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Abstract

The dissemination of fake news intended to deceive people,
influence public opinion and manipulate social outcomes, has
become a pressing problem on social media. Moreover, in-
formation sharing on social media facilitates diffusion of vi-
ral information cascades. In this work, we focus on under-
standing and leveraging diffusion dynamics of false and legit-
imate contents in order to facilitate network interventions for
fake news mitigation. We analyze real-world Twitter datasets
comprising fake and true news cascades, to understand differ-
ences in diffusion dynamics and user behaviours with regards
to fake and true contents. Based on the analysis, we model
the diffusion as a mixture of Independent Cascade models
(MIC) with parameters θT , θF over the social network graph;
and derive unsupervised inference techniques for parameter
estimation of the diffusion mixture model from observed, un-
labeled cascades. Users influential in the propagation of true
and fake contents are identified using the inferred diffusion
dynamics. Characteristics of the identified influential users
reveal positive correlation between influential users identified
for fake news and their relative appearance in fake news cas-
cades. Identified influential users tend to be related to topics
of more viral information cascades than less viral ones; and
identified fake news influential users have relatively fewer
counts of direct followers, compared to the true news influen-
tial users. Intervention analysis on nodes and edges demon-
strates capacity of the inferred diffusion dynamics in support-
ing network interventions for mitigation.

Introduction
Falsified information, that is generally intended to deceive
people, influence public opinion and manipulate social out-
comes has become a prominent topic of discussion. In 2013,
the World Economic Forum regarded fake news as a ris-
ing global risk in the report entitled ‘Digital Wildfires in
a Hyper-connected World’. Even though deception through
falsified information has existed in the past, the increasing
use and nature of social media, has made the problem much
more intense and difficult to combat.

The risks associated with fake news are more significant
due to the scale and reach of social media; the last decade
itself has seen more than a ten-fold increase in social me-
dia usage (Perrin 2015). The major impacts of fake news
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have been in social, economic and political issues around
the world such as the 2016 US Presidential Elections (All-
cott and Gentzkow 2017). Besides that, misleading stories
discrediting the severity of climate change (Roozenbeek and
van der Linden 2018), and recurrent attempts to promote fear
and confusion during natural disasters (Gupta et al. 2013;
Takayasu et al. 2015) cannot be neglected.

Fake news mitigation has been largely studied from the
perspective of detection using content analysis, social bots
analysis, and analysis of user responses/engagements to the
content on social media (Sharma et al. 2019). As compared
to traditional media, online social media allows decentral-
ized dissemination and sharing of content, that can rapidly
result in viral information cascades, and widespread im-
pact of misinformation. Therefore, research in intervention
strategies to mitigate fake news by monitoring or limiting
such diffusions were developed in (Farajtabar et al. 2017;
Goindani and Neville 2020). Farajtabar et al. derived opti-
mal intervention intensities required at nodes in the network
to accelerate diffusion of true news through external stim-
ulation. However, facilitating network interventions such as
this, requires learning diffusion dynamics of fake and true
contents from observed user engagements. Here, we con-
sider the problem of learning diffusion dynamics from ob-
served, but unlabeled cascades of fake and true news; and
leveraging the inferred dynamics to facilitate network inter-
ventions for fake news mitigation.

Contributions and Outline
In this work, we address the phenomenon of diffusion of
fake and true contents on social media, using two real-world
datasets comprising false and legitimate content cascades
collected from user engagements on Twitter. Based on user
behaviours in fake and true cascades, we propose a diffu-
sion mixture model (MIC) with parameters θT , θF as a gen-
erative model of the diffusion process; and derive unsuper-
vised inference techniques for parameter estimation. Unsu-
pervised estimation is important in this domain, since the
cost of acquiring labeled (fake/true) cascades is higher due
to reliance on expert verification. Using the inferred param-
eters, we evaluate the role of different users and the network
in the propagation of misinformation, and provide analysis
for network interventions. The following is an outline of the
contributions:
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• We investigate the nature of user behaviours in response
to fake and true news on Twitter datasets. Our findings
indicate statistical differences in diffusion patterns of fake
and true news with non-homogeneous sharing behaviours.

• We propose an unsupervised method to learn the diffusion
dynamics from observed, unlabeled information cascades,
under the diffusion mixture model MIC, and are the first
to examine learnability guarantees in the same.

• We evaluate if fake and true cascades are separable using
inferred dynamics, compared to unsupervised clustering
methods based on text, user and propagation features.

• We examine characteristics of users identified as influen-
tial in spreading legitimate and fake contents using the in-
ferred diffusion dynamics. Inferred influential fake news
users have positive correlation with relative appearance
in fake cascades; have relatively fewer counts of direct
followers compared to influential true news users; and in-
ferred influential users tend to have engagements in topics
of more viral/larger cascades, than smaller ones.

• Intervention analysis demonstrates reduction in fake cas-
cade size compared to other unsupervised methods. The
learned diffusion dynamics are useful towards actively
limiting or mitigating misinformation.

Related Work
Fake news mitigation is largely addressed as a detection
(classification) task in existing literature. Sharma et al.
(2019) classified approaches for fake news detection based
on the features used for classification. Broadly, the meth-
ods focus on content or writing style analysis (Wang et al.
2014b; Khattar et al. 2019), source or bot analysis (Ferrara
et al. 2016), and features from user responses/engagements
on social media (Qian et al. 2018; Ma, Gao, and Wong
2017). The features from user responses are found to be in-
formative and complementary to content or source analysis.
In this work, our focus is on information diffusion on social
media, to understand how fake and true contents are prop-
agated, and learn a generative model of propagation. Fara-
jtabar et al.; Goindani and Neville (2017; 2020) studied in-
tervention strategies based on reinforcement learning for ac-
celerating or limiting diffusions. However, their focus is not
on learning diffusion dynamics from observations; and they
assume random or known diffusion parameters. Our work
on learning diffusion dynamics is therefore complementary
to it, and supports different intervention strategies including
these.

