful analyti-
cal tool with a rich variety of applications, but it focuses on
identifying latent clusters without exploring any hierarchi-
cal structure that may exist. Tensors generalize the concept
of a 2-dimensional matrix into multiple dimensions and we
use the term modes to refer to these dimensions. On the one
hand, current tensor-based approaches do an excellent job
of identifying latent patterns in the form of soft clusters (an
entity can belong to multiple clusters) and have been used
successfully in a wide range of types of data across many
disciplines. On the other hand, we argue that often behav-
iors and phenomena have an inherent hierarchical structure,
which can provide interesting insights once it is revealed.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Output from RecTen after applying it on “Hack
This Site” security forum data. The inset shows the struc-
ture of users and threads that focus on sub-topics of mobile
malware, which is the focus of the parent cluster. Our de-
composition also discovers the dates when the clusters are
most active.

Problem: The main focus of this work is a relatively un-
explored question: how can we extend tensor decomposi-
tion to identify hierarchies when such hierarchies exist in
the data? We are given a multi-dimensional dataset, and
we seek to identify clusters and their potentially hierarchical
structure present in the data. The challenge here is twofold:
(a) we do not know a priori anything about the data, such
as the number of clusters or levels, (b) we want to adapt to
different levels of “sensitivity” meaning that different parts
of the data may hide more layers of hierarchy than others.
We want to build on the power of tensor decomposition by
expanding it to address the above challenges.

Formally, we state the problem as follows:

Given a Tensor T , how can we expand the decom-
position of T in a recursive manner into a hierarchy of
clusters, Ci? The input is a tensor and the output is a
hierarchy of clusters.

Algorithmically, the problem poses two main challenges:
(a) we want to recursively decompose clusters in each layer
of the hierarchy, and (b) we want to identify the right condi-
tions for terminating this process.

Motivating case-study: What applications would benefit

Proceedings of the Fifteenth International AAAI Conference on Web and Social Media (ICWSM 2021)

230

from such a capability? Apart from being an interesting the-
oretical problem, we can think of several applications that
could make use of an effective solution. Here we showcase
a focused example. A security analyst wants to identify the
origin, evolution, and developer interactions for a particular
malware. The input data is a large number of online secu-
rity forums where, surprisingly, emboldened hackers openly
sell malicious tools and services, while they boast of and
collaborate on malicious acts [Gharibshah, Papalexakis, and
Faloutsos2020, Islam et al.2020b]. Each forum can be seen
as a three-dimensional tensor with three modes: (a) users,
(b) threads, and (c) time. The analyst initially wants a quick
birds-eye view of the group activity of the users on each
platform. Subsequently, she can focus on the threads that
contain keywords/discussion of interest and conduct a more
focused analysis, for example, evolution of these group ac-
tivity in an iterative fashion. Fig. 1 provides a real example
of the first step described above for the security forum “Hack
This Site”, which reveals the interesting and rich underlying
structures with 27 clusters and 4 levels of hierarchy. A non-
hierarchical approach would report only one level of detail
e.g. only the first line of clusters above the green dashed line
in the figure. In the Discussion section, we elaborate fur-
ther on the motivation and real-world applications of multi-
modal hierarchical clustering.

Despite the vast literature on tensor decomposition, we
are not aware of any work that fully explores the hierarchical
tensor decomposition. We can group prior efforts into three
main families: (a) hierarchical clustering in 2D matrices ,
(b) deep learning-based hierarchical clustering , and (c) non-
hierarchical tensor decomposition clustering. We discuss the
prior works in detail in the Related Work section, while we
provide a qualitative comparison of these approaches in Ta-
ble 2.

Contribution: As our key contribution, we propose
RecTen, a hierarchical soft clustering approach based on
tensor decomposition. Our approach provides the required
mechanisms for recursively decomposing clusters, and for
terminating this recursive process. We evaluate our pro-
posed algorithm using both synthetic and real data. We use
synthetic data to evaluate the performance given the absence
of an established benchmark. We also use this synthetic data
to evaluate the sensitivity of three internal parameters, which
enables us to provide recommendations for hands-free oper-
ation.

a. RecTen compares favorably against the state-of-
the-art algorithms. We find that RecTen performs favor-
ably when compared to six other state-of-the-art methods,
as shown in Table 3, using our synthetic hierarchical data.
Interestingly, RecTen performs well even with flat (non-
hierarchical) data as shown in Table 4.

b. RecTen extracts meaningful clusters with real-
world data. We apply RecTen on four online forums and
a dataset that represents user interactions on GitHub. This
provides indirect evidence of the usefulness of RecTen in
identifying meaningful clusters, such as tight-knit groups of
users, and events. For example, the discovered clusters (27
clusters, across 4 levels of hierarchy) of “Hack This Site”
forum in Fig. 1 are meaningful in the sense that they iden-
tify communities of special interest and point out the activity
peaks in time.

Figure 2: Visualization of tensor decomposition.

A usable open-source platform for maximal impact.
As a tangible contribution, we implement RecTen as a
powerful user-friendly platform that will be useful to re-
searchers, and practitioners. The platform expects a Tensor
as input and produces an output hierarchy of clusters which
can be analyzed further to understand the hidden structures.
The key advantages of RecTen platform is that it is user-
friendly by being both automatic and customizable. RecTen
can run with default parameter settings, but savvy end-users
can optionally tune the parameters based on their needs and
preferences.

We will make both our platform and datasets available
that can help establish research benchmarks.

Background and Datasets
We provide some fundamental concepts, a qualitative evalu-
ation, and a description of our datasets.

Tensors and decomposition. Tensor decomposition has
been established as a powerful analytical tool. In recent
years, it has been the basis for many algorithmic solutions
and many practical applications [Kolda and Bader2009, Liu
et al.2019, Papalexakis and Doğruöz2015]. The following
paragraph discuss the basics of tensor decomposition. An
expert reader may skip the paragraph below.

A d-mode tensor [Kolda and Bader2009] is a d-way
array (here d = 3). So, we call I × J ×K ten-
sor a “3-mode” tensor where “modes” are the number
of dimensions to index the tensor; the “modes” can be
A = {a1, a2, ..., aI}, B = {b1, b2, ..., bJ}, and C =
{c1, c2, ..., cK}. Each 3D element/entity of the tensor,
X(i,j,k), captures the interaction of ai, bj , and ck or zero
in the absence of any interaction. In a decomposition, we
decompose a tensor into R rank-one components, where
R is the rank of the tensor, as shown in Fig. 2. That
means, tensor is factorized into a sum of rank-one ten-
sors, specifically, sum of outer products of three vectors
(for three modes): X ≈

∑r=R
r=1 A(:, r) ◦B(:, r) ◦ C(:, r) where

A ∈ RI×R , B ∈ RJ×R, C ∈ Rk×R and the outer product is de-
rived by (A(:, r) ◦B(:, r) ◦C(:, r))(i, j, k) = A(i, r)B(j, r)C(k, r)
for all i, j, k. Each component represents a latent pattern
in the data, and we refer to it as a cluster. For example,
one such cluster in the “Offensive Community” security fo-
rum represents a group of 29 users that are active on the first
weekends of July 2016 and discuss “multi-factor authenti-
cation failure” in a group of 72 threads. Each cluster is de-
fined by three vectors, one for each dimension, which show
the “Participation Strength” of each element for that cluster.

231

Figure 3: An example of a cluster (28 Users, 70 Threads, 6
Weeks) from the “Offensive Community” forum. The inten-
sity in each vector helps us identify users, threads and time
intervals that are “important” for the cluster.

