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Abstract

Social networks are widely used for information consump-
tion and dissemination, especially during time-critical events
such as natural disasters. Despite its significantly large vol-
ume, social media content is often too noisy for direct use
in any application. Therefore, it is important to filter, catego-
rize, and concisely summarize the available content to facil-
itate effective consumption and decision-making. To address
such issues automatic classification systems have been de-
veloped using supervised modeling approaches, thanks to the
earlier efforts on creating labeled datasets. However, existing
datasets are limited in different aspects (e.g., size, contains
duplicates) and less suitable to support more advanced and
data-hungry deep learning models. In this paper, we present
a new large-scale dataset with ∼77K human-labeled tweets,
sampled from a pool of ∼24 million tweets across 19 dis-
aster events that happened between 2016 and 2019. More-
over, we propose a data collection and sampling pipeline,
which is important for social media data sampling for hu-
man annotation. We report multiclass classification results
using classic and deep learning (fastText and transformer)
based models to set the ground for future studies. The dataset
and associated resources are publicly available at https:
//crisisnlp.qcri.org/humaid_dataset.html.

1 Introduction
Recent studies highlight the importance of analyzing so-
cial media data during disaster events (Imran et al. 2015;
Alam et al. 2020) as it helps decision-makers to plan re-
lief operations. However, most of the actionable information
on social media is available in the early hours of a disas-
ter when information from other traditional data sources is
not available. However, utilizing this information requires
time-critical analysis of social media streams for aiding hu-
manitarian organizations, government agencies, and public
administration authorities to make timely decisions and to
launch relief efforts during emergency situations (Starbird
et al. 2010; Vieweg et al. 2010; Alam et al. 2021a). Among
various social media platforms, Twitter has been widely
used, on one hand, to disseminate information, and on the
other, to collect, filter, and summarize information (Alam,
Ofli, and Imran 2019). As the volume of information on
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social media is extremely high (Castillo 2016), automated
data processing is necessary to filter redundant and irrelevant
content and categorize useful content. There are many chal-
lenges to dealing with such large data streams and extracting
useful information. Those include parsing unstructured and
brief content, filtering out irrelevant and noisy content, han-
dling information overload, among others.

Typical approaches tackling this problem rely on super-
vised machine learning techniques, i.e., classify each incom-
ing tweet into one or more of a pre-defined set of classes.
In the past, several datasets for disaster-related tweets clas-
sification were published (Olteanu et al. 2014; Imran, Mi-
tra, and Castillo 2016; Alam, Ofli, and Imran 2018). These
resources have supported NLP community to advance re-
search and development in the crisis informatics1 domain
in many ways (Purohit and Sheth 2013; Burel and Alani
2018; Imran et al. 2014; Kumar et al. 2011; Okolloh 2009;
Alam, Imran, and Ofli 2019). Deep neural networks have
shown SOTA performance in many NLP tasks and applica-
tion areas. However, deep learning algorithms are usually
data-hungry, whereas the existing datasets in the crisis in-
formatics domain are limited in different respects, which re-
stricts the development of more sophisticated deep learning
models.

We have so far investigated the existing datasets to un-
derstand their limitations for future research. These limita-
tions can be summarized as follows. The existing datasets
cover small-scale events. They contain exact-or-near du-
plicate tweets (e.g., CrisisLexT26 (Olteanu et al. 2014)),2
which affects robustness of the trained models. They are
usually dominated by tweets that come from outside of dis-
aster hit areas and are usually about prayers and thoughts.
We have also examined the existing literature to identify
which categories are important for humanitarian organi-
zations to extract actionable information and facilitate re-
sponse efforts (Nemeskey and Kornai 2018; Kropczynski
et al. 2018; Strassel, Bies, and Tracey 2017). Such an anal-
ysis and understanding has motivated us to develop a new,
large-scale dataset that can take crisis informatics research

1https://en.wikipedia.org/wiki/Disaster_
informatics

2Existing datasets contains such duplicates for different rea-
sons: retweeted tweet, and same tweet collected in different data
collection.
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to the next level by affording the ability to develop more so-
phisticated models.