Network inference refers to the problem of inferring the
diffusion process, under a mathematical model of propaga-
tion, from observed information cascades. It is studied under
different models of propagation (Gomez-Rodriguez, Bal-
duzzi, and Schölkopf 2011; Gomez-Rodriguez, Leskovec,
and Krause 2012; Zhou, Zha, and Song 2013). The ob-
jective of network inference is to estimate the parameters
of a diffusion model from observed information cascades;
which might entail inferring the edges of the diffusion net-
work, or both the edges and the strength of influence (or
weights) on the edges. For instance, in the Independent Cas-

(a) True News Cascade (b) Fake News Cascade

Figure 1: Example of diffusion cascades on Twitter (# tweets
per day) for (a) emergency landing of an airliner in Hudson
river in 2009 (b) information suggesting that the combina-
tion of Coke and Mentos can lead to death in 2006.

cade model (Kempe, Kleinberg, and Tardos 2003), for every
pair of users u and v, there is a parameter pu,v which repre-
sents the probability with which u activates v, that is infor-
mation successfully propagates from u to v. In other words
it is the strength of influence between u and v. In the multi-
variate Hawkes process model, parameters αu,v ≥ 0 model
mutually-exciting nature of network activities, with condi-
tional intensity functions capturing the instantaneous rate of
future events conditioned on past events.

Most works in network inference do not address hetero-
geneity in strength of influence between a pair of users.
Furthermore, none of them examine whether the influence
is heterogeneous with regards to legitimate and fake con-
tents. Earlier works only considered topic or time specific
networks (Yang and Zha 2013; Wang et al. 2014a; He
and Liu 2017); such as MultiCascades (He and Liu 2017)
wherein heterogeneous diffusion models are tied together
with joint network priors, and inferred from observed but la-
beled cascades. Our method considers a heterogeneous dif-
fusion model for true and fake news propagation, and in con-
trast, we propose an unsupervised method for inference that
does not require labeled cascades.

Diffusion Mixture Model
Information propagation or diffusion is widely studied us-
ing probabilistic models, in domains related to viral mar-
keting (Domingos and Richardson 2001), and disease and
epidemics (Newman 2002). Diffusion models provide a way
to solve important computational problems in each domain.
For instance, Domingos and Richardson addressed an im-
portant question in viral marketing, that is - to trigger a
large cascade of product adoptions, who are the most influ-
ential users to target in ad campaigns? Such problems can
be efficiently solved using submodular optimization under
certain diffusion models such as the Independent Cascade
model (Kempe, Kleinberg, and Tardos 2003). The choice
of model dictates how efficient it is to optimize for impor-
tant problems such as this. It also affects whether it is pos-
sible to derive analytical solutions for learning algorithms
in order to infer the parameters of the diffusion model from
real observed cascades. Here, we introduce the Independent
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Figure 2: Diffusion mixture model (MIC).

Cascade Model, followed by our extension of the diffusion
model to legitimate and fake cascades.

Cascade A cascade is defined as a time-ordered sequence
of user responses/ engagements that a piece of information
(content) receives, when it is circulated on a social network.
It can be labeled as a true or fake news cascade, in accor-
dance with the veracity of the content (e.g. Fig. 1).

Independent Cascade (IC) Model First, we discuss the
formulation of the Independent Cascade Model studied in
Kempe, Kleinberg, and Tardos. G = (V,E) is the directed
graph with n = |V | number of nodes (users) and m = |E|
edges. A node is activated in an information cascade, if
its user has an engagement with the content being propa-
gated. Each edge (u, v) ∈ E is associated with a parameter
pu,v ∈ [0, 1]. The diffusion process starts with an initial set
of seed nodes assumed to be activated at the first timestep.
At each following time step of the diffusion process, a node
u activated at the previous time step t, independently makes
a single activation attempt on each inactive neighbor v. The
activation succeeds with probability pu,v and a node once
activated remains activated in the diffusion process. The in-
fluence function σ is a function of the seed set S and σθ(S)
is defined as the expected number of nodes activated by
the end of the diffusion process starting at seeds S, where
θ = {pu,v|(u, v) ∈ E} refers to the parameter set.

Mixture of Independent Cascade (MIC)
Given a social networkG = (V,E), we extend the IC model
to include the diffusion of both legitimate (true) and mis-
information (fake) contents using separate sets of parame-
ters θT = {pTuv|(u, v) ∈ E} and θF = {pFuv|(u, v) ∈ E},
i.e., both types of contents share the same network skeleton
G but with separate parameters for activation probabilities
on the edges. Based on this parameterization (illustrated in
Fig 2), we study the inference of the proposed diffusion mix-
ture model parameters from observed, unlabeled cascades.

First, we formally define the inference problem for the
proposed diffusion mixture model, formulated as a mix-
ture of independent cascade models (MIC). We assume that
the observed set of diffusion cascades C contains a mix-
ture of unlabeled true and fake cascades. We study whether
the diffusion process of true and fake contents can be
learned directly from C, without requiring cascade labels

∈ {true/fake}. This makes the inference problem more chal-
lenging, but practically more useful when collection of la-
beled cascades requires expert human verification.

Problem Formulation We assume πT is the probability
with which a true news cascade emerges, and πF = 1− πT
is the probability with which a fake news cascade emerges.
Let π = [πT , πF ] be the mixing weights of the diffusion
mixture model, then each cascade ci ∈ C is assumed to be
generated independently under MIC as follows:

1. Generated seed set S ⊆ V is sampled from some un-
known distribution P over V .

2. Generated cascade corresponds to true or fake news based
on the outcome of the random variable hi ∼ Bernoulli
(πT ); Cascade labels and mixing weights π unobserved.

3. Generated cascade is drawn from the diffusion mixture
model with ci ∼ IC(θT ) if hi = 1 and ci ∼ IC(θF )
otherwise; diffusion parameters θT , θF are unobserved.

The objective of the network inference problem thereby is to
infer θT and θF and π from unlabeled cascades C.