Typically, one considers a threshold to filter out elements
that do not exhibit significant Participation Strength, as we
discuss later.

The algorithmic landscape. We provide a high-level
overview of the algorithmic landscape with respect to multi-
dimensional hierarchical clustering. We can consider the
following families of approaches: (a) 2D matrix meth-
ods, (b) Deep Learning-based methods, and (c) tensor-
based methods but without hierarchy support. A qualita-
tive analysis is provided in Table 2. In a nutshell, 2D
matrix approaches are limited in dimensions, and in our
context often miss the extra temporal dimension [Bateni
et al.2017, Gharibshah, Papalexakis, and Faloutsos2020].
Deep Learning approaches require large datasets to work
well and often the results are less intuitive to interpret and
explain [Karim et al.2020]. Finally, to the best of our knowl-
edge, tensor-based approaches so far have not supported hi-
erarchies. A more detailed discussion of previous works is
provided in the Related Work section.

Datasets
In our evaluation, we consider the following datasets: (a)
three security forums, (b) a gaming forum, and (c) a group of
GitHub repositories of malware software and their authors.
We provide a brief description of these datasets below.

a. Security forum datasets. We collect data from three
security forums: Offensive Community (OC), Hack This
Site (HTS), and Ethical Hackers (EH) 1 All the forums are in
English language. In these forums, users initiate discussion
threads in which other users can post. The discussions ex-
pand both “white-hat” and “black-hat” skills. The datasets
of the security forums span 5 years from 2013 to 2017. Each
tuple in each of our datasets contains the following informa-
tion: user ID, thread ID, post ID, time, and post content.

b. Gaming forum dataset. We consider an online gam-
ing forum, Multi-Player Game Hacking Cheats (MPGH) 2

1Security forums: ethicalhacker.net,
hackthissite.org, offensivecommunity.net.

2Gaming forum: mpgh.net.

Dataset Users Threads/
Repositories

Posts Active
Days

Offensive Comm. 5412 3214 23918 1239
Ethical Hacker 5482 3290 22434 1175
Hack This Site 2970 2740 20116 982

MPGH 37001 49343 100001 289
GitHub 7389 8644 - 2225

Table 1: Basic statistics of our datasets.

This is one of the largest online gaming communities with
millions of discussions regarding different insider tricks,
cheats, strategy, and group formation for different online
games. The dataset was collected in 2018 and contains 100K
comments of 37K users [Pastrana et al.2018]. The format of
each tuple is the same as security forum datasets.

c. GitHub dataset. GitHub platform enables the software
developers to create software repositories in order to store,
share, and collaborate on projects and provides many social-
network-type functionalities.

We define some basic terminology here. We use the term
author to describe a GitHub user who has created at least
one repository. A malware repository contains malicious
software and a malware author owns at least one such repos-
itory. Apart from creating a repository, users of GitHub can
perform different types of actions including forking, com-
menting, and contributing to other repositories. Each tuple
in the dataset is represented in the following format: mal-
ware author ID, malware repository ID, action type, time,
and repository content.

We use a dataset of 7389 malware authors and their
related 8644 malware repositories, which were identified
by prior work [Rokon et al.2020]. This is arguably the
largest malware archive of its kind with repositories span-
ning roughly 11 years.

The basic statistics of the datasets are shown in Table 1.

Our Approach
We present, RecTen, a novel tensor-based multi-step recur-
sive approach that identifies patterns in an unsupervised way.
Algorithm 1 provides the high-level pseudo-code of the ba-
sic workflow. Fig. 1 provides the sample output of RecTen.
Conceptually, our approach works in three steps. First, we
decompose a tensor into clusters at level 1. Second, we “per-
turb” each cluster at the current level which we consider as
another tensor to be decomposed further. Third, we have
two termination criteria that stop this recursive process. We
explain each step below.

Step 1: Tensor-based Clustering
As a first step, we apply CP decomposition on the given in-
put tensor. We provide a quick overview of the challenges
and algorithmic choices in the decomposition algorithm be-
low.

a. What is the ideal number of components to target in
the decomposition? To answer this question, we use the Au-
toTen method [Papalexakis2016] and find the rank (R) of
the tensor, which points to the ideal number of clusters to be
decomposed into. AutoTen attempts to identify the solution
that extracts a large-enough number of components while

232

Family Sample related
works

Multi-modal
(≥ 3D)

Performance on
small data

Interpretability Detecting
hierarchy

2D matrix [Ward Jr1963] 7 X X X
Deep Learning [Karim et al.2020] X 7 7 X

Tensor Decomposition
(Non-hierarchical)

[Islam et al.2020b] X X X 7

RecTen This work X X X X

Table 2: Overview of the related algorithmic landscape: a qualitative assessment.

maintaining a high core consistency, which is a metric for
model appropriateness/goodness.

b. How can we decompose the tensor? We use the
non-negative Canonical Polyadic, also known as CANDE-
COMP/ PARAFAC (CP), decomposition to find the clusters.
RecTen achieves this non-negative factorization by adding
the non-negative constraint in CP decomposition.

c. How can we strike a balance on cluster size? Each
cluster, derived from a 3D tensor, is defined by three vec-
tors whose lengths are equal to a dimension of the tensor as
shown in Fig. 2. However, RecTen provides the functional-
ity of having clusters with significant elements only. There-
fore, we need a threshold to determine “significant partici-
pation in the cluster”, which is a common practice for (a)
avoiding unreasonably dense clusters [Sapienza, Bessi, and
Ferrara2018], (b) enhancing interpretability, and (c) sup-
pressing noise. So, the challenge is to impose this sparsity
constraint and eliminate the need for ad-hoc thresholding to
find the clusters with only significant entities. Our solution
is to add L1 norm regularization with non-negative CP de-
composition. L1 regularization pushes the small non-zero
values towards zero. Therefore, for each vector, we filter
out the zero-valued elements and produce clusters with sig-
nificant elements only. In this way, we eliminate the noisy
entities having the least significant contributions in the clus-
ter. The final model that we use for finding the clusters looks
like this:

min
A≥0,B≥0,C≥0

‖X −D‖2F + λ(
∑

i,r |A(i, r)|+
∑

j,r |B(j, r)|+
∑

k,r |C(k, r)|)

where λ is the Sparsity Regularizer Penalty and
D =

∑
r A(:, r) ◦B(:, r) ◦ C(:, r). To find the clusters, we solve

the above equation. Since the equation is highly non-convex
in nature, we use the well-established Alternating Least
Squares (ALS) optimizer as the solver. An example of a
cluster after filtering is shown in Fig. 3.

Step 2: Processing for Next Level Decomposition
Having obtained the clusters from the previous level, our
goal is to further decompose each cluster, if termination con-
ditions are not met. Intuitively, the idea is to introduce some
perturbation in the cluster to help reveal a structure that is
currently avoiding detection.

Rank modification. The main mathematical challenge
in this phase is to answer the question: “How can we get the
clusters ready to be decomposed further for the next level?”
Recall that the rank of every cluster is 1, which is why these
clusters have not already been decomposed. To decompose a
cluster at level l, we need the rank of the cluster to be greater
than one. We propose to achieve this by introducing a small
perturbation in the cluster by zeroing-out some tensor ele-
ments, which changes the rank of the cluster to ≥ 1.

