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Abstract

As customers use and benefit from multiple services, a large
amount of customer data are accumulating daily. Connect-
ing a customer’s identity on a service with her identity on a
different service, known as user identity linkage (UIL), en-
ables a comprehensive understanding of users in a variety of
real-world applications. The difficulties of UIL tasks in mar-
keting applications are mainly the lack of user demographics
and diverse user behavioral patterns, which differs from UIL
tasks in social networking services that previous UIL meth-
ods have mainly been used to tackle. In this paper, we pro-
pose a novel method for UIL for different behavioral patterns
to determine whether two given behavioral histories come
from the same user without using any user demographics. Our
proposed method links users by using natural language pro-
cessing to efficiently characterize user intrinsic features and
bridging the gap between two different behavioral patterns of
the same user. We conducted experiments to evaluate our pro-
posed method for three real-world open source datasets and
observed that it successfully linked users compared to con-
ventional UIL methods.

Introduction
Background
Understanding customer behavioral patterns from diversi-
fied perspectives is key to various marketing tasks. Since
customers come across and use many online- and offline-
services every day, their activity logs (e.g., browsing history
on an electronic commerce (EC) store, purchase history on a
retail store, and posts on a social networking service (SNS))
are just the tip of the iceberg, and examining data of a sin-
gle domain does not always produce enough information.
To understand customers in such a situation, tracking cus-
tomer behaviors among several services is necessary, and
this has motivated researchers to carry out user identity link-
age (UIL), which connects a customer’s identity on a service
with her identity on a different service. Figure 1 shows a use
case of UIL.

Although current application-level integration mecha-
nisms for UIL, such as HTTP cookies and social login sys-
tems, successfully connect users among different services,
they are facing several difficulties: (1) regulations, such as
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Figure 1: Linking purchase history of target user to her
browsing history is useful, for example, to recommend items
of category related to sites she visited, measure the effective-
ness of advertisements on each web site, and improve web
sites to be more attractive to visitors by analyzing their pur-
chase patterns. For these applications, UIL s002 = t01 is
essential.

the EU General Data Protection Regulation (GDPR), that
prohibit the use of cookies without user consent 1, and (2)
preparing a common authorization system among every pos-
sible service that users might use is almost impossible as the
number of services that users use is increasing.

To overcome these difficulties, studies on “predictive”
UIL methods, which are used to predict the linkage of two
users in different disconnected domains, are becoming a
popular topic in data mining (Zafarani and Liu 2009; Liu
et al. 2014; Shu et al. 2016; Hadgu and Gundam 2020).
Predictive UIL methods model a user as a feature vector
computed from identity-implying information such as de-
mographics (e.g., gender, age, and addresses) or behaviors
(e.g., trajectory data, tagging logs on SNS). To determine
whether a user u on domain s is identical to a user u′ on do-

1While such regulations are concerned that a personal data (e.g.,
her e-mail or SNS ID) is connected to her activities (e.g., her brows-
ing histories) without user consent, it is desired to utilize user
data after ethical concerns are removed. For example, the Personal
Information Management System (PIMS) was recently proposed,
where users can share their data to utilize them while being assured
of their privacy (e.g., anonymization). Therefore, UIL methods are
useful to utilize anonymized user data.
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main t, these methods compute the features of both users and
similarities of these features on the basis of particular met-
rics. If the similarity satisfies a particular condition, such as
surpassing a pre-determined threshold, the methods output a
pair of (u, u′) as a linked user.

Research Challenges
While previous UIL methods have been successful in terms
of identification accuracy, they have limited applicabilities
in real-world enterprise marketing due to the following chal-
lenges.

Lack of User Demographics In a data management plat-
form (DMP) system, a commonly used marketing platform
that gathers customer-related data from various data sources,
a user can be anonymized and treated as a hash value
(Elmeleegy et al. 2013). Thus, UIL methods using user de-
mographics cannot be applied to datasets in which users are
anonymized.

Behavioral Pattern Differences across Domains Recent
methods (Iofciu et al. 2011; Goga et al. 2013; Kong, Zhang,
and Yu 2013; Riederer et al. 2016; Feng et al. 2019) that
do not require demographics information successfully deter-
mine the identities of users based on the similarities of user
behavioral patterns by focusing on common objects target
users react to on both domains 2. However, in reality, differ-
ent domains do not always have common objects. Further-
more, even if common objects appear on both domains, user
behaviors can be completely different 3. In such cases, it is
difficult for conventional UIL methods to link users whose
behaviors in underlying domains are not similar.

Contributions
To address the above challenges, we propose a method for
UIL for different behavioral patterns across domains. Our
method determines whether two given behavioral histories
come from the same user without using any demographics
even if underlying domains of user behaviors are not similar.

Our proposed method consists of four main modules: vec-
torization, mapping, selection, and matching. The vector-
ization module extracts user intrinsic features as a numer-
ical vector from her behavioral history. As a behavioral his-
tory is a time-series of actions, by regarding an action as a
word, we efficiently characterize it using natural language
processing. In UIL setting, since a target user is registered
in two domains, s and t, two vectors are obtained from the
same user. The mapping module then transforms a vector
of one domain s, into the corresponding vector of the other

2As a typical application example of those methods, suppose
a Facebook (domain s) user posted text about a location during
her trip and posted photos tagged with the location on Instagram
(domain t). In this case, a common object is the location.