Real Datasets and Diffusion Analysis
In the previous section, we proposed the diffusion mixture
model with separate sets of parameters θT = {pTuv|(u, v) ∈
E} and θF = {pFuv|(u, v) ∈ E} for legitimate and fake con-
tents. In this section we first answer two important questions
• Are the diffusion patterns of fake cascades significantly

different from true cascades?
• Are user behaviours with respect to fake and true contents

non-homogeneous?
We first analyze the diffusion patterns and investigate user

behaviours in fake and true cascades. Significant differences
between fake and true cascades would mean that the diffu-
sion of fake and true contents are non-homogeneous with
respect to user behaviours and should be modeled with sep-
arate parameters θT and θF . For the purpose of our analysis,
we consider real world Twitter datasets described in the fol-
lowing section, followed by statistical hypothesis testing to
analyze their diffusion characteristics. A few earlier studies
such as (Kwon et al. 2013; Castillo, Mendoza, and Poblete
2011; Liu et al. 2017) identified which features of a set of
hand-crafted features were most discriminative in training
classifiers for detecting fake from legitimate contents. There
findings indicate that features with high predictive power in-
clude - fraction of information flow from low to high-degree
nodes which is higher for fake contents, multiple periodic
spikes that are particular to fake contents, and greater depth
to breadth ratio in the diffusion trees of fake cascades. In our
analysis, we consider temporal and structural differences
in diffusion cascades of fake/true news that investigate how
user behaviours towards different types of contents differ.

Real-World Datasets
We utilize two publically available Twitter datasets which
we refer to as Twitter-1 (Kwon, Cha, and Jung 2016)1 and

1https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi\
%3A10.7910\%2FDVN\%2FBFGAVZ
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Dataset Twitter-1 Twitter-2

# Users 117,824 233,719
# Engagements 192,350 529,391
# Fake Cascades 60 498
# True Cascades 51 494
Avg T length per cascade (hr) 8,177 1,983
Avg T interval per cascade (hr) 80 65
Avg # engagements in cascade 1,733 597

Table 1: Data statistics for Twitter-1 and Twitter-2.

Twitter-2 (Ma et al. 2016) 2. Twitter-1 was collected dur-
ing 2006-2009 and Twitter-2 from March-Dec 2015. In both
datasets, topics (contents) are identified as false or legitimate
from fact-checking websites like Snopes, and corresponding
engagements on Twitter are obtained by keyword search re-
lated to the content. The dataset statistics are summarized in
Table 1. For analysis we retain all users, and for inference,
we retain users that have at least five engagements in the cas-
cade set, resulting effectively in 3K and 7K users in the two
datasets. The former contains 111 cascades and the later 992
cascades; with Twitter-1 cascades of average time length of
8177 hrs and Twitter-2 of 1983 hrs.

The datasets contain cascades in the form of time-stamped
sequences of user engagements, for example, cascade Ci =
[(u1, t1), (u2, t2), . . . ] where uj , tj corresponds to the en-
gagement of user uj at time stamp tj with content corre-
sponding to cascade Ci. For temporal diffusion analysis, we
report statistical tests on each dataset based on the observed
cascades. For structural diffusion analysis, we consider only
Twitter-1, since it additionally provides follower links from
which we can construct retweet structure, similar to (Kwon
et al. 2013). The follower graph represents whether user A
follows user B. Diffusion of a content from B to A can oc-
cur if A follows B, and B posts before A in that cascade.
Therefore, we can construct the retweet graph of each cas-
cade, from the cascade engagement sequence and the fol-
lower graph. In case A has multiple parents, the edge from
the latest parent is retained.

Studying User Behaviours in Fake/True Cascades
In this subsection, we study the diffusion patterns and inves-
tigate how these patterns reflect user behaviours. We con-
duct statistical tests to determine temporal and structural
characteristics of fake and true cascades. First, we perform
a two-sample t-test to verify whether the average time de-
lay between engagements (posts) is higher in fake cascades
v/s in true cascades. The first group of samples S1 consists
of the fake cascades in the datasets. The second group S2

comprises the true cascades. The log-transform of the data
is normally distributed. The null hypothesis is that there
is no significant difference between the average time de-
lay between engagements in cascades from the two groups
H0 : µf = µt. The alternate hypothesis is the average

2https://www.dropbox.com/s/46r50ctrfa0ur1o/rumdect.zip?dl=
0

Temporal Structural

t-statistic p-value z-score p-value

Twitter-1 4.9975 ≤ .00001 1.87577 .03005
Twitter-2 12.760 ≤ .00001 NA NA

Table 2: Hypothesis testing results (p-values) to verify that
average time between engagements is higher in fake news
cascades than true news cascades (temporal); and to verify
that ratio of # of connected components to total engagements
is higher in fake news cascades (structural).
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Figure 3: Statistical tests distributions (Twitter-1).

time delay between engagements is higher for fake cascades
H1 : µf > µt. The p-value is shown in Table 2. The null
hypothesis is rejected at significance level α = 0.01 which
suggests that there is statistically significant difference be-
tween the temporal characteristics of fake and true cascades.

Second, we perform statistical significance test to exam-
ine differences in structural characteristics of the cascades.
We compute the number of connected components (cc) in
the retweet graph of each cascade, constructed as mentioned
in the previous subsection. Then we define the proportion of
connected components in a cascade r = number (cc)

number of engagements .
The null hypothesis is that there is no significant difference
in the proportion of connected components in the two groups
of fake and true cascades H0 : rf = rt. The alternate hy-
pothesis is that it is higher for fake cascades H1 : rf > rt.
The data is not normally distributed, so we compute the
non-parametric Mann–Whitney U test and report the z-score
and p-value in Table 2. The null hypothesis is rejected at
α = 0.05 which suggests that the proportion of connected
components in fake cascades is higher than in true cascades.
Both statistical tests confirm that diffusion patterns differ
based on the type of cascade and the user behaviours towards
fake and true contents are non-homogeneous. The distribu-
tion of average time between engagements and proportion of
connected components is provided in Figure 3 for Twitter-
1. The distribution of avg. time between engagements for
Twitter-2 cascades is similar to Twitter-1, and structural fol-
lower graph is unavailable in Twitter-2; therefore omitted.
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Unsupervised Diffusion Network Inference
In this section, we consider a reduction of the problem of
learning the diffusion mixture under the MIC model to the
problem of learning a mixture of product distributions over a
discrete domain; followed by an EM algorithm for parameter
estimation of the mixture model.