We can illustrate the intuition behind this process with
the following simple example . The top-level decomposition
provides a set of a rank-one clusters. Let us assume that one
such cluster contains two smaller “sub-clusters” within it,
but there are enough interactions between these sub-clusters
so that the top-level decomposition assumes that this is best
represented as a single cluster of rank one. By appropri-
ately removing a few connections between the sub-clusters,
we can reveal the underlying structure, which will “push”
the rank of the cluster to 2. Namely, the two sub-clusters
have become sufficiently distinct for the next-level decom-
position. We discuss more about this in Discussion section
along with experimental results.

Choosing the “target elements” to zero-out. The natu-
ral next question is: “Which elements to choose for zeroing
out?”. We propose to select the non-zero valued elements
stochastically, but with a bias towards elements with low nu-
merical value.

Let’s assume Cl to be a rank-one cluster at level l, l ≥ 1.
We get the processed cluster Ĉl with rank, r >= 1, in
the following manner. We choose a subset of non-zero
elements, Cl(i, j, k), stochastically favoring elements with
low numerical value. Specifically, the probability of se-
lecting an element is inversely proportional to its numerical
value Cl(i, j, k). That means, the higher the element value,
Cl(i, j, k), the lower the probability of getting replaced with
0. Formally, for a 3-mode tensor, the probability of selecting
an element, e, having value w among the non-zero elements
of cluster Cl is given by the formula:

P (e is chosen) =
1
w∑
∀z∈Cl

1
z

where z represents each non-zero value in Cl.
Determining the Deletion Percentage, ε : The next

question that arises is the following: “How many elements
should we zero-out?”. We introduce the Deletion Percent-
age parameter, ε, which determines the percentage of the
total non-zero valued elements in the cluster which we zero-
out for a cluster. More precisely, we get the ceiling of that
number to ensure that it is an integer, but we also never zero-
out all non-zero elements. In our Evaluation section, we
study the sensitivity of our approach to the Deletion per-
centage parameter. In addition, we discuss whether these
perturbations introduce artifacts in our Discussion section.

After assigning zero values to the selected elements, we
obtain a perturbed cluster, which we will consider for de-
composition in the next level as long as it does not meet the
termination criteria, which we discuss below.

233

Step 3: Termination Condition
We stop the recursive procedure of clustering, when one of
the two termination conditions is met:

a. Termination condition 1: cluster size. This termi-
nation condition suggests that when the cluster/tensor size
is relatively small, we do not attempt to further decompose
it. Now the obvious question is: “When do we call a clus-
ter relatively small?” Note that we use the concept of cluster
size to refer to the number of non-zero elements of the clus-
ter. We introduce the Minimum Cluster Size parameter, k,
which determines that: we do not decompose a cluster fur-
ther if its size is less than k percent of the average size of its
sibling clusters at the same level.

Intuitively, this criterion gives us the ability to provide
a flexible mechanism to contain the depth of the recursive
decomposition. Naturally, there are many different ways to
specify such a condition, including a hard size limit. Here,
we opted to specify it as a percentage of the sizes of the
clusters of the level to allow for some “self-adaptation”. We
study the effect of this parameter in our Evaluation .

b. Termination condition 2: rank=1. Naturally, the re-
cursive factorization cannot continue if the rank of a cluster
is one, even after the perturbation. Therefore, the second ter-
minating condition is: after perturbation, if AutoTen returns
rank=1, we stop.

Claim 1. In RecTen, zeroing-out a strict subset of
non-zero elements from the rank-1 tensor changes the
rank to ≥ 1.

We present the intuition behind this claim here. As-
sume that zeroing-out some non-zero elements of tensor T
leads to a new tensor Ṫ of rank zero. We want to prove
rank(Ṫ) − rank(T) ≥ 0. By definition, a rank-zero ten-
sor has only zero elements. Thus, Ṫ should have only zero
elements. However, this introduces contradiction. It is not
possible to have a zero-tensor as we only zero-out a strict
subset of the non-zero elements. Thus, zeroing out can never
lead to rank-0 tensor, i.e. rank(Ṫ) − rank(T) ≮ 0). Note
that formally, we can represent the zeroing-out process us-
ing element-wise Hadamard Product between the rank-one
tensor, T , and a basis tensor B i.e. Ṫ = T. ∗ B where B is
the basis tensor with elements either set (1) or reset (0).

The description of our approach is likely to generate the
following questions to an astute reader:

a. Is the perturbation introducing an artificial hierarchi-
cal structure? We answer this question in the Discussion
section.

b. How sensitive is the performance of the approach to
its three main parameters? We answer this question in the
Evaluation section, where we study the effect of the three
parameters: (i) Deletion Percentage, ε, (ii) Minimum Cluster
Size, k, and (iii) Sparsity Regularizer Penalty, λ.

Evaluation
As RecTen is a multi-modal hierarchical soft clustering
method, a thorough evaluation is challenging due to: (a)
there is a lack of established ground truth, (b) there is not

Algorithm 1:

RecTen (T) Algorithm to factorize a Tensor recur-
sively to have hierarchical clusters.

Input: Root Tensor, T
Output: Clusters arranged in hierarchical tree format

1 Clusters = [clusters from first level Decomposition of
given root tensor, T]

2 Final clusters tree.insert(T,null)
3 Final clusters tree.insert(Clusters,T)
4 while Clusters != empty do
5 Temp clusters=[]
6 for each C in Clusters do
7 if Termination Condition 1 then
8 continue
9 end

10 Construct Ĉ by removing some elements
from C

11 if Termination Condition 2 then
12 continue
13 end
14 Decompose Ĉ into new clusters Ci’s
15 Temp clusters.insert(Ci’s)
16 Final clusters tree.insert(Ci’s, C)
17 end
18 Clusters=Temp clusters
19 end
20 return Final clusters tree

a well-established methodology for generating realistic syn-
thetic data, (c) finding suitable evaluation metrics is non-
trivial, and (d) it is not obvious what are the most appropriate
reference methods. We present our efforts to address these
challenges below.

Synthetic Tensor Construction
To evaluate RecTen, we use flat and hierarchical synthetic
3-mode tensors, which we describe below.

A. D Flat: a non-hierarchical synthetic tensor. We
generate a flat (non-hierarchical) 3-mode tensor for evalu-
ation purpose. The advantage of a synthetic tensor is that
they have a well-established ground truth. To stress-test our
algorithms, described later, we generate a 3-mode synthetic
tensor,D Flat. The dimension ofD Flat is 300×300×30,
which we find sufficient for our evaluation.

To elaborate, we start from a zero-tensor, Z. Let us con-
sider that Z has three modes A, B, and C, with indices
ai, bj , and ck along the modes respectively. Then we in-
sert some clusters in Z in such a way that these clusters are
not decomposed into further clusters. We call these clusters
flat because they span in level 1 only.

Fig. 4 shows that a total of 21 clusters (3 clusters from
each of the 7 groups) have been introduced which forms the
ground truth. Some of the clusters “overlap”, if they get
projected in only two dimensions.

The three-letter notation, e.g. SSD, indicates the mode
along which the clusters have similar (S) or different (D)

234

Figure 4: D Flat: Creation of challenging (overlapping in
2-modes) clusters in our synthetic tensor by combining the
depicted 21 clusters.

values in the corresponding dimension. For example, the
three inserted SSD clusters in Fig. 4(a) have the same ais
and bjs, but different cks meaning that the three clusters con-
tain same members (across A and B modes) but evolve in
different times (along C mode).