Hence, in this paper, we present the largest publicly avail-
able human annotated Twitter dataset, called HumAID:
Human-Annotated Disaster Incidents Data, for crisis infor-
matics research. It has the following characteristics. (i) The
dataset contains over 77,000 labeled tweets, which were
sampled from 24 million tweets collected during 19 major
real-world disasters that took place between 2016 and 2019,
including hurricanes, earthquakes, wildfires, and floods. (ii)
HumAID encompasses different disaster types across differ-
ent time frames and locations. (iii) The dataset is more bal-
anced in terms of disaster types and more consistent in terms
of label agreement with regards to the existing datasets. (iv)
Thanks to our carefully designed data filtering and sam-
pling pipeline, HumAID consists of tweets that are more
likely to be from the disaster-hit areas, and hence, contain
more useful information coming from eyewitnesses or af-
fected individuals. (v) Our annotation scheme consists of 11
categories representing critical information needs of a num-
ber of humanitarian organizations, including United Nations
OCHA’s needs reported in the MIRA framework3 and pre-
vious studies (Vieweg, Castillo, and Imran 2014; Olteanu
et al. 2014; Imran, Mitra, and Castillo 2016; Alam, Ofli, and
Imran 2018; Mccreadie, Buntain, and Soboroff 2019). (vi)
Finally, HumAID is the largest dataset in comparison to the
existing datasets in the crisis informatics domain.

Our focus was developing a large-scale human-labeled
English tweets dataset covering several categories useful for
humanitarian organizations during natural disasters. To ob-
tain such a large-scale dataset we used Amazon Mechanical
Turk4 for the annotation. Furthermore, we used the labeled
tweets to obtain benchmark results with both classical (i.e.,
SVM and RF) and deep learning algorithms (i.e., fastText
and transformer based models). Our extensive experiments
show that deep learning models outperform traditional su-
pervised learning algorithms. Last but not least, we share
dataset, and data splits with the research community for both
reproducibility and further enhancements.

The rest of the paper is organized as follows. Section 2
provides a brief overview of previous work. Section 3 de-
scribes our data collection approaches, and Section 4 pro-
vides annotation procedures. We report experimental results
in Section 5 and discuss future research directions in Sec-
tion 6. Finally, we conclude the paper in Section 7.

2 Related Work
Over the past few years, there has been a major research
effort on analyzing social media content (mainly Twitter
and Facebook) for humanitarian aid. Key challenges ad-
dressed in these studies include data filtering, classification,
information extraction, and summarization to enhance situ-
ational awareness and mine actionable information (Sakaki,
Okazaki, and Matsuo 2010; Imran et al. 2014; Saravanou

3https://www.humanitarianresponse.info/
en/programme-cycle/space/document/mira-
framework

4https://www.mturk.com/

et al. 2015; Tsou et al. 2017; Martinez-Rojas, del Carmen
Pardo-Ferreira, and Rubio-Romero 2018). Most of these
studies have been possible thanks to the publicly available
datasets.

2.1 Existing Datasets
Below we provide a brief overview of the existing datasets.

CrisisLex comprises two datasets, i.e., CrisisLexT26 and
CrisisLexT6 (Olteanu et al. 2014). The CrisisLexT26 dataset
consists of ∼28,000 labeled tweets from 26 different disas-
ter events that took place in 2012 and 2013. It includes disas-
ter type and sub-type, and coarse- and fine-grained human-
itarian class labels. CrisisLexT6 contains ∼60,000 labeled
tweets from six disaster events that occurred between Octo-
ber 2012 and July 2013. Annotation of CrisisLexT6 includes
related vs. not-related.

CrisisMMD is a multimodal and multitask dataset con-
sisting of ∼18,000 labeled tweets and associated im-
ages (Alam, Ofli, and Imran 2018; Ofli, Alam, and Imran
2020). Tweets have been collected from seven natural disas-
ter events that took place in 2017. The annotations include
three tasks: (i) informative vs. not-informative, (ii) human-
itarian categories (eight classes), and (iii) damage severity
levels (three classes). The third annotation task, i.e., dam-
age severity (mild, severe and none), was applied only on
images.

CrisisNLP consists of ∼50,000 human-labeled tweets
collected from 19 different disasters that happened be-
tween 2013 and 2015, and annotated according to differ-
ent schemes including classes from humanitarian disaster
response and some classes pertaining to health emergen-
cies (Imran, Mitra, and Castillo 2016).