3In a task of measuring the effectiveness of advertising in which
two datasets correspond to clicking (domain s) and viewing (do-
main t), user behaviors of clicking and viewing differ across do-
mains, though ads appear on both domains. On the other hand,
the user’s behaviors of the example of Facebook and Instagram are
similar since her intrinsic behavior is the same on both domains.

domain t. One way to obtain such a mapping is to train a
regression model by learning the correspondence between
two vectors of the same user. Note that a good combina-
tion of vectorization and mapping models should depend on
a target dataset; hence, our method enables arbitrary com-
binations. The selection module automatically finds the best
combination suitable for a target dataset in a cross-validation
manner. Finally, the matching module links users based on
the selected combination.

Our proposed method, in fact, contains two conventional
UIL methods (Iofciu et al. 2011; Goga et al. 2013) as real-
izations of certain combinations of vectorization and map-
ping models. From this point of view, our method general-
izes these methods.

Our contributions can be summarized as follows.

• We propose a novel method for UIL for different behav-
ioral patterns across domains. Our method requires only
behavioral histories and does not require any user demo-
graphics.

• We utilize methods based on natural language processing
to efficiently extract user intrinsic features from her be-
havioral history.

• We bridge the gap between two domains by utilizing the
mapping module of our method, which uses the corre-
spondence between different behavioral patterns of the
same user.

• We utilize the selection module of our method to auto-
matically find the best combination of vectorization and
mapping models for a target dataset.

• We evaluated our method on three real-world open source
datasets, in which each behavioral history is of buying
food, viewing advertisements, and reviewing items. The
results indicate that our method achieved high match-
ing accuracy in identifying across different domains com-
pared to conventional UIL methods.

Preliminaries
Notations
Let U and I be sets of users and items, respectively. A
behavioral history is defined as a sequence of items in
time order. For example, if a user u ∈ U purchases one
banana, two apples, and one salmon, the sequence bu =
(ibanana, iapple, iapple, isalmon) is naturally seen as the be-
havioral history, where i indicates the item ID. Since many
datasets for items have categorical information, such as ba-
nanas and apples being in the same fruit category and salmon
being in the fish category, we also use categories of items.

In UIL setting, users act in different domains. Through-
out this paper, we fix (Us, Is, Cs, Bs) and (U t, It, Ct, Bt)
as tuples of sets of users, items, categories, and behavioral
histories in domains s and t, respectively. The set of users
who are registered in both domains s and t is denoted as
U link := Us ∩ U t and we assume that some linked users
are known 4. In a UIL task, we focus on users who are not

4This is a reasonable assumption as many DMPs provide a
means to obtain a limited number of already linked users in a pay-
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Symbol Description
R Set of real numbers
s, t Domains
U Set of users

u ∈ U User
I Set of items

i ∈ I Item
B Set of behavioral histories

bu = (i1, . . . , im) ∈ B Behavioral history of a user u
C Set of item categories

c ∈ C Item category
v : B → Rd Vectorization model
vu = v(bu) Vector representation

of a user u
f : Rds → Rdt Mapping model

Table 1: List of main symbols.

linked yet. To be precise, we link a user’s behavioral history
bsu ∈ Bs in domain s with her behavioral history in domain
t by searching Bt.

We set U train ⊂ U link and U test ⊂ U link \ U train as
the sets of users who are already known to be linked and
users who are not known to be linked yet but in fact linked,
respectively 5. As the symbols indicate, we use U train and
U test for supervised learning.

Table 1 summarizes the main symbols used in this paper.

Review on Vectorization for a Document
A behavioral history bu = (i1, . . . , im) ∈ B can be con-
sidered a document by considering an item as a word. In
what follows, we discuss constructing a vectorization model
v : B → Rd transforming a behavioral history into a nu-
merical vector. In this section, we briefly review three vec-
torization models for a document vbow, vtfidf , vbm25.

Let B be a set of documents 6, W be the set of all words in
B, n = |B| be the number of documents in B, and d = |W |
be the number of words in B.

A simple document vectorization method is using the bag-
of-words (BoW). The vectorization model by BoW is de-
noted as vbow : B → Rd. The BoW vector vbow(b) ∈ Rd of
a document b ∈ B is defined as vbow(b)[w] = k if b contains
word w a total of k times.

Another well-known method is term frequency-inverse
document frequency (TFIDF, (Jones 2004)). The TFIDF
model vtfidf : B → Rd is defined as

vtfidf (b)[w] := TF [w, b]× IDF [w]

where TF [w, b] := |b ∩ {w}|/|b| is the term frequency 7

of w in b and IDF [w] := log((n + 1)/(D[w] + 1)) + 1

per-ask questionnaire manner.
5The notation A \ B for sets A and B indicates the difference

set between A and B.
6Since we regard a behavioral history as a document, a set of

document is also denoted as B in this subsection.
7The notation |A| for a set A indicates the cardinality of A.

(D[w] := |{b ∈ B | w ∈ b}|) is the inverse document
frequency of w in B.