How do we insert (i.e. add elements to) each cluster?
We identify a center for each cluster and then arrange nodes
(equivalently, non-zero elements) around that center by find-
ing the position to insert stochastically. We introduce four
parameters to control the size, and other properties of these
clusters, which we refer to as Synthetic Cluster Construc-
tion Parameters. The number of nodes per cluster is con-
trolled by the concentration parameter ρ while the clus-
ter radius, d, determines the radius of the cluster. The
value for each element is drawn from a Gaussian distribu-
tion, G(µ = 10, σ = 3).

B. D Hi: a hierarchical synthetic tensor. The goal here
is to generate a 3D hierarchical tensor. To do this, we use
a two-dimensional Kronecker graphs [Leskovec et al.2010],
which have well-defined and controlled hierarchical proper-
ties and introduce a third dimension that emulates a tempo-
ral evolution partially inspired by previous work [Guigoures,
Boullé, and Rossi2012].

Specifically, we create a 2D hierarchical Kronecker ma-
trix, and then we create a series of slices: each slice is a
slightly modified version of the previous slice. The concen-
tration (stacking) of these slices creates the third dimension
that imitates an evolving network.

To elaborate, we first create a hierarchical graph utilizing
Kronecker Multiplication of order three (K3 adjacency ma-
trix) in the base slice (dimension 125X125) demonstrated
in Fig. 5. The values of non-zero elements (denoted as
x) in this figure are drawn from a Gaussian distribution,
G(µ = 3, σ = 1), while all the other elements have a zero
value. Thus, the base slice has a two-level hierarchy with 5
clusters at level 1, and each cluster consists of 5 sub-clusters.
Second, we create slices, which we limit to 10. For each new
slice, we randomly choose n% of the total data points of the
previous slice and assign them new values drawn from the
aforementioned Gaussian distributionG(µ = 10, σ = 3). In
this way, we create a 125x125x10 tensor with an underlying
two-level hierarchical structure.

Figure 5: Example of Generation of Kronecker adjacency
matrix K3 for the base slice where K3 = K2 ⊗ K1 and
K2 = K1⊗K1. ⊗ is the Kronecker Multiplication operator.

We discuss the effect of the noise on the performance of
RecTen below in this section.

Evaluation Metrics
Evaluating hierarchical multi-modal clustering is challeng-
ing as its quality can be analyzed from several different per-
spectives. For consistency, we adopt metrics from previ-
ous methods [Luu2011, Rand1971, Zhang and Shasha1989]
which we present below.

A. Total Purity. Total Purity (TP) [Luu2011] captures
the quality of the clustering and it is measured on a scale of
0 to 1 where TP=1 indicates perfect clustering. Intuitively,
TP represents the percentage of nodes that are associated
with the correct cluster and assumes the existence of ground-
truth.

B. Rand Index. The Rand Index (RI) [Rand1971] is a
measure of similarity between two clustering algorithms on
the same data. The metric considers all pairs of elements
and counts pairs that are assigned in the same or different
clusters by each algorithm. RI has a value within [0,1]. A
value of 1 represents identical clustering solutions.

Given a set, S, of n elements and two clustering algo-
rithms, X and Y, to compare, the formula to calculate RI
is:

RI =
a+ b(

n
2

)
where a is the number of pairs of elements in S that are

in the same cluster for X and in the same cluster for Y. b is
the number of pairs of elements in S that are in the differ-
ent clusters for X and in the different clusters for Y. In our
case, n denotes the total number of non-zero elements in the
synthetic tensor.

C. Tree Edit Distance. The Tree Edit Distance (TED)
[Zhang and Shasha1989] measures the similarity of two
trees. Here, we can represent a hierarchical clustering by
a tree and use this metric. Given that member elements have
identities of which cluster it belongs to in the ground truth,
we label each node of the tree with the majority members’
identity. We use the concept of labeled trees to distinguish
between tree nodes.

The TED metric of two labeled trees, T1 and T2, is
the number of insertion, renaming and deletion operations
needed to transform one tree into an exact copy of the other
tree. The lower value of the TED, the more similar are the
trees. Thus, when compared with ground truth, low values
of TED are preferable.

235

(a) Non-hierarchical data. (b) Hierarchical date.

Figure 6: The effect of Deletion Percentage parameter ε on
clustering quality metrics TP and RI (k = 15, λ = 0, n =
10).

The Sensitivity to Algorithmic Parameters
We assess the sensitivity of the performance of our approach
to the three algorithmic parameters using Total Purity, and
Rand Index metrics.

a. The sensitivity of RecTen to Deletion Percentage,
ε. Choosing the right ε is crucial for RecTen. Very small
ε may yield less clusters whereas very large ε may end
up in extracting too many clusters. In both cases, the ex-
tracted clusters may not be meaningful. So, the goal is to
find a sweet-spot, where we can unravel meaningful pat-
terns with the least amount of deletion. Fig. 6 suggests
that ε ∈ [4%, 8%] is our sweet-spot, where we achieve
maximum performance based on both metrics, TP and RI,
for both non-hierarchical and hierarchical cluster extraction
from synthetic tensors. This implies that with reasonable
amount of deletion, RecTen is able to extract reliable next
level clusters.

b. The sensitivity of RecTen to Minimum Cluster Size,
k. Another crucial parameter of RecTen is k which deter-
mines when to stop our recursive factorization. Very low
k yields in small factorized clusters breaking down the pat-
tern to even more parts (value of performance metrics close
to 1) whereas very high value of k will preserve multi-
ple convoluted patterns in a single cluster (value of perfor-
mance metrics far away from 1). Fig. 7 exhibits that, for
our synthetic tensors, both hierarchical and non-hierarchical,
k ∈ [14%, 18%] is our sweet region where we achieve rea-
sonably high performance from RecTen based on both TP
and RI performance metrics.

c. The sensitivity of RecTen to Sparsity Regularizer
Penalty, λ.

The Sparsity Regularizer Penalty parameter, λ, is used to
select cluster members during the decomposition as we ex-
plained earlier. Low values of λ create larger clusters, while
high values create smaller clusters. Clearly, there is a need
for a balanced solution that will provide maximal informa-
tion and insights from the data. Varying the value of the
parameter in our study, we find that a value of λ to 0.8 pro-
vides the best results w.r.t. the Total Purity metric. The full
results are omitted due to space limitations.

Practical guidelines for using RecTen. There are only
three algorithmic parameters in RecTen: (a) Deletion Per-
centage ε, (b) Minimum Cluster Size k, and (c) Sparsity

(a) Non-hierarchical data. (b) Hierarchical data.

Figure 7: The effect of Minimum Cluster Size k parameter
on clustering quality metrics TP and RI (ε = 6, λ = 0, n =
10).

Regularizer Penalty λ. Based on the experience from our
study, we recommend the following default values for these
parameters: k = 15%, ε = 6%, λ = 0.8. Even a savvy end-
user can tune these parameter knobs to tailor them to the
needs of their study. To recap, setting ε to a high value can
enforce extracting higher number of clusters by increasing
the rank of a tensor. A much higher value of k will terminate
the decomposition for larger sizes, providing a lower bound
on the size of the clusters. Furthermore, a high value of λ
will affect the size of the clusters during the tensor decom-
position. Overall, our results suggest the following ranges
for these parameters ε within 4%-8%, k within 14%-18%,
and λ = 0.8.