PAC-Learnability Reduction
Each edge e = (u, v) in the diffusion model is associated
with the parameter pTe and pFe as stated earlier. Each true
content cascade can be alternately represented in terms of
a ‘live-edge’ graph, such that each edge e ∈ E is inde-
pendently declared as live with probability pTe and included
in the graph or blocked with probability 1 − pTe and not
included in the graph. The cascade is then defined by the
reachability from seed set S over this graph i.e. a node is ac-
tivated in the cascade iff there is a directed live edges path
from S to the node. Similarly, for fake content cascades.
Therefore, each edge can be represented by a random vari-
able xTe and xFe indicating its live-edge status under the dif-
fusion mixture model, i.e. representing whether the edge e
is live or blocked in a given diffusion cascade. Naturally,

xTe ∼ Bernoulli (pTe ) and xFe ∼ Bernoulli (pFe )

Let X be a vector of random variables indicating live-
edge status of each edge under the mixture diffusion model.
According to the generative process of the diffusion mix-
ture model, X is a mixture of k = 2 components XT and
XF with mixing weights π. Therefore,XT is then a discrete
distribution over {0, 1}m where m is the number of edges
in G and all the xTe are independent. Therefore X which
is the mixture distribution of XT and XF is simply a mix-
ture of discrete product distributions with mixing weights π.
The problem is therefore reduced to learning a mixture of
discrete product distributions given the live-edge graphs of
the observed cascades. Mixture distributions are more gener-
ally used in recommendations systems, medicine and other
applications (Feldman, O’Donnell, and Servedio 2008) and
different algorithms can be used to learn the parameters of
the mixture distributions, which in our case are pTe , p

F
e for

all edges in G and mixing weights π by definition.
Theorem 1. Given a mixture of unlabeled cascades with
completely observed live-edge graphs, with diffusion param-
eters θM = {pMe |e ∈ E} with M ∈ {T, F} and any
ε, δ > 0, with mixing weight πM ≥ ε

mn we can recover
in time poly (m2n/ε) · log (1/δ), a list of poly (m2n/ε)
many candidates, at least one of which satisfies the follow-
ing bound on the influence function σθM (S) and its estimate
σ̂θM (S) learned from the observed cascades for seed set S
drawn from any distribution P over nodes in G,

PS∼P(|σ̂θM (S)− σθM (S)| > ε) ≤ δ

with sample complexity O
(
(n

4m8

ε4 )3 ln m
δ

)
(Proof in Appx).

Parameter Estimation
We can estimate the parameters of the diffusion mixture
model θT , θF and mixing weights π from unlabeled cas-
cades, by deriving a maximum likelihood based estimation

procedure. We assume that the observed cascades record the
sequence of user engagements, and the order or timestamps
of user engagements (activations) are known.

Notation We use a general notation M ∈ {T, F} to de-
note a component in the mixture model, wherein {T, F}
refer to the true and fake components of the k = 2 com-
ponent mixture model MIC. θT , θF are the set of edge in-
fluence parameters for each component IC model in the dif-
fusion mixture model with mixing weights π = [πT , πF ].
That is for graph G = (V,E), θT = {pTuv|u, v ∈ E} and
θF = {pFuv|u, v ∈ E}. We use the notation s to specify an
observed sample cascade belonging to the set of cascadesC.
We define Cs(t) as the set of nodes activated at time step t
in cascade s and ts(v) as the time of activation of node v
in cascade s. Also, we define Ds(t) as all activated nodes
up to and including time t. Let pMu,v and p̂Mu,v as the actual
and estimated edge activation parameter in component M .
In addition, we represent γMs as the posterior probability
that cascade s is generated under diffusion component M
i.e. γMs = P (Zs = M ; θ) where Zs indicates the compo-
nent to which the cascade s belongs and θ is the complete
set of parameters θT , θF , and π. Applying Bayes’ rule,

γMs = P (Zs =M ; θ) =
πMP (s; θM )∑k
i=1 π

iP (s; θi)
(1)

Let Pa(v) represent parents of v in G that is, u ∈ Pa(v)
if and only if (u, v) ∈ E. Similarly, Ch(v) is the children of
v. Let pMs (v) be the probability with which v is activated in
cascade s under diffusion component M . By the definition
of the IC model, v is activated at time step ts(v) in cascade
s iff at least one activation attempt of an active parent of v
in s is successful. Therefore,

pMs (v) = 1−
∏

u∈Pa(v)∩Cs(ts(v)−1)

(1− pMu,v) (2)

In addition, let Au,v ⊆ C be the subset of cascades in which
both u and v are activated and ts(v) = ts(u)+1 andBu,v be
the subset of cascades in which u is activated at some time t
and v is not activated up to and including time t+ 1.

Derivation and Algorithm We derive an expectation
maximization based maximum likelihood estimation proce-
dure. The joint log probability of cascade labels and cas-
cades under the mixture model is,

logP (C,Z; θ) =
∑
s∈C

∑
M∈k

1{Zs=M} log(π
MP (s; θM ))

Our goal is to maximize the expected joint log probability,

Q = E [logP (C,Z; θ)]

=
∑
s∈C

∑
M∈k

γMs log πM +
∑
s∈C

∑
M∈k

γMs logP (s; θM )