Although TFIDF measures the word importance, a word
in a document with many words tends to have a small weight
even if the word is in fact meaningful. To balance the docu-
ment length in TFIDF, the study (Jones, Walker, and Robert-
son 2000) proposed BM25, another vectorization method,
by introducing the average document length avgDL :=
n−1

∑
b′∈B |b′|. To be precise, the formulation of the IDF in

BM25 is slightly different than that of TFIDF, and it is de-
fined as IDF ′[w] = log{(n−D[w]+c)/(D[w]+1−c)+1}
where c is a parameter. Then, the BM25 model vbm25 : B →
Rd is defined as

vbm25(b)[w] :=
TF [w, b](k1 + 1)× IDF ′[w]

TF [w, b] + k1(1− k2 + k2
|b|

avgDL )
,

where k1 and k2 are parameters. We set c = 0.5, k1 =
2, k2 = 0.75, as the original paper (Jones, Walker, and
Robertson 2000) proposed.

Proposed Method
Strategy
To solve the UIL problem, we set the intermediate goal of
this study to construct a similarity function

sim : Bs ×Bt → R, (bsu, b
t
u′) 7→ sim(bsu, b

t
u′) (1)

of behavioral histories that returns a high value if u = u′.
Once such a similarity function is obtained, for a behavioral
history bsu, we can find the corresponding behavioral history
btu by searching for those that have a high similarity to bsu.

We briefly explain obtaining the similarity function (1).
First, we prepare vectorization models vs : Bs → Rds

and vt : Bt → Rdt , where ds and dt are positive in-
tegers, respectively. Second, we prepare a mapping model
f : Rds → Rdt to make the inferred vector f(vs(bsu)) sim-
ilar to vt(btu) for linked users. Based on the vectorization
model v and mapping model f , we finally define the simi-
larity function by

simv,f (b
s
u, b

t
u′) := cos(f(vs(bsu)), v

t(btu′))

where cos(v,v′) := 〈v,v′〉/‖v‖‖v′‖ (v,v′ ∈ Rdt ) is the
cosine similarity function. The details of v and f are given
below.

Vectorization Module
We search for the best vectorization model for a behavioral
history among a variety of models; hence, we introduce 30
vectorization models in this subsection. Without loss of gen-
erality, we omit the domain notation, fix Btrain := {bu |
u ∈ U train} as a set of behavioral histories of all training
users, and regard it as a set of documents.

Item Dimension A vectorization model v∗ (∗ ∈
{bow, tfidf, bm25}) trained from Btrain transforms a be-
havioral history into a numerical vector, the dimension of
which is aligned with items in I . Here, X∗ denote the user-
item matrix, e.g., Xbm25[u, i] = vbm25(bu)[i] for a user
u ∈ U and item i ∈ I .
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Category Dimension Since a user-item matrix is gener-
ally sparse, we use categories to reduce the sparsity. Al-
though the symbol C is the set of categories, we also re-
gard C as a map transforming an item i ∈ I to its category
c ∈ C by abuse of notation. Here, C(bu) := (c1, . . . , cm),
where ck is the corresponding category of an item ik ∈ bu,
and C(B) := {C(bu) | bu ∈ B} denote the sequence
of categories of bu and a set of sequences of categories in
B, respectively. Now that a vectorization model v∗ (∗ ∈
{bow, tfidf, bm25}) can be also trained from C(Btrain),
we define the vectorization model C ◦v∗ by (C ◦v∗)(bu) :=
v∗(C(bu)), the dimension of which is aligned with cate-
gories in C 8. Here, C∗ denote the user-category matrix,
e.g., Cbm25[u, c] = (C ◦ vbm25)(bu)[c] for a user u ∈ U
and a category c ∈ C.

Concatenation In the above constructions, a concatena-
tion of the three models can be also considered. We de-
fine the concatenation model vconcat by vconcat(bu) :=
[vbow(bu), vtfidf (bu), vbm25(bu)]. Note that the dimension
of vconcat is 3 times larger than that of v∗ (∗ ∈
{bow, tfidf, bm25}). In the same manner as the category
dimension construction, the concatenation model for cate-
gories C ◦ vconcat is well-defined.

Item-Category Matrix Unlike C ◦ v∗, we can also com-
press a user-item matrix X∗ by multiplying X∗ by an item-
category matrix I, which is defined as I[i, c] = 1 if an
item i ∈ I belongs to a category c ∈ C; otherwise, 0.
The corresponding vectorization model is denoted as v∗ · I,
i.e., (v∗ · I)(bu) := v∗(bu) · I where · is the dot product.
For the concatenation construction, we set (vconcat · I)(bu)
as [vbow(bu) · I, vtfidf (bu) · I, vbm25(bu) · I]. Note that
Xbow · I = Cbow, but, in general, X∗ · I 6= C∗ for
∗ ∈ {tfidf, bm25, concat}.

Non-Negative Matrix Factorization We consider non-
negative matrix factorization (NMF, (Lee and Seung 2000))
as another method for compressing a user-item matrix X∗.
For a user u and item i, it decomposes X∗[u, i] as the in-
ner product 〈P∗[u],Q∗[i]〉 of the user vector P∗[u] ∈ Rk

≥0
and item vector Q∗[i] ∈ Rk

≥0, where a positive integer k is
the pre-determined parameter for NMF. We treat P∗[u] as
the feature vector of user u and write the corresponding vec-
torization model as NMFk ◦ v∗, i.e, (NMFk ◦ v∗)(bu) :=
P∗[u]. In the same manner, the NMF model for categories
NMFk ◦ C ◦ v∗ is well-defined. With respect to parameter
k, we try k = 10, 50, 100 for NMFk ◦ v∗ and k = 10 for
NMFk ◦ C ◦ v∗.