The Sensitivity of RecTen to Dataset Properties
We wanted to evaluate the robustness of our approach to a
wide range of data. An advantage of using the synthetic
data is that we are able to create a wide range of datasets by
varying the some parameters, e.g. Synthetic Cluster Con-
struction Parameters. We briefly discuss their effects below.
Unfortunately, the full set of results are omitted due to space
limitations.

a. The effect of the amount of noise in the synthetic
tensor construction: noise percentage, n. As mentioned
earlier, we introduce some noise while creating each new
slice while constructing our hierarchical dataset D Hi. We
vary the value of noise percentage, n, to stress-test the re-
silience of RecTen to this parameter. We find that RecTen
can offer reasonable performance (TP=0.796, RI=0.8) for
up to n = 20%, at which point we observe a sharp drop in
the performance.

b. The effect of the Synthetic Cluster Construction
Parameters: d, ρ, µ, σ. We also analyze the performance
of RecTen by varying radius d, concentration ρ, and data
value distribution parameters µ and σ which affect the gen-
eration of our non-hierarchical synthetic tensor. We found
that RecTen is relatively robust to different values of these
parameters. For example, we found a case where doubling
the parameter values did not change the performance signif-
icantly. Specifically, RecTen shows TP=0.85 for d = 4, ρ =
8/pattern, µ = 10, and σ = 3, and drops to TP=0.835, when
we double the parameter values to d = 8, ρ = 16/pattern,
µ = 20, and σ = 6.

236

We intend to evaluate our algorithm more extensively and
with more families of synthetic tensors in future.

Comparison with State-of-the-art Methods
While there is not a widely-accepted set of baseline algo-
rithms for multi-modal hierarchical clustering, we compare
RecTen with a set of other widely-used and state-of-the-art
which include both 2D hierarchical and 3D non-hierarchical
methods. Specifically, we compare against the following ap-
proaches: (a) the widely-used basic Ward’s method for Ag-
glomerative Hierarchical Clustering Algorithm (AHC ward)
[Ward Jr1963], (b) the frequency-based Agglomerative Hi-
erarchical Clustering Algorithm (AHC freq) [Madheswaran
and others2017], (c) the local cores-based Hierarchical
Clustering Algorithm (DLORE-DP) [Cheng, Zhang, and
Huang2020], (d) the minimum spanning tree-based Affin-
ity [Bateni et al.2017] clustering (e) the non-hierarchical
TenFor [Islam et al.2020b], and (f) the non-hierarchical Dy-
namicT [Sun and Li2019].

Stress-testing: slices and noise. In the evaluation below,
we will use the concept of the slice, which we can see as a
snapshot in time of an evolving matrix. We introduced the
idea of slice when we described the generation of our syn-
thetic data earlier in this section. Recall that, we start with a
fairly pristine clustering structure in the base slice and con-
tinue stacking slices on top of the base slice. Therefore, a
3D tensor can be viewed as a stack of slices. In each slice,
we add some noise, which can be seen abstractly as mod-
ifying the cluster members (e.g. reducing the membership
strength of an element). The goal is to stress-test the capa-
bilities of RecTen to extract the underlying clusters despite
the new modifications.

RecTen outperforms competitions especially in the
face of higher noise. Our comparison results suggest that
RecTen outperforms other baseline algorithms. Interest-
ingly, the difference becomes more pronounced as we in-
crease the third-dimension, as we explain below. To achieve
this, we leverage the concept of slices, as discsussed above.
We apply the 2D algorithms on 2D slice i of the synthetic
tensors, while the 3D algorithms are applied on the 3D ten-
sor constructed from slices 1 to i. For instance, we produce
a hierarchy from slice 5 (2D) using 2D AHC ward, and pro-
duce another hierarchy using RecTen from the 3D sub-tensor
constructed by stacking slices 1 to 5. For completeness, we
compare with both 2D and 3D algorithms as we explain be-
low. The results from the 2D algorithms are offered only as
a reference point and not as a head to head comparison. The
results are reported in Table 3 for hierarchical data D Hi and
in Table 4 for the non-hierarchical data D Flat.

The performance of RecTen improves as we consider
more slices i in Table 3. For example, we see that the Total
Purity increases from 0.82 to 0.86, and the Tree Edit Dis-
tance decreases from 5 to 2. This is not surprising: as the
third dimension becomes longer, it increases the amount of
information that the algorithm can use. We also see that
RecTen outperforms the other 3D algorithms, TenFor and
DynamicT, with respect to both metrics. For example, for
slice 10 in Table 3, RecTen achieves a TP of 0.86, compared
to 0.8 and 0.73 for the other algorithms. Similarly, RecTen
has TED of 2 compared to 17 and 21. The performance

difference of RecTen compared to other 3D methods is sta-
tistically significantly (p > 0.05).

RecTen performs well even with non-hierarchical data,
which suggests that it does not “force” a hierarchy if such
hierarchies do not exist in the data. The results are shown
in Table 4. RecTen outperforms other methods in terms of
both TP and RI (statistical significance p > 0.05). Interest-
ingly here the difference between RecTen and TenFor and
DynamicT is relatively smaller compared to the difference
with hierarchical data.

Application Results and Observations
We provide proof of the effectiveness of RecTen by find-
ing interesting hierarchical clusters from five different real
datasets, discussed in Background and Datasets section. We
utilized the forum analysis tools and NLP techniques [Islam
et al.2020b] to profile the clusters and verified that they are
meaningful: cohesive and focused on a topic or event.

a. Results from Security forum datasets. Applying
RecTen on three security forum datasets reveals interesting
clusters.

First, we describe how we constructed the input tensor.
We construct a 3D tensor, T , by capturing the interaction of
users with different threads at different weekly discretized
times. Each element, T (i, i, k), of the input tensor captures
the interaction (in terms of the number of posts) of user i
with thread j at discretized week k or zero in the absence of
such interaction. We then fed the input tensor, T , to RecTen.
We find a total of 101 clusters from three security forums
(41 from OC, 27 from HTS, and 33 from EH) arranged in
hierarchical format. Second, we dig deeper into the identi-
fied cluster to find out the discussion topics of the clusters.
Some of the key results are described below.

We find that RecTen indeed captures meaningful hierar-
chical clusters from OC, which we validate with prior pro-
filing NLP tools and manual investigation. For instance, a
cluster at level 1 revolving around Ransomware related dis-
cussion. The discussion started in Dec 2015 and was fur-
ther instigated in Feb 2016 (observed from the time dimen-
sion of the identified cluster) which mirrors the outbreak of
SimpleLocker ransomware at that time. The detected cluster
actually indicated the early signs of the coming world-wide
ransomware disaster. Upon further investigation of that clus-
ter by going one level down, we identified a smaller cluster
with 12 threads and 34 sellers of their decryption tools (to
recover from the malware) in February 2016. By going into
the next level in the hierarchy, we identify that a well-known
company, MDS, was also selling the decryption tools in this
underground market.

Investigating one of the identified clusters at level 1 from
the HTS forum, we identify a group of 32 threads by user
DoSman offering a free trial of his attack tools. Diving deep
into the next level, we find posts related to selling DOS at-
tack tools and phishing tools in April-May 2016.

The EH forum also revealed interesting clusters. For ex-
ample, we identify VandaDGod, an expert Linux hacker (or
possibly a group of hackers), who shared a popular tutorial
series of hacking in Kali Linux in November 2017. Go-
ing one step lower, we find clusters related to ‘Hacking into
Banks’ and ‘Hacking Routers’. We find a series of posts to

237

Baselines Slice 4 Slice 6 Slice 8 Slice 10
TP TED TP TED TP TED TP TED

AHC ward (2D) 0.79 6 0.75 8 0.7 8 0.65 10
AHC freq (2D) 0.79 8 0.75 10 0.69 13 0.71 15

DLORE-DP (2D) 0.8 6 0.77 6 0.74 5 0.73 4
Affinity (2D) 0.77 6 0.73 7 0.72 3 0.7 3
TenFor (3D) 0.78 16 0.79 18 0.8 20 0.8 21

DynamicT (3D) 0.71 6 0.72 16 0.73 15 0.73 17
RecTen (3D) 0.82 5 0.84 4 0.84 2 0.86 2

Table 3: Performance evaluation of RecTen compared to baseline algorithms in terms of Total Purity (TP) and Tree Edit
Distance (TED) metrics for hierarchical synthetic data D Hi. We use bold for the best performance per column.