The maximization of Q with respect to π subject to con-
straints

∑
M πM = 1, πM ≥ 0, we get, πM = 1

|C|
∑
s γ

M
s

from the first term of Q containing πM . Now to update the
estimates for edge probabilities pMu,v , we need to maximize
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the second term of Q by differentiating Q with respect to
pMu,v . Let p̂Mu,v be the current estimates of edge influence pa-
rameters of edge (u, v) for component M . As stated in the
notations, Cs(t) is the set of activated nodes at times step t
in cascade s and ts(v) is the time of activation of node v in
cascade s. pMs (v) is the probability with which v is activated
in cascade s under diffusion model M . The second term of
Q involves the product terms of Equation 2 which cannot
be solved analytically. However, based on the definition of
the IC model, it is possible to approximate Q based on the
current estimates of the parameters (Gruhl et al. 2004; Saito,
Nakano, and Kimura 2008). We utilize the linear approxima-
tion chosen in (Saito, Nakano, and Kimura 2008). Primarily
Q can be decomposed in terms of nodes activated in a cas-
cade and nodes not activated in a cascade. For the second
case of inactive nodes, we will not need any approximation
as the likelihood involves log(1− pMs (v)) which eliminates
the product form of Equation 2. For the first case of active
nodes, the form is complex because we do not know which
active parent was responsible in activating a given node v.
This is because, by the definition of IC, activation attempts
of all parents of v activated at a given time step are arbi-
trarily sequenced. Therefore, following (Saito, Nakano, and
Kimura 2008), we can instead approximate pMs (v) for this

case in terms of
p̂Mu,v

p̂Ms (v)
for every active parent u since - the

probability that v was activated by u should be proportional
to the current estimate p̂Mu,v of the strength of influence of u
on v. Therefore, the second term of Q is as follows, where
X = Cs(t+ 1) ∩ Ch(u) and X ′ = Ch(u) \Ds(t+ 1),∑

s∈C

∑
M∈k

γMs

T−1∑
t=0

∑
u∈Cs(t)

[∑
v∈X

[ p̂Mu,v
p̂Ms (v)

log pMu,v+(
1−

p̂Mu,v
p̂Ms (v)

)
log(1− pMu,v)

]
+
∑
v′∈X′

log(1− pMu,v′)
]

Differentiating the above with respect to pMu,v and setting it
to zero, and considering Pa(v) represents parents of v in
base graph G, Au,v is the subset of samples in which both
u and v are activated and ts(v) = ts(u) + 1 and Bu,v is the
subset of samples in which u is activated at some time t and
v is not activated up to and including time t+ 1 we get,

pMu,v =
1∑

s∈Au,v
γMs +

∑
s∈Bu,v

γMs

∑
s∈Au,v

γMs p̂
M
u,v

pMs (v)

This completes the derivation of the EM procedure with it-
erative updates in E and M-steps shown in Alg 1.

Relaxation Since observed cascades only contain the or-
der of activations or time stamps at which users are activated,
rather than discrete timesteps, and the edges in G are unob-
served; we relax Equation 2 to deal with continuous time and
let pMs (v), the probability that v is active in s under compo-
nentM equal 1−

∏
u∈Cs(ts(v)−W≤τ<ts(v)))(1−p

M
u,v) where

W is a lookback window and hyperparameter of the algo-
rithm. Thus, any u activated inW before tv(s) is considered
a potential parent and influencer (that can activate) v.W can
be set in unit of time or in terms of number of past events.

Algorithm 1 MIC: Diffusion Mixture Parameter Estimation

Input: observed, unlabeled cascades C
Output: estimate θ̂M , π̂M , γMs ; ∀s ∈ C and M ∈ {T, F}

1: π̂T , θ̂T , θ̂F ← init ∈ [0, 1]; π̂F ← 1− π̂T .
2: while not converged do
3: // E-Step
4: γMs ←

π̂MP (s;θ̂M )∑k
i=1 π̂

iP (s;θ̂i)

5: pMs (v)← 1−
∏
u∈Pa(v) ∩ Cs(ts(v)−1)(1− p̂

M
u,v)

6: // M-step
7: π̂M ← 1

|C|
∑
s∈C γ

M
s ;

8: p̂Mu,v ← 1∑
s∈Au,v

γM
s +

∑
s∈Bu,v

γM
s

∑
s∈Au,v

γM
s p̂Mu,v

pMs (v)

Experimental Analysis on Real Datasets
Using the parameter estimation algorithm, we infer diffu-
sion mixture MIC parameters for the real Twitter datasets
described earlier. From the inferred parameters, we evaluate
if fake and true cascades are separable based on inferred dif-
fusion dynamics, compared to unsupervised baseline meth-
ods for clustering cascades. Next, we identify users that are
influential in the propagation of true and fake contents, from
the inferred parameters and learned diffusion model; and in-
vestigate their characteristic features from the data. Lastly,
we demonstrate node and edge interventions based on the
inferred diffusion dynamics and show reduction in fake cas-
cade size compared to other baselines.

Clustering Cascades
From the inferred parameters, we can determine if an ob-
served cascade is more likely to be considered fake or true
based on the posterior probability of the cascade under each
component of the mixture MIC. The predicted component
for each cascade is thus obtained as argmaxM γMs . This
will result in two clusters of cascades. Each cluster is as-
signed fake or true label based on a held out one-fifth set of
cascades with known labels. In Table 3, we evaluate if the
fake and true cascades in the datasets are separable based
on inferred diffusion dynamics, compared to unsupervised
baseline methods for clustering cascades. The implemented
baselines are as follows - TruthFinder (TF) (Yin, Han, and
Philip 2008) is a credibility propagation algorithm that ex-
ploits conflicting sentiments between user comments to the
same content. StanceEval (SE) exploits the average senti-
ment of users tweet texts in a cascade as a measure of its
type; as it is found that fake cascades tend to elicit negative
and questioning responses (Qian et al. 2018; Zhao, Resnick,
and Mei 2015). K-Means (KM) clustering based on tempo-
ral and propagation features identified in (Ma et al. 2015;
Kwon et al. 2013; Castillo, Mendoza, and Poblete 2011)
namely, number of posts in a cascade, time length of cas-
cade, average time gap between posts in the cascade, and
fraction of most active users in the cascade. SEIZ (SZ) (Jin
et al. 2013) is a rumor model proposed for unsupervised ru-
mor detection. It partitions users as either “susceptible”, “in-
fected”, “exposed” or “skeptic” with regards to the content
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and models state transitions between them. The model is fit
to each cascade separately by solving differential equations.
They define a ratio based on the learned parameters of the
rumor model for each cascade to classify it as fake or true.
Lastly, we include HIC, where we assume a homogeneous
IC model, with a single parameter value (f) shared over all
edges for the fake component and another single parameter
value (t) for the true component i.e. pTuv = t ∀(u, v).