Doc2Vec Recent studies on deep learning have demon-
strated its effectiveness in a variety of field, including
document vectorizations. Doc2Vec (Paragraph Vector,
(Le and Mikolov 2014)), a deep learning based document
vectorization method, learns the distributed representation
of documents from Btrain and returns a pre-defined
dimensional vector vdoc2vec(b) of a document b. We set

8The notation ◦ denotes the composition of mappings. For two
maps f : X → Y, g : Y → Z, the composition g ◦ f : X → Z is
defined by (g ◦ f)(x) := g(f(x)) (x ∈ X).

the window size and dimension of Doc2Vec as 5 and
300, respectively 9. In addition, the Doc2Vec model
C ◦ vdoc2vec for a sequence of categories, which is defined
as (C◦vdoc2vec)(bu) := vdoc2vec(C(bu)), is also considered.

In summary, we listed a total of 30 vectorization mod-
els: v∗, C ◦ v∗ (∗ ∈ {bow, tfidf, bm25, concat, doc2vec}),
v∗ · I (∗ ∈ {bow, tfidf, bm25, concat}), NMFk ◦
v∗ (∗ ∈ {bow, tfidf, bm25, concat}, k = 10, 50, 100), and
NMF10 ◦ C ◦ v∗ (∗ ∈ {bow, tfidf, bm25, concat}). Here, V
denotes the set of such vectorization models.

Mapping Module
Let vs be a vectorization model trained from Bs,train :=
{bsu | u ∈ U train} and vs

u := vs(bsu) ∈ Rds be a
vector representations of bsu ∈ Bs. In the same manner,
Bt,train, vt, dt,v

t
u are defined. We introduce mapping mod-

els f : Rds → Rdt between two vectors such that f(vs
u) ≈

vt
u for linked users u ∈ U link in this subsection.
We treat a mapping model f : vs

u 7→ vt
u as a regres-

sion model trained from {(vs
u,v

t
u) | u ∈ U train} because

each pair (vs
u,v

t
u) comes from the same user u. We con-

sider regression models of linear ridge flinear, kernel ridge
fkernel with the radial basis function (RBF) kernel, and `-
layer neural networks f`nn. To be precise, we set parameters
in the ridge regression models by grid search with cross-
validation. With respect to neural networks, we consider a
two-layer neural network f2nn with one 100-dimensional
hidden layer and three-layer neural network f3nn with two
100-dimensional hidden layers, use Adam (Kingma and Ba
2015) as the optimization algorithm and ReLU (Nair and
Hinton 2010) as the activation function, and set the batch
size as 100 and the epoch size as 100.

The identity map fid is also considered if the two
vectors vs

u and vt
u have the same dimension. For

v∗ (∗ ∈ {bow, tfidf, bm25, concat}), ds 6= dt in
general. To arrange for the dimensions to be the same,
we reset the coordinates of each vectorization model to
all items in Is ∪ It and denote the reset vector of vs

u
as ṽs

u ∈ Rd where d = |Is ∪ It|, which is defined as
ṽs
u[i] = vs

u[i] (i ∈ Is); 0 (i ∈ It \ Is). In the same manner,
the identity map for vectors, the dimensions of which are
aligned with categories, is well-defined by resetting the
dimensions as Cs ∪ Ct.

In summary, we introduced a total of 5 mapping models:
flinear, fkernel, f2nn, f3nn, fid. Here, F denotes the set of
such mapping models.

Selection Module
In this subsection, we discuss searching for the best combi-
nation of models (v, f) ∈ V × F to link users by the simi-
larity function simv,f with higher accuracy.

9We applied the Gensim module (https://radimrehurek.com/
gensim/models/doc2vec.html) in experiments and other parameters
were set to default values. Since document sets of behavioral histo-
ries are not real documents, any released pre-trained models cannot
be transferred and we train all Doc2Vec model from scratch.
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Algorithm 1 Selection Module

Input: A set of training users U train, a positive integer
K ≥ 1

Output: A vectorization model v̂, a mapping model f̂
Initialization : Sets of models of vectorizations V and
mappings F with randomly initialized parameters.

1: Divide U train into K (mostly) equally sized parts
U1, . . . , UK .

2: for k = 1, . . . ,K do
3: Set U te

cv := Uk and U tr
cv := U train \ Uk.

4: for v in V do
5: Train vs from {bsu | u ∈ U tr

cv}.
6: Train vt from {btu | u ∈ U tr

cv}.
7: for f in F do
8: Train f from {(vs(bsu), vt(btu)) | u ∈ U tr

cv}.
9: Calculate sk(v, f) = MRRv,f (U

te
cv , U

train).
10: end for
11: end for
12: end for
13: Compute the mean s(v, f) := K−1

∑K
k=1 sk(v, f).

14: Select the best combination as

v̂, f̂ = argmax
v∈V,f∈F

s(v, f).