Baselines Slice 4 Slice 6 Slice 8 Slice 10
TP RI TP RI TP RI TP RI

AHC ward (2D) 0.79 0.81 0.75 0.77 0.74 0.76 0.7 0.71
AHC freq (2D) 0.77 0.78 0.75 0.74 0.69 0.73 0.72 0.7

DLORE-DP (2D) 0.79 0.76 0.77 0.76 0.73 0.75 0.73 0.74
Affinity (2D) 0.77 0.76 0.72 0.7 0.71 0.73 0.71 0.73
TenFor (3D) 0.79 0.8 0.81 0.81 0.82 0.82 0.82 0.83

DynamicT (3D) 0.82 0.81 0.82 0.82 0.82 0.83 0.81 0.82
RecTen (3D) 0.83 0.82 0.82 0.84 0.83 0.84 0.85 0.87

Table 4: Performance evaluation of RecTen compared to reference algorithms. We have presented the results of Total Purity
and Rand Index metrics for non-hierarchical synthetic data D Flat.

recruit new members for hacking into banks by VandaDGod
in the next level. A simple Internet search reveals that ex-
tensive and notorious reputation: VandaTheGod is accused
of hacking several government sites.

We argue that the above results provide a strong indica-
tion that RecTen captures meaningful clusters and reveals
interesting activities.

b. Results from Gaming forum dataset. We analyze
the gaming forum MPGH, and we find a total of 233 clus-
ters from MPGH organized in 6 levels. As expected, we find
clusters related to gaming strategies for specific games, but
we also found some unexpected clusters. For example, we
identify a big cluster at level one revolving around differ-
ent scamming and hacking-related objections. In the next
level, this cluster consists of clusters revolving around on-
line gaming account scamming and ‘Romance Scamming’.
It seems that in some online games where users can chat
among themselves, scammers connect with other users to
win their trust and extract money. Also, we identify clusters
related to searching for experienced hackers after a painful
defeat in a game. These surprising findings indicate that on-
line gaming forums are being a new potential source of se-
curity threats.

c. Results from GitHub dataset. Similar to security fo-
rums, we construct a 3D tensor for GitHub dataset. Each el-
ement, T (i, j, k), of the input tensor captures the interaction
(in terms of the total number of create, fork, comment and
contribution performed) between: (a) author i, (b) reposi-
tory j, (c) per week k. Applying RecTen on this tensor, we
extract a total of 79 clusters in 4 levels. An interesting clus-
ter contains Windows related malware in the first level and
the next level contains Windows related ransomware. These
clusters formed mainly in Jan 2016 when ransomware was
spreading worldwide and malicious authors started develop-
ing more ransomware in GitHub inspired by the attack suc-

cess. RecTen can help the security enforcement authorities
to keep track of which and how malware are being developed
and getting popularity over time.

Empirical results comparison with TimeCrunch.
TimeCrunch [Shah et al.2015] is also a tensor-based tool
to discover patterns, but it extracts only six fixed types of
temporal structures, such as near cliques, bipartite cores,
and spikes. We apply TimeCrunch on three security forum
datasets and find a total of only 17 structures. All these
17 structures are captured in RecTen as well. Moreover,
RecTen captures a total of 101 clusters from these security
forums. We think that this suggests RecTen strikes a good
balance between finding too few and too many clusters of
interest. We omit the detailed finding of TimeCrunch due to
space limitations.

Computational effort. The computation required by
RecTen is not excessive. The average runtime for prepar-
ing the final hierarchical Tree view of the biggest forum
with 100K posts, MPGH, takes only 2.39 minutes on av-
erage whereas TimeCrunch takes 1.98 minutes on average.
We reason that TimeCrunch is faster because it operates in
single-level decomposition, whereas RecTen performs a re-
cursive multi-level decomposition. In that sense, the com-
putational effort of RecTen seems reasonable. However, we
intend to study the scaling properties of our approach with
larger datasets. Our experiments were conducted on a lap-
top with 2.3GHz Intel Core i5 processor and 16GB RAM
and the implementation used Python v3.6.3 packages.

Discussion
a. What applications would benefit from multi-modal hi-
erarchical clustering? Apart from being an interesting the-
oretical problem, we can think of several real-world applica-
tions that could benefit greatly from a hierarchical decompo-

238

sition. Based on our expertise and interest, we consider the
dynamics of an online community which includes many hot-
button applications such as online fraud, fake news dissemi-
nation, online review tampering, and opinion manipulation,
as we explain below. As online seems to dominate physi-
cal interactions, there is a plethora of online communities,
from social networks to discussion forums, and collabora-
tion platforms. Analyzing these communities can provide
immensely useful information on who interacts with whom
and for what purpose. Specifically, one may want to a) iden-
tify groups of misbehaving agents, including cyberbullying
and harassment, b) detect online collaboration and collusion,
c) detect information spread over time. We argue that any
such analysis can greatly benefit by having a capability to
automatically provide the interaction landscape through a hi-
erarchy of clusters that represent important activities: events
and groups.

More generally, there is a plethora of applications with
multi-modal datasets in the financial, and medical sectors
that could benefit from an effective multi-modal hierarchi-
cal analysis. For example, one could consider the study of
drug efficacy over a long period of time, where grouping pa-
tients by medical, demographic, and behavioral features, as
they evolve over time could illustrate the effects of the drug
better. In the Related Work section, we provide more exam-
ples of such applications.

b. Does RecTen introduce artificial hierarchical struc-
ture in the absence of such? A valid concern is whether
the perturbation generates hierarchical structure that is not
there in the initial data. Although possible, but we argue
that under the right conditions, it does not. First, the end-
users can control the amount of perturbation, and keeping it
reasonably low can minimize the danger. Second, our exper-
imental results on real data suggest that even large clusters
are fairly resilient to perturbation for a wide range of pertur-
bations if there is no sub-cluster in those. Indicatively, we
can refer to our analysis on the MPGH forum. We find that
the biggest cluster (450 users, 530 threads, 23 weeks) dis-
cusses about general topics on gaming strategies. We vary
the Deletion Percentage, ε, from 2% to 15%. For all values,
the large cluster was nearly the same each time, and it was
never pushed to further decomposition even for high val-
ues of the parameter. In fact, we have experimental indica-
tion that RecTen produces almost same hierarchy as ground
truth for hierarchical data and respects the flatness of non-
hierarchical data as well. For instance, experimenting with
k = 15, ε = 6, and λ = 0.8 in the non-hierarchical syn-
thetic data, RecTen leads to an average weighted level of
1.14, which is very close to the ideal value of 1 for this case.
Although these are already encouraging results, we will in-
vestigate this further with different types of real data in the
future.