Summary In comparison with MIC where differences in
inferred dynamics are exploited for separation; TF and SE
utilize aggregate sentiments of user responses which are rel-
atively noisy signals of veracity. We find that KM was biased
towards producing a single cluster without being able to ef-
fectively separate them; HIC does not model heterogeneous
influence across user pairs which limits expressibility of the
model; and SZ cannot capture common patterns across cas-
cades, as it fits separate parameters per cascade.

Analysis In terms of the distribution π estimated in MIC,
we report the Mean Absolute Error (MAE) between the es-
timated value and the true data distribution. The data is near
balanced, and the estimated π = [0.44, 0.56] in Twitter-1
is close to the true distribution, with Mean Absolute Error
(MAE) of 0.04. Twitter-2 estimated π = [0.47, 0.53] with
MAE of 0.058. Therefore, MIC outputs balanced clusters of
cascade types. KMeans (KM) on the other hand produces
unequal sized, biased clusters, resulting in close to random
accuracy predicting most cascades to one type, with low f1.
The sentiment analysis methods like StanceEval (SE) make
mistakes in cases where true content evokes negative sen-
timents such as “Is horrified to read about the missing Air
France plane” and also due to sentiment lexicons that map
certain words like “missing” to negative, such as in “Air
France jet missing with 228 people over Atlantic after run-
ning into thunderstorms”. This results in negatively corre-
lated predictions below 50% depending on the sentiment
patterns and content in the data. TruthFinder (TF) also uti-
lizes user sentiments but is more robust as it accounts for
conflicting relationships between users. SEIZ (SZ) is the bet-
ter baseline based on rumor modeling. But it does depend on
an estimated threshold for the ratio per cascade used to de-
termine if the cascade is fake. (Jin et al. 2013) use median
ratio over the set of cascades as the threshold, and any ob-
served ratio above this threshold is considered as fake. This
can be result in lower quality estimates of the threshold in
datasets like Twitter-1 with fewer cascades.

We additionally compare the IC model with MIC. IC
model does not have the proposed parameterization for dif-
ferent cascade types, and hence cannot be compared in
clustering. Therefore, we report the Average Negative Log-
likelihood (NLL) or loss per cascade instead, after parameter
estimation using IC and MIC in the datasets. Lower NLL in-
dicates better fit to the observed cascades. Average NLL per
cascade on a 20% held-out set of cascades in Twitter-1 for
MIC is 9.035 (train cascades 6.29), and for IC, it is 3757.84
(train cascades 58.45). Average NLL per cascade in Twitter-
2, for MIC is 8.45 (train cascades 8.35), for IC, it is 1414.25
(train cascades 1052.97). Therefore, separate parameters to
represent cascade types allows better diffusion modeling.

Twitter-1 Twitter-2

F1-Score Accuracy F1-Score Accuracy

TF 0.576 0.522 0.573 0.536
SE 0.535 0.531 0.388 0.469
KM 0.253 0.522 0.312 0.490
SZ 0.54±0.03 0.52±0.03 0.56±0.03 0.57±0.01
HIC 0.48±0.16 0.55±0.01 0.49±0.12 0.53±0.02

MIC 0.67±0.02 0.61±0.02 0.63±0.01 0.59±0.01

Table 3: Clustering cascade separability results.
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Figure 4: Results on quality of influential users selected
based on the estimated diffusion parameters for true and fake
news in (a) Twitter-1 and (b) Twitter-2. Inf(T) and Inf(F) are
inferred influential users for true and fake news.

Influential Users Test
In this subsection, we first identify users that are influential
in the propagation of true and fake contents (i.e. users that
if selected as seed sets would trigger the largest cascades),
using the inferred diffusion model. Top-100 Influential users
for each component IC model with inferred params θ̂T , θ̂F ,
are selected using greedy maximization algorithm (Goyal,
Lu, and Lakshmanan 2011). We use the identified influential
users to further examine the quality of inferred parameters.

In Fig 4, we report the box-plot for inferred influential
users based on % relative appearance in fake vs true cas-
cades. Inferred users identified for fake news (Inf(F)) have
high positive correlation with relative appearance in fake
news cascades, as seen from the figure, for both datasets,
in comparison with influential true news users (Inf(T)), and
a uniform random sample of users (Unif.). Uniform random
sample (Unif.) of users, provides insights into the degree of
separation between true and fake cascade clusters in the two
datasets. Compared to Twitter-1, uniformly sampled users
in Twitter-2 are more likely to engage with both contents,
whereas in Twitter-1 the median of the uniformly sampled
users interact purely with true contents; showing potentially
larger separation in Twitter-1 between its users.

Characteristics of Influential Users
Table 4 lists the features of users identified as most influ-
ential for true and fake news under estimated parameters;
reported # of followers, posts from 2009 Twitter-1 snapshot.
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Comp Followers Following # Posts Name Description Tags

True

54418 1157 24182 HuffPost real life is news, and news is personal. Read more: https:..
17874 0 675 TMZ breaking biggest stories in entertainment news
2684 2941 2144 PSPGuru Sending you constant news about the latest PSP news.

News 1118 142 3191 FOX10News TV news station, serving the Alabama, Florida, Gulf
22252 23853 4621 OnlyMobileNews We follow the latest in mobile technology news

Fake

672 280 8200 unk. F. SwineFlu from pork, SwineFlu zombies F. 45
514 470 3408 Terrypooch Fighting for liberty and justice for all F. 308
1 0 32 08kx250f F. xbox720 will launch before 2012 F. 9

News 3273 1926 2294 unk. F. Obama is not a natural born citizen F. 5
8829 8362 6375 BuzzFeed F. BigFoot, GiantCatfish Maneater, MontaukMonster F. 7

Table 4: Characteristics of most influential users inferred for propagation of fake and true news in Twitter-1.
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(a) Intervention: Twitter-1.
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(b) Intervention: Twitter-2.
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(c) Intervention: Twitter-1
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(d) Intervention: Twitter-2

Figure 5: Intervention Analysis on Twitter-1 and Twitter-2 (a, b) Node Interventions (c, d) Edge Interventions.