To evaluate the performance of the similarity function in a
UIL task, we use the mean reciprocal rank (MRR). For UIL,
the MRR depends on the similarity function simv,f , a set of
test users U test, and set of candidate users U candi(⊃ U test)
from whom we search for linked users of test users. Once
simv,f is obtained, for each u ∈ U test, it sorts candi-
date users as u1, . . . , uN ∈ U candi by simv,f (b

s
u, b

t
u1
) ≥

simv,f (b
s
u, b

t
u2
) ≥ · · ·. If btu = bturu

, the rank of u is given
by ru. Then, the MRR is defined as

MRRv,f (U
test, U candi) :=

1

|U test|
∑

u∈Utest

1

ru
.

The notation MRRv,f (U
test, U candi) is used to emphasize

the dependency of v, f, U test, U candi.
By using the MRR, we search for the best combina-

tion of models (v, f) ∈ V × F in the K-fold cross-
validation 10. First, the set of training users U train is di-
vided into K (mostly) equally sized parts U1, . . . , UK . Let
U tr
cv := U train \ Uk and U te

cv := Uk. Second, we train mod-
els v and f from the behavioral histories of U tr

cv and cal-
culate the MRR sk(v, f) := MRRv,f (U

te
cv , U

train). We re-
peat this procedure from k = 1 to K and calculate the mean
s(v, f) := K−1

∑K
k=1 sk(v, f). Finally, we select the mod-

els achieving the highest mean MRR from V × F .
The pseudo-code for searching for the best model combi-

nation is given in Algorithm 1.

Matching Module
In Algorithm 1, we use the MRR to measure the perfor-
mance of the similarity function on UIL. The top-k accuracy

10In our experiments, we set K = 3.

Figure 2: Example of using the Gale-Shapley algorithm.
Matching by highest similarity score links t02 with s001 and
s003 from preferences of s001 and s003 (left graph). Then,
the Gale-Shapley algorithm links t02 with s001 because t02
prefers s001 to s003 and the unmatched user s003 with t03
from her next preference (right graph).

is also widely used in UIL and it is defined by

Acck :=
1

|U test|
∑

u∈Utest

id(ru ≤ k)

where id is the indicator function11 and ru is the rank of u.
In particular, the top-1 accuracy measures the matching

accuracy by the highest similarity score, i.e.,

id(ru = 1) = id

(
u = argmax

u′∈Ucandi

simv,f (b
s
u, b

t
u′)

)
.

However, this matching has the problem of the one-to-one
mapping of users. In other words, two users in domain s is
predicted to link to the same user in domain t, which is a
contradiction in terms in UIL.

To avoid the above contradiction, we apply the Gale-
Shapley algorithm (Gale and Shapley 1962), which outputs
a set of one-to-one pairs of two vertices in a bipartite graph,
to our proposed method (Figure 2). Note that the authors
(Kong, Zhang, and Yu 2013) also applied this algorithm to
link users satisfying the one-to-one mapping constraint.

To apply the Gale-Shapley algorithm to the UIL prob-
lem, we first compute sim(bsu, b

t
u′) for all pairs of users

in u ∈ U test and u′ ∈ U candi. We then obtain the se-
quences (btu1

, btu2
, . . .) and (bsu′

1
, bsu′

2
, . . .) of behavioral his-

tories sorted by the similarity function, respectively. The
Gale-Shapley algorithm takes lists of orderings of prefer-
ences {(btu1

, btu2
, . . .) | u ∈ U test} and {(btu′

1
, bsu′

2
, . . .) |

u′ ∈ U candi} as input, and outputs a set of one-to-one linked
pairs {(bsu, btû) | u ∈ U test}.

The pseudo-code for linking users by using the Gale-
Shapley algorithm is given in Algorithm 2.

We define matching accuracy as

AccGS :=
1

|U test|
∑

u∈Utest

id(u = û)

11For an event E, the indicator function id(E) returns 1 if E is
true; otherwise, 0.
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Algorithm 2 One-to-One Matching Algorithm

Input: A set of test and candidate users U test and U candi,
similarity function simv,f

Output: A set of one-to-one matching pairs {(bsu, btû) | u ∈
U test}

1: Sort the preference (btu1
, btu2

, · · ·) for each u ∈ U test

such that sim(bsu, b
t
u1
) ≥ sim(bsu, b

t
u2
) ≥ · · ·.

2: Sort the preference (bsu′
1
, bsu′

2
, · · ·) for each u′ ∈ U candi

such that sim(bsu′
1
, btu′) ≥ sim(bsu′

2
, btu′) ≥ · · ·.

3: Run the Gale-Shapley algorithm on these preference se-
quences.

4: Obtain {(bsu, btû) | u ∈ U test}.

where û is the predicted user for u from Algorithm 2.
Since Algorithm 2 solves the one-to-one matching problem,
AccGS should be higher than Acc1.

Experiments
Dataset
For our experiments to evaluate our proposed method, we
used the Instacart, Click-Through Rate (CTR), and Amazon
datasets and divided each dataset into two domains s and t
to match the setting in UIL.

• The Instacart dataset12 contains users’ food-purchase his-
tories in one year on an EC site, called Instacart. In this
dataset, the exact timestamp for a purchase is hidden, and
time T is replaced with the number of days that have
passed from the day a user made a purchase for the first
time. Since all users purchase items at T = 0 but a
smaller number still purchase items after T > 300, we
used T = 100 to balance the number of items many users
purchase before and after T . Then, we set domains s and
t as a set of purchase histories before and after T = 100,
respectively.