However, in a similar vein, one can question if the per-
turbation introduces information loss. The answer here de-
pends on how one will use the hierarchical clustering. If it
will be used to compress the information, then some infor-
mation loss will take place. However, if the clustering will
only be used to infer an underlying structure (e.g. assign
nodes to clusters), the question of information loss becomes
less relevant compared to the question as to whether the hi-
erarchical clustering is meaningful. The two arguments we

would like to make here that would hopefully close this case
are: (i) the deletions are meant to disentangle the lower-level
clusters which have enough cross-cutting connections that
the top-level decomposition deemed to be a single cluster,
(ii) the decomposition is known (as it did in the top level) to
impute missing values that are needed in order to represent
a cluster as a rank-one entity. Therefore, even if the dele-
tions go a bit further than needed (i.e., start deleting more
intra-cluster and less inter-cluster connections), the rank-one
modeling is able to complete those deletions, provided that
sub-clusters are present and deletion is not extensive.

c. Is our evaluation sufficient given the absence of ex-
tensive ground truth? We would have loved to have tested
our algorithm against a well-established benchmark. Given
its absence, we followed a two-prong approach. First, we
evaluate RecTen with synthetic data, where we can know
the ground truth, and create a wide range of datasets. In ad-
dition, we compare with six different state-of-the-art meth-
ods. Second, we resort to manual inspection of our analy-
sis on real datasets. We argue that our evaluation provides
sufficient evidence of the overall effectiveness and compet-
itiveness of our method. In the future, we will evaluate our
work on more synthetic and real datasets. In addition, we
will provide our labeled datasets as a building block towards
a community-wide benchmark.

Related Work
To the best of our knowledge, RecTen is the first tensor-
based approach that extracts a multilevel hierarchical clus-
tering from multi-modal data recursively. We highlight the
most relevant and recent methods, which we group into the
following categories.

a. Discovering hierarchical structures without using
tensor decomposition. Hierarchical structure discovery is a
very common task in data mining. The algorithms that are
being used mostly include but not limited to bottom-up Ag-
glomerative Hierarchical Clustering, top-down Hierarchical
k-means Clustering, and variations of these algorithms.

The basic and widely used version of Agglomera-
tive Hierarchical Clustering is Ward’s method, AHC ward
[Ward Jr1963]. Different variations of bottom-up Hier-
archical Clustering are being used recently as well [Tef-
fer, Srinivasan, and Ghosh2019, Mahalakshmi, MuthuSelvi,
and Sendhilkumar2020]. DLORE-DP [Cheng, Zhang, and
Huang2020] focuses on developing a local cores-based hi-
erarchical algorithm for dataset with complex structures.
Another work, AHC freq [Madheswaran and others2017],
proposes an improved frequency-based agglomerative clus-
tering algorithm for detecting distinct clusters on two-
dimensional dataset. A recent minimum spanning tree-
based bottom-up hierarchical clustering is Affinity [Bateni
et al.2017] which works well for extracting structures from
graphs. Note that the above-mentioned methods do not ap-
plicable for multi-modal data.

Variations of Top-down hierarchical algorithm like hi-
erarchical k-means is also being used in different do-
mains ranging from modeling blast-produced vibration
[Nguyen et al.2019] to large graph embedding [Nie, Zhu,
and Li2020]. DenPEHC [Xu, Wang, and Deng2016]
presents a top-down density peak-based hierarchical clus-
tering method which introduces a grid granulation frame-

239

work to enable Den-PEHC extract clusters from large-scale
and high-dimensional datasets. Recent methods [Roy and
Pokutta2017, Charikar and Chatziafratis2017] utilizes the
sparsest cut to extract hierarchical clusters for the data.
[Kuang and Park2013] focuses on hierarchical document
clustering leveraging non-negative matrix factorization. All
the above-mentioned algorithms suffer from the same prob-
lem. These algorithms are applied on data represented in 2D
matrix format. Therefore, finding clusters in multi-modal
data requires new strategy. The work of [Guigoures, Boullé,
and Rossi2012] focuses on tri-clustering in time-evolving
graphs but did not utilize tensor factorization at all.

Different variations of deep learning-based clustering
strategies are also prominent. But they basically use the
deep neural networks to generate the features and then ap-
ply traditional machine learning clustering algorithms to fi-
nally compute the clusters [Karim et al.2020, Tian, Zhou,
and Guan2017]. However, none of these strategies have ever
been applied on multi-modal hierarchical clustering.

b. Advanced tensor decomposition: interactivity and
hierarchical data. Although the recursive use of tensor is
very rare, a very recent work [Abdali, Shah, and Papalex-
akis2020] uses a two-level tensor decomposition to detect
fake news. Though the authors use the term “hierarchical”
for their model, it is only two-levels and combines disparate
datsets to achieve its goal. Another work [Wang et al.2015]
proposes an interactive framework using tensor decomposi-
tion in order to detect topic hierarchy, which differs from the
recursive tensor factorization that we do in this study.

c. Tensor decomposition approaches and applications.
Tensor decomposition is a well-studied area of research. For
our work, we have used CP decomposition but there are
other bunch of tensor decomposition approaches. Tucker
Decomposition [Kim and Choi2007] is the most well-known
of them but it is not capable of generating unique decom-
position. There are other tensor clustering approaches but
they are applicable in focused domain, for example, tensor
graph clustering to detect higher-order cycles [Benson, Gle-
ich, and Leskovec2015], approximation algorithm for 1-d
clustering [Jegelka, Sra, and Banerjee2009]. Another recent
tensor-based clustering is Dynamic Tensor Clustering (Dy-
namicT) [Sun and Li2019] which works better for dynamic
tensors but struggles for general tensors. All of the above-
mentioned algorithms suffer from the same general problem
of not being hierarchical.

Tensor decomposition has a wide range of applica-
tions in diverse domains for categorical data [Islam et
al.2020b, Kolda and Bader2009, Liu et al.2019, Papalexakis
and Doğruöz2015].

Relatively recently tensor-based techniques have been
used in social media analysis. Very recent approaches, Ten-
For and HackerScope [Islam et al.2020b, Islam et al.2020a],
use non-hierarchical tensor decomposition to find interesting
events and hackers’ dynamics in social media and forums.
TimeCrunch [Shah et al.2015] focuses on mining some tem-
poral patterns from time-evolving dynamic graphs. More
recent studies [Papalexakis and Doğruöz2015] use tensor
to model multilingual social networks in online immigrant
communities. Other works [Liu et al.2019, Gujral and Pa-
palexakis2018] use tensor decomposition to study the online
communities and their evolution.

Conclusion
We propose, RecTen, an unsupervised tensor-based ap-
proach to systematically discover hierarchical clusters in a
multi-dimensional space. It can operate parameter-free with
default values, but optionally allow parameter tuning for an
expert end-user. We show the effectiveness of our approach
by an extensive evaluation using both synthetic data and five
real datasets.

From an algorithmic point of view, the key advantages of
our approach could be summarized in the following points:
a) we harness the power of tensor decomposition, b) we pro-
vide hierarchies, and (c) we compare favorably to or out-
perform previous methods. From a practical point of view,
RecTen has three attractive features: (a) it operates in an un-
supervised way, (b) it generalizes well to both categorical
and numerical multi-modal data, and (c) it can operate with
default parameters, or customized by a savvy user.

Our work is a step towards a powerful capability, which
can allow the data analysts and researchers to mine the
wealth of information that exists in massive multi-modal
data. Our commitment to providing our tools and data to
researchers and practitioners will hopefully amplify the im-
pact of this work.

Acknowledgements
This work was supported by the UC Multicampus-National
Lab Collaborative Research and Training (UCNLCRT)
award #LFR18548554.