Features of Inf(T) Inferred influential users identified for
true news, as seen, correspond largely to accounts of known
credible news and opinion websites and blogs. In terms of
topic distribution, the dominant types of influential users in-
clude accounts disseminating news related to politics, enter-
tainment, infotainment, technology updates, and local news;
and tend to have large number of direct followers.

Features of Inf(F) Top influential users identified for fake
news include accounts with relatively fewer counts of di-
rect followers, compared to those for true news users. For
some of these the screen name and description is unavail-
able from Twitter API (reported as ‘unk.’ in the table). Sev-
eral of these accounts also do not have a listed description
along with their screen name, unlike in the previous case of
influential true news users. Therefore, we list the topic of the
fake news cascades in which the users appear and their total
count of engagements/appearances in the fake cascades.

The accounts influential in fake news propagation also ap-
pear among a diverse range of topics; similarly dominated
by politics, technology, entertainment, and news or trend-
ing topics such as SwineFlu and current events. Interest-
ingly, the identified top influential users appear among the
larger and more viral fake cascades in the dataset such as
ones corresponding to SwineFlu, Obama’s citizenship sta-
tus, LadyGaga’s gender identity and technology rumors like
launch of Xbox720. BuzzFeed interestingly has been his-

torically linked to unreliable journalism, especially before
2014. It appears in connection with false stories related to
man-eating catfish, BigFoot and other viral false stories.

Intervention Analysis on Nodes and Edges
In Fig 5 we investigate different intervention mechanisms
(mechanisms to monitor or intercept the propagation paths
of fake news) leveraging the inferred diffusion dynamics, so
as to limit the spread of fake news on a network.

Node Intervention In node intervention, we determine
which nodes can be monitored, in order to block false con-
tents from spreading in the network. The inferred influential
users for fake news identified earlier are chosen candidates
for node intervention under MIC, ranked by influence.

For offline evaluation of the intervention strategy, we uti-
lize the available fake cascades in the datasets. First, we con-
sider that K users are selected for intervention/monitoring.
If a fake news cascade reaches any of the monitored users, it
can be intercepted and removed from the network, thereby
limiting its future spread. The effectiveness of the intercep-
tion can be evaluated based on the % reduction in fake cas-
cade size due to the intervention. In Fig 5a and 5b, we eval-
uate the proposed MIC intervention against the previously
considered baselines; and we include two additional base-
lines TopU and TopFol that intercept users ranked by their
total engagement count in the set of observed cascades / to-
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tal followers count from the user profile information. For the
other baselines, the selection of K users is as follows: rank
users by their total engagement count in the cascades pre-
dicted as fake news cascades by the baseline method.

Edge Intervention In edge intervention, we select K
edges in the network in order to intercept the propagation of
fake cascades. The edges are ranked by the weight (strength
of influence) pFe under the inferred fake component of MIC.
These are the identified high transmission paths for fake
news cascades and thus removed/blocked.

For offline evaluation, we again compare the percent-
age reduction in fake cascade size due to edge interven-
tion with MIC, against a Random strategy that selects edges
uniformly at random from the network for intervention, as
shown in Fig 5c and 5d. Here the reduction is calculated
over the size of fake cascades simulated over 1000 rounds
under the fake component with and without the K edges re-
moved/intercepted for intervention. The simulations are trig-
gered from seeds sampled from users at the head of the se-
quence of observed fake cascades in the datasets.

Conclusion
In this work, we proposed a mixture of independent cascade
models (MIC) to express and infer the diffusion dynamics
of false and legitimate contents. With statistical analysis on
real datasets, we confirmed notable differences in user be-
haviours towards fake and true contents in temporal and
structural aspects of diffusion, that can be expressed with
MIC. Based on that, we derived an unsupervised inference
method for parameter estimation from observed unlabeled
cascades, and conducted experiments on Twitter datasets
with fake/ true news cascades. The experiments revealed in-
teresting analysis of the characteristics of users identified as
influential in true and fake content propagation, under the
inferred diffusion dynamics; and their effectiveness towards
node and edge interventions to limit fake news.

Discussion and Future Work
We assumed two sets of parameters θT , θF to differentiate
fake from true cascades, based on verifying that (i) differ-
ences in diffusion patterns of the two types are statistically
significant in the datasets, and (ii) the datasets are built from
collections of events reported during a specific period, with
samples across types collected from the same data source;
and no known collection biases across types.

In order to account for multiple types (such as satire, dif-
ferences in political stance, source credibility or content),
the mixture model easily generalizes to multiple types of
cascades, when k > 2 components are initialized in Algo-
rithm 1 (the derivation is written for the general case k).

A limitation of the current work is that it assumes a fixed
number of components k, which need not be known a priori.
In future work, this can be addressed to adaptively split and
merge components starting with a large initial k, while op-
timizing for likelihood of the cascades. In the experiments
on influential users identified based on the inferred diffusion
parameters, we find that the inferred set of parameters are
correlated with the two types assumed in this work, in terms

of engagements with fake and true cascades (Fig 4) and re-
duction in fake cascade size (Fig 5). However, although the
proposed model directly generalizes to k > 2, we consider
evaluating the model on multiple types with k unknown a
priori for future work with multi-label datasets.

The runtime analysis details of the inference algorithm are
provided in the Appendix. The runtime scales in the order of
O(k|C|V 2) which is reduced to O(k|C|VW ) by setting a
constant window W smaller than V , where W is the win-
dow size described in Relaxation section under Parameter
Estimation, V is the number of users, k is the number of
components, and C is the set of cascades. This is a limita-
tion of applying the algorithm to large-scale graphs. In future
work, we can integrate dimensionality reduction techniques
to reduce the number of unique user representations.