• The CTR dataset13 contains users’ click logs for on-
line advertisements. In this dataset, we regard device ip,
site id, and site category as column names of users, items,
and categories, respectively. Since the CTR dataset has
logs on whether a site was clicked, we set domains s and
t as a set of clicking and viewing histories, respectively.

• The Amazon dataset14 (Ni, Li, and McAuley 2019) con-
tains users’ reviewing histories on Amazon. We regarded
a reviewed item as an item attached to a user behavioral
history and used “Books” and “Kindle Store” data of “5-
core in Small subsets for experimentation” as domain s
and t, respectively.

According to (Khan, Ibrahim, and Ghani 2017), who con-
ducted a survey study of cross-domain recommendation, the
difference in domains are classified into several levels. Us-
ing the notions introduced in that paper, the Instacart, CTR,

12https://www.kaggle.com/c/instacart-market-basket-
analysis/data

13https://www.kaggle.com/c/avazu-ctr-prediction/data
14https://nijianmo.github.io/amazon/index.html

and Amazon datasets correspond to reproducing situations
of domain difference in the levels of time, system, and item,
respectively. Although we treat two user datasets divided
from one ground-truth dataset on the same platform as two
domains for evaluation, these datasets are naturally seen as
ones from different platforms; for example, online viewing
ads and offline interacting histories (CTR) and purchase his-
tories on different real stores (Amazon). In real-world appli-
cations, the settings of the CTR and Amazon datasets appear
as tasks of measuring the effectiveness of advertising and
cross-domain recommendation, respectively.

Number of Users We fixed the number of training and test
users as 5, 000 and 500, respectively, for all three datasets.
To guarantee the quality of users, we imposed a restriction
that a training user should have more than 50 items in both
domains and prepared the training data U train with a set of
5, 000 of such users randomly selected from linked users.
Similar to the training data, we prepared the test data U test

with a set of users who had more than 50 items in domain
s 15. The maximum number of candidate users U t \ U train

is shown in the Candidates column in Table 2.

Observations To analyze datasets, we calculate the sim-
ilarities of two domains by the Jaccard similarity, which
measures the similarity between two sets A and B as
Jac(A,B) := |A ∩ B|/|A ∪ B|. To be precise, we cal-
culate these similarities on the training dataset, that is, the
Jaccard similarities for items and categories were calculated
as Jac(Is,train, It,train) and Jac(Cs,train, Ct,train) where
Itrain and Ctrain are sets of all items and categories of
training users, respectively, and the values are listed in the
Jac(D) rows in Table 2. As Jac(bsu, b

t
u) can also be calculated

for each training user u ∈ U train, the average and stan-
dard deviation of the Jaccard similarities for training users
are listed in the Jac(U-inter) rows in Table 2. If Jac(U-inter)
is high, it is considered to easily link users because users
show similar behaviors across domains. We also calculated
Jz := {Jac(bzu, bzu′) | u 6= u′ ∈ Uz} for each domain
z ∈ {s, t} and listed the mean and standard deviation of
Jz in the Jac(U-z) rows in Table 2. If Jac(U-t) is high, it is
considered difficult to identify the correct user in domain t
because there are many similar users in domain t who are
linked to the target user in domain s.

We define the linkability by Jac(U-inter) and identifiabil-
ity by 1 minus the mean of Jac(U-s) and Jac(U-t). Figure 3
illustrates the relations among datasets from the viewpoint
of the linkability and the identifiability.

From Table 2 and Figure 3, we characterize each dataset
as follows.

• The Instacart dataset had both higher linkability and iden-
tifiability in terms of items. The score of the user-wise
inter-domain similarity Jac(U-inter) of items was 0.25 ±
0.1, indicates most users bought the same items before
and after T .

15In this situation, the behaviors of any test users in the domain
t are unknown; thus, any assumptions cannot be imposed on test
users on domain t.
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Instacart CTR Amazon
Item

s 28,356 1,907 83,423
t 30,338 2,749 209,762

Jac(D) 0.67 0.69 0
Jac(U-inter) 0.25±0.1 0.48±0.17 0

Jac(U-s) 0.02±0.02 0.17±0.174 <0.01
Jac(U-t) 0.02±0.02 0.15±0.12 <0.01

Category
s 134 1,295 15
t 134 1,823 88

Jac(D) 1 0.71 0.17
Jac(U-inter) 0.5±0.1 0.49±0.1 0.54±0.17

Jac(U-s) 0.25±0.08 0.19±0.14 0.70±0.17
Jac(U-t) 0.28±0.09 0.16±0.12 0.64±0.17

Candidates 130,974 6,729,486 1,856,344

Table 2: Summaries of datasets. Entries in the s and t rows
indicate the number of items and categories in the training
dataset.

Figure 3: The linkability and identifiability in terms of items
for each dataset.

• The CTR dataset had lower identifiability in terms of
items. Even though bsu ⊃ btu for all users u from the con-
struction, Jac(U-inter) was almost half, which indicates
most users did not click half the advertisements.

• The Amazon dataset had lower linkability in terms of
items because items in two domains were completely dis-
jointed.

• All datasets had higher linkability and lower identifiabil-
ity in terms of categories.