References
Abdali, S.; Shah, N.; and Papalexakis, E. E. 2020. Hi-
jod: Semi-supervised multi-aspect detection of misinforma-
tion using hierarchical joint decomposition. ECML-PKDD.
Bateni, M.; Behnezhad, S.; Derakhshan, M.; Hajiaghayi,
M.; Kiveris, R.; Lattanzi, S.; and Mirrokni, V. 2017. Affin-
ity clustering: Hierarchical clustering at scale. In Advances
in Neural Information Processing Systems, 6864–6874.
Benson, A. R.; Gleich, D. F.; and Leskovec, J. 2015. Ten-
sor spectral clustering for partitioning higher-order network
structures. In Proceedings of the 2015 SIAM International
Conference on Data Mining, 118–126. SIAM.
Charikar, M., and Chatziafratis, V. 2017. Approximate hier-
archical clustering via sparsest cut and spreading metrics. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, 841–854. SIAM.
Cheng, D.; Zhang, S.; and Huang, J. 2020. Dense mem-
bers of local cores-based density peaks clustering algorithm.
Knowledge-Based Systems 105454.
Gharibshah, J.; Papalexakis, E. E.; and Faloutsos, M. 2020.
Rest: A thread embedding approach for identifying and clas-
sifying user-specified information in security forums. In
Proceedings of the International AAAI Conference on Web
and Social Media, volume 14, 217–228.
Guigoures, R.; Boullé, M.; and Rossi, F. 2012. A tricluster-
ing approach for time evolving graphs. In 2012 IEEE 12th
International Conference on Data Mining Workshops, 115–
122. IEEE.

240

Gujral, E., and Papalexakis, E. E. 2018. Smacd: Semi-
supervised multi-aspect community detection. In ICDM,
702–710. SIAM.
Islam, R.; Rokon, M. O. F.; Darki, A.; and Faloutsos, M.
2020a. Hackerscope: The dynamics of a massive hackeron-
line ecosystem. In Proceedings of International Confer-
ence on Advances in Social Network Analysis and Mining
(ASONAM). IEEE/ACM.
Islam, R.; Rokon, M. O. F.; Papalexakis, E. E.; and Falout-
sos, M. 2020b. Tenfor: A tensor-based tool to extract inter-
estingevents from security forums. In Proceedings of Inter-
national Conference on Advances in Social Network Analy-
sis and Mining (ASONAM). IEEE/ACM.
Jegelka, S.; Sra, S.; and Banerjee, A. 2009. Approximation
algorithms for tensor clustering. In International Confer-
ence on Algorithmic Learning Theory, 368–383. Springer.
Karim, M. R.; Beyan, O.; Zappa, A.; Costa, I. G.; Rebholz-
Schuhmann, D.; Cochez, M.; and Decker, S. 2020.
Deep learning-based clustering approaches for bioinformat-
ics. Briefings in Bioinformatics.
Kim, Y.-D., and Choi, S. 2007. Nonnegative tucker decom-
position. In 2007 IEEE Conference on Computer Vision and
Pattern Recognition, 1–8. IEEE.
Kolda, T. G., and Bader, B. W. 2009. Tensor decompositions
and applications. SIAM review 51(3):455–500. SIAM.
Kuang, D., and Park, H. 2013. Fast rank-2 nonnegative
matrix factorization for hierarchical document clustering. In
Proceedings of the 19th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, 739–747.
Leskovec, J.; Chakrabarti, D.; Kleinberg, J.; Faloutsos, C.;
and Ghahramani, Z. 2010. Kronecker graphs: an approach
to modeling networks. Journal of Machine Learning Re-
search 11(2).
Liu, Y.; Yan, G.; Ye, J.; and Li, Z. 2019. Community evo-
lution based on tensor decomposition. In ICPCSEE, 62–75.
Springer.
Luu, T. 2011. Approach to evaluating clustering using clas-
sification labelled data. Master’s thesis, University of Wa-
terloo.
Madheswaran, M., et al. 2017. An improved frequency
based agglomerative clustering algorithm for detecting dis-
tinct clusters on two dimensional dataset. Journal of Engi-
neering and Technology Research 9(4):30–41.
Mahalakshmi, G.; MuthuSelvi, G.; and Sendhilkumar, S.
2020. Gibbs sampled hierarchical dirichlet mixture model
based approach for clustering scientific articles. In Smart
Computing Paradigms: New Progresses and Challenges.
Springer. 169–177.
Nguyen, H.; Bui, X.-N.; Tran, Q.-H.; and Mai, N.-L. 2019.
A new soft computing model for estimating and controlling
blast-produced ground vibration based on hierarchical k-
means clustering and cubist algorithms. Applied Soft Com-
puting 77:376–386.
Nie, F.; Zhu, W.; and Li, X. 2020. Unsupervised large graph
embedding based on balanced and hierarchical k-means.
IEEE Transactions on Knowledge and Data Engineering.
Papalexakis, E., and Doğruöz, A. S. 2015. Understanding

multilingual social networks in online immigrant communi-
ties. In WWW, 865–870.
Papalexakis, E. E. 2016. Automatic unsupervised ten-
sor mining with quality assessment. In SDM16, 711–719.
SIAM.
Pastrana, S.; Thomas, D. R.; Hutchings, A.; and Clayton,
R. 2018. Crimebb: Enabling cybercrime research on under-
ground forums at scale. In WWW, 1845–1854.
Rand, W. M. 1971. Objective criteria for the evaluation
of clustering methods. Journal of the American Statistical
association 66(336):846–850.
Rokon, M. O. F.; Islam, R.; Darki, A.; Papalexakis, E. E.;
and Faloutsos, M. 2020. Sourcefinder: Finding malware
source-code from publicly available repositories. In Pro-
ceedings of the 23rd International Symposium on Research
in Attacks, Intrusions and Defenses.
Roy, A., and Pokutta, S. 2017. Hierarchical clustering via
spreading metrics. The Journal of Machine Learning Re-
search 18(1):3077–3111.
Sapienza, A.; Bessi, A.; and Ferrara, E. 2018. Non-negative
tensor factorization for human behavioral pattern mining in
online games. Information 9(3):66. Multidisciplinary Digi-
tal Publishing Institute.
Shah, N.; Koutra, D.; Zou, T.; Gallagher, B.; and Faloutsos,
C. 2015. Timecrunch: Interpretable dynamic graph sum-
marization. In Proceedings of the 21th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining, 1055–1064.
Sun, W. W., and Li, L. 2019. Dynamic tensor clus-
tering. Journal of the American Statistical Association
114(528):1894–1907.
Teffer, D.; Srinivasan, R.; and Ghosh, J. 2019. Adahash:
hashing-based scalable, adaptive hierarchical clustering of
streaming data on mapreduce frameworks. International
Journal of Data Science and Analytics 8(3):257–267.
Tian, K.; Zhou, S.; and Guan, J. 2017. Deepcluster: A gen-
eral clustering framework based on deep learning. In Joint
European Conference on Machine Learning and Knowledge
Discovery in Databases, 809–825. Springer.
Wang, C.; Liu, X.; Song, Y.; and Han, J. 2015. Towards in-
teractive construction of topical hierarchy: A recursive ten-
sor decomposition approach. In ACM SIGKDD, 1225–1234.
Ward Jr, J. H. 1963. Hierarchical grouping to optimize an
objective function. Journal of the American statistical asso-
ciation 58(301):236–244.
Xu, J.; Wang, G.; and Deng, W. 2016. Denpehc: Density
peak based efficient hierarchical clustering. Information Sci-
ences 373:200–218.
Zhang, K., and Shasha, D. 1989. Simple fast algorithms
for the editing distance between trees and related problems.
SIAM journal on computing 18(6):1245–1262.

241