There are other possible directions of future work. The
first is to provide online estimation of parameters for time
evolving networks; to allow for changing dynamics due to
social bots and fake accounts with manufactured and evolv-
ing social connections. A second interesting direction is to
leverage diffusion network inference to better understand
polarization and existence of echo chambers, and its impact
on the spread of misinformation - whether polarization fuels
misinformation, and can interventions to mitigate one phe-
nomenon support the other phenomenon.
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Appendix
Proof for Theorem 1
Proof. Each edge (coordinate) j has associated bernoulli
variables xij with parameter pij for component i in the k-
component mixture distribution. The pairwise coordinate
means then are defined as follows,

corr(j, j′) = E[xjxj′ ] =
k∑
i=1

πipij p
i
j′ , 1 ≤ j < j′ ≤ m

(3)
The sample estimate of corr(j, j′) can be obtained directly
from the observed live-edge graphs of unlabeled cascades.
By the reduction to learning mixtures of discrete product
distributions, given the sample estimates of the pairwise
coordinate means, the parameters pij and π can be esti-
mated using algorithm Weights and Means (WAM) (Feld-
man, O’Donnell, and Servedio 2008) for learning mixture
distributions. We restate lemmas in (Feldman, O’Donnell,
and Servedio 2008; Chen et al. 2016) used in the proof for
completeness, with notations used in the reduction.

Lemma 2 ((Feldman, O’Donnell, and Servedio 2008)).
For k = O(1) and any ε′, δ′ > 0, WAM runs in time
poly (m/ε′) · log(1/δ′) and outputs a list of poly (m/ε′)
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(a) Runtime (Twitter 2) (b) Convergence in Twitter-1/2.

Figure 6: Runtime and Convergence Analysis.

many candidates, at least one of which (with probability at
least 1− δ′) satisfies the following,

|π̂i − πi| ≤ ε′, ∀i and |p̂ie − pie| ≤ ε′, ∀πi ≥ ε′

Lemma 3 (Lemma 4 in (Chen et al. 2016)). Given graph
G and parameter space ϑ such that ∀θ1, θ2 ∈ ϑ ,
||θ1 − θ2||∞ ≤ ε0, then, ∀S ⊆ V ,

|σθ1(S)− σθ2(S)| ≤ mnε0

Using the above lemmas and setting ε0 = ε
mn , δ′ = δ

and ε′ = ε
mn , the sample complexity for the desired in-

fluence function estimate is obtained. WAM requires sam-
ple estimates for E[xjxj′ ] for all 1 ≤ j < j′ ≤ m to

be within an additive accuracy of εmatrix =
(
ε′2

m2

)(k+1)

.
xjxj′ ∈ {0, 1} and therefore is Bernoulli distributed with
some parameter say pjj′ equal to E[xjxj′ ]. Let p̂jj′ be the
sample estimate for E[xjxj′ ] calculated from the observed
cascades. Since each observed cascade is independently
generated, we can compute the sample complexity of esti-
mating E[xjxj′ ] = pjj′ within additive accuracy of εmatrix
given the observed cascades. Applying chernoff bounds, we
get P (|p̂jj′ − pjj′ | ≥ εmatrix) ≤ δmatrix with number
of observed samples being at least 2+εmatrix

ε2matrix
ln 2

δmatrix
. Ap-

plying union bound, we get P (|p̂jj′ − pjj′ | ≥ εmatrix) ≤
δmatrixm(m − 1)/2 for all j, j′ ∈ [m]. Setting δmatrix =

2δ
m(m−1) , we get with probability at least 1− δ, |p̂jj′ − pjj′ |
is within additive accuracy of εmatrix for all j, j′ and the
sample complexity is O

(
(n

4m8

ε4 )k+1 ln m
δ

)
.

Runtime Analysis
In Fig 6, the runtime analysis of MIC vs. baseline SEIZ (SZ)
on Twitter-2 are provided. The baseline SEIZ is run with
time interval of 24hours and cut-off time of 10K hours, and
it runs differential equation solvers for each cascade, to fit
the data with parameters specific to each cascade. The run-
times are evaluated and compared on Intel(R) Xeon(R) CPU
E5-2630 v3 @ 2.40GHz on single thread in python. Multi-
threading, parallelization is left to future implementations.

Follower Graph Value

# Edges 27K
# Active users 3K
Avg Out-degree 6.54
Max Out-degree 126
Median Out-degree 3
Avg In-degree 6.55
Max In-degree 137
Median In-degree 2
# strongly connected comps 810
# weakly connected comps 35

Table 5: Follower Graph Statistics in Twitter-1.

The runtime analysis is conducted on Twitter-2, since is
the larger of the two datasets (with more users and more cas-
cades), so that runtime can be analyzed with respect to dif-
ferent user sizes. We implemented vectorized computations
and pre-computed users and cascades needed in the likeli-
hood computation at the start of the EM iterations which
improves computational efficiency, and reduces impact of
number of cascades on runtime due to vectorization.

The EM estimation in Algorithm 1 is trained till conver-
gence, i.e. the change in likelihood is smaller than 0.01. The
lookback windowW , discussed in Section Relaxation under
Parameter Estimation, is set to 10 past events. The value of
W impacts computational time and should be set to a con-
stant smaller than V , that is the number of users. In the ex-
periments, we setW with line search in the range {5, 10, 15}
based on cross validation for computational efficiency.

The EM converges within few iterations. The worst-case
runtime complexity per EM iteration is O(k|C|V 2) where
V is the number of users and C is the set of cascades and k
is the number of components, and by settingW to a constant
smaller than V , the complexity reduces to O(k|C|VW ).

Additional Data Statistics
We provide the follower graph statistics in Table 5 avail-
able in Twitter-1 (Kwon et al. 2013). The follower graph was
used for structural diffusion analysis; and is a directed graph
between the active users considered in the dataset, which
appear at least five times in the cascades set; as described in
the Section on real-world datasets. The direction of the edge
from A to B indicates that A follows B. The table provides
degree distribution and connected components statistics.
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