We also conducted an additional experiment about the
number of behaviors of test users. If |bsu| ≈ |btu|, the dataset
is considered to have a bias in terms of the number of be-
haviors 16. We calculated the ratio |bsu|/|btu| for u ∈ U test.

16In such a situation, a user who purchased m items in domain
s and a user who purchased around m items in domain t are likely
to be linked regardless of the contents of items. This analysis is
inspired by the work (Goga et al. 2015), which found out that users

Figure 4: The histogram of ratio |bsu|/|btu| (truncated over
10). Each value m± s below the histogram means the mean
and standard deviation of the histogram. Regarding the In-
stacart dataset, although the mean is indeed close to 1 be-
cause we set T = 100 to balance the number of items many
users purchase before and after T , the standard deviation is
large.

Remember that |bsu| ≥ 50 to guarantee the quality of test
users and there is no restriction on |btu|. From Figure 4, it is
observed that any datasets do not have a strong peak; hence,
we conclude that our datasets have no bias in terms of the
number of behaviors.

Results
Main result Table 3 indicates the selected combination of
models from using our proposed method, number of can-
didate users U candi, MRR, matching accuracy from using
Algorithm 2, top-k accuracies (k = 1, 5, 10, 50) on the In-
stacart, CTR, and Amazon datasets.

We first discuss the case of 10, 000 candidate users to
evaluate each result in a fair situation in terms of the num-
ber of users 17. The matching accuracies (AccGS) for the In-
stacart, CTR, and Amazon datasets were 92.2, 54.0, 86.8%,
respectively, which suggests that our proposed method suc-
cessfully linked users with high accuracy. Regarding the
CTR dataset, which corresponds to a real-world task of mea-
suring the effectiveness of advertising, our method could
link users with a matching accuracy of 54%, which is sur-
prising because Cookie Sync, a UIL method using HTTP
cookie, has been reported to link users with a matching ac-
curacy of 62 − 73% (Englehardt and Narayanan 2016; Pa-
padopoulos, Kourtellis, and Markatos 2019). Remember that
the 3rd party cookie is being restricted and our proposed
method does not use cookies. The selection module also suc-
cessfully created a similarity function suitable for each tar-
get dataset since selected models differed on each dataset.
It is remarkable that the matching accuracy on the Ama-
zon dataset was 86.8%, while item sets of this dataset had
no intersection, as shown in Table 2. The gap between non-
overlapping domains is considered closed by the mapping
module induced by the regression model flinear. Comparing
AccGS with Acc1, we confirmed that the one-to-one map-
ping by using Algorithm 2 improved matching accuracy.

who filled out their profiles in domain s were likely to fill out them
in domain t and easily to be linked.

17Then, the chance rate of matching accuracy is 0.01%, which
is the worst case. Note also that MRRv,f (U

test, Ucandi,1) ≥
MRRv,f (U

test, Ucandi,2) if U test ⊂ Ucandi,1 ⊂ Ucandi,2.
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Dataset Selected Models Candidate users MRR AccGS Acc1 Acc5 Acc10 Acc50
Instacart (vconcat, fid) 10,000 93.4 92.2 92.0 95.0 95.8 98.2

130,974 87.3 84.2 84.2 90.8 92.0 94.6
CTR (vbm25, fid) 10,000 56.1 54.0 50.4 61.6 69.0 79.2

6,729,486 32.3 29.2 29.2 36.4 38.2 43.6
Amazon (vbm25, flinear) 10,000 76.2 86.8 65.0 91.0 95.6 97.6

1,856,344 12.8 4.0 2.8 20.6 36.2 72.8

Table 3: Results of our experiments. The MRR and accuracies Acc were listed by percentage value (%).

For the maximum number of candidate users U candi =
U t \U train, the matching accuracy decreased. However, the
decrease rates were moderate (92.2 → 84.2% for the In-
stacart dataset and 54.0 → 29.2% for the CTR dataset) al-
though the number of candidate users in the Instacart and
CTR datasets became over 13 and 672 times larger, respec-
tively. Unfortunately the matching accuracy on the Amazon
dataset decreased drastically (86.8→ 4.0%), but the top-50
accuracy remained high (97.6→ 72.8%).

Ablation Study In this subsection, we focus on models
that were not selected with the selection module.

As seen in Table 3, we observed that different com-
binations of (v, f) achieved the highest MRR depending
on datasets, which indicates that the selection module of
our method always selects the best combinations of mod-
els (v, f) depending on the dataset. In fact, realizations of
(vbm25, fid) and (vtfidf , fid) correspond to UIL methods
in (Iofciu et al. 2011) and (Goga et al. 2013), respectively;
hence, our proposed method which generalizes those meth-
ods always shows better performances as far as the selection
module prevents overfitting.

Figure 5 illustrates the average MRRs s(v, f) in the
cross validation (Algorithm 1) of selected combinations
of vectorization and mapping models. Each axis rep-
resents (whether a behavioral history is seen as a se-
quence of items or categories)-(which vectorization is
used for a behavioral history)-(how to reduce the di-
mension of the vector)@(which mapping model is used),
e.g., item-concat-none@Identity means (vconcat, fid) and
category-tfidf-nmf 10@MLPRegressor 2 means (NMF10 ◦
C ◦ vtfidf , f2nn). In each bar, the top 5 values are sorted
in descending order from the highest MRR, middle 7 values
were models achieving the highest MRR where one model
was fixed as category dimension, NMF, Doc2Vec, linear
ridge, kernel ridge, neural network, and identity map, and
the bottom 2 values were the combinations of (Iofciu et al.
2011) and (Goga et al. 2013).

Among the three datasets, item dimensional vectoriza-
tions, that is, item-∗-none (∗ ∈ {bow, tfidf, bm25 concat})
patterns, obtained higher MRR than the other combinations
of models (Nos. 1 - 5 in Table 5). The methods where one
model was fixed as category dimension, NMF, Doc2Vec,
kernel ridge, and neural network linked users at a certain
degree of accuracy, but the values were lower than those of
item dimension. The linear regression also did not outper-
form the identity map on the Instacart and CTR datasets, but
significant differences were not observed. The identity map

Method Instacart CTR Amazon
Our method 99.49 62.57 54.49

(Iofciu et al. 2011) 99.42 62.57 0.42
(Goga et al. 2013) 98.04 37.14 0.42

Table 4: Details of average MRRs (%).

did not work on the Amazon dataset because item sets of
this dataset had no intersections. With respect to regression
models, linear ridge showed better performances in this or-
der flinear > fkernel > f2nn(> f3nn). It was interesting to
observe that all selected combinations of models were un-
complicated, whereas we initially expected that deep learn-
ing based models (e.g., a modification of vdoc2vec and fnn)
linked users with high accuracy, as is the case that some do-
main specific state-of-the-art UIL methods use deep learn-
ing (Zhou et al. 2018; Feng et al. 2019). The selection mod-
ule also helped prevent these prejudices by searching for the
best models on each dataset.

Table 4 indicates the results from comparing our pro-
posed method with conventional methods of (Iofciu et al.
2011) and (Goga et al. 2013). Our method showed the high-
est MRRs than the other methods. Regarding the Amazon
dataset, the score of our method was 54.49 while the meth-
ods of (Iofciu et al. 2011; Goga et al. 2013) using overlapped
items in both domains could not link users.

Related Works
User Identity Linkage The UIL problem has been stud-
ied in a variety of fields, and the methods differ depend-
ing on the type of data associated with users. There are ba-
sically three types of data: user-profile, user-network, and
user-content, as classified in a survey study (Shu et al. 2016).
Typically, user-profile information corresponds to username,
biography, education, and gender; user-network information
corresponds to the social graphs of users, such as the fol-
lower/following relationships in Twitter; and user-content
information corresponds to sentences, images, and activity
logs. UIL methods have been proposed, for example, for
when the type of data is given in the form of only user-profile
information (Zafarani and Liu 2009, 2013; Mu et al. 2016),
only user-network information (Man et al. 2016; Zhou et al.
2018; Zhong et al. 2018; Zhou et al. 2018), and combina-
tions of user- profile, network, and content information (Liu
et al. 2014; Hadgu and Gundam 2020).
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Figure 5: Average MRRs (%) in Algorithm 1

De-anonymization While most studies on UIL have de-
veloped methods for receiving the benefits of linking
users, studies on de-anonymization (Frankowski et al. 2006;
Narayanan and Shmatikov 2008; Gambs, Killijian, and del
Prado Cortez 2014; Perez, Musolesi, and Stringhini 2018)
warn us that our accounts are identified even if our informa-
tion is anonymized to protect against linking users through
malicious attacks. Although the aims are different in terms
of benefits and warnings, algorithms for de-anonymization
are similar to those for UIL.

User Identity Linkage for Behaviors Data in our prob-
lem setting, which is given as a user behavioral history, are
categorized as user-content information. Many methods for
user-content information focus on user trajectory data (Goga
et al. 2013; Kong, Zhang, and Yu 2013; Riederer et al. 2016;
Feng et al. 2019), that is, a user action of visiting a place.
Unlike our problem setting, most methods require domain-
specific attributes, e.g., the geographic coordinate system
(latitude and longitude), grids, and zip-codes; hence, they
cannot be applied to our problem.

Domain-independent UIL methods for behavioral histo-
ries have been propose in (Iofciu et al. 2011) and the TFIDF
version of (Goga et al. 2013). As the authors (Iofciu et al.
2011) explained, the tag ”tools” in one social network often
appear while the tag rarely appeared in the other social net-
work, the authors proposed to train the BM25 on each social
network independently and aggregated tags to arrange for
the dimensions to be aligned. While they succeeded in link-
ing users on datasets by focusing on the difference in tag
frequency, they implicitly assumed that multiple tags should
appear in both social networks.

Conclusion
We proposed a novel method for user identity linkage with
which behavioral patterns of the same user can be different
on each domain and there is no user demographics. Our pro-
posed method consists of a vectorization module to extract
user intrinsic features and a mapping module to bridge the
gap between two different behavioral patterns of the same
user. Among a variety of such models, our method automati-
cally selects the best combination suitable for a target dataset
in a cross-validation manner. In our experiments, test users
in the real-world datasets of the Instacart, CTR, and Amazon
were correctly linked with 92.2, 54.0, 86.8% matching accu-
racy from 10, 000 candidate users, respectively. The higher
matching accuracy on the Amazon dataset, where two do-
mains had no overlapping, was remarkable, while conven-
tional UIL methods failed to link users.
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