Disaster Response Data contains 30,000 tweets with 36
different categories, collected during disasters such as an
earthquake in Haiti in 2010, an earthquake in Chile in 2010,
floods in Pakistan in 2010, Hurricane Sandy in USA in 2012,
and news articles.5

Disasters on Social Media dataset comprises 10,000
tweets annotated with labels related vs. not-related to the
disasters.6

SWDM2013 consists of two data collections. The Joplin
collection contains 4,400 labeled tweets collected during the
tornado that struck Joplin, Missouri on May 22, 2011. The
Sandy collection contains 2,000 labeled tweets collected
during Hurricane Sandy, that hit Northeastern US on Oct 29,
2012 (Imran et al. 2013).

Eyewitness Messages dataset contains ∼14,000 tweets
with labels (i) direct-eyewitness, (ii) indirect-eyewitness,
(iii) non-eyewitness, and (iv) don’t know, for different event
types such as flood, earthquake, fire, and hurricane (Zahra,
Imran, and Ostermann 2020).

Arabic Tweet Corpus consists of tweets collected during
four flood events that took place in different areas of the
Arab world (i.e., Jordan, Kuwait, northern Saudi Arabia, and

5https://www.figure-eight.com/dataset/
combined-disaster-response-data/

6https://data.world/crowdflower/disasters-
on-social-media
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western Saudi Arabia) in 2018 (Alharbi and Lee 2019). The
dataset contains 4,037 labeled tweets with their relevance
and information type.

TREC Incident Streams dataset has been developed as
part of the TREC-IS 2018 evaluation challenge and consists
of 19,784 tweets labeled for actionable information identifi-
cation and assessing the criticality of the information (Mc-
creadie, Buntain, and Soboroff 2019). This dataset is devel-
oped based on CrisisLex, CrisisNLP and the data collected
using Gnip services.

Disaster Tweet Corpus 2020 is a compilation of existing
datasets for disaster event types classification (Wiegmann
et al. 2020).

2.2 Modeling Approaches
For disaster response, typical social media content classifi-
cation task include (i) informative vs non-informative, (also
referred as related vs. not-related, or on-topic vs. off-topic),
(ii) fine-grained humanitarian information categories, (iii)
disaster event types, (iv) damage severity assessment. To
address such tasks classical algorithms have been widely
used in developing classifiers in the past (Imran et al. 2015).
However, deep learning algorithms have recently started re-
ceiving more attention due to their successful applications
in various natural language processing (NLP) and computer
vision tasks. For instance, (Nguyen et al. 2017) and (Nep-
palli, Caragea, and Caragea 2018) perform comparative ex-
periments between different classical and deep learning al-
gorithms including Support Vector Machines (SVM), Logis-
tic Regression (LR), Random Forests (RF), Recurrent Neu-
ral Networks (RNN), and Convolutional Neural Networks
(CNN). Their experimental results suggest that CNN outper-
forms other algorithms. Though in another study, (Burel and
Alani 2018) reports that SVM and CNN can provide very
competitive results in some cases. CNNs have also been ex-
plored in event type-specific filtering model (Kersten et al.
2019). Recent successful embedding representations such as
Embeddings from Language Models (ELMo) (Peters et al.
2018), Bidirectional Encoder Representations from Trans-
formers (BERT) (Devlin et al. 2019), and XLNet (Yang et al.
2019) have also been explored for disaster related tweet clas-
sification tasks (Jain, Ross, and Schoen-Phelan 2019; Wieg-
mann et al. 2020; Alam et al. 2021b). From a modeling per-
spective, our work is different than previous work in a way
that we have used both classical and deep learning algo-
rithms with different transformer-based models, which can
serve as a strong baseline for future study.

3 Data Collection, Filtering and Sampling
We used the AIDR system (Imran et al. 2014) to collect data
from Twitter during 19 disaster events occurred between
2016 and 2019. AIDR is a publicly available system, which
uses the Twitter streaming API for data collection.7 The data
collection was performed using event-specific keywords and
hashtags. In Table 1, we list details of the data collection
period for each event. In total, 24,859,155 tweets were col-
lected from all the events. Data annotation is a costly pro-

7http://aidr.qcri.org/

cedure, therefore, we investigated how to filter and sample
data that can maximize the quality of the labeled data.

3.1 Data Filtering
To prepare data for manual annotation, we perform the fol-
lowing filtering steps:

1. Date-based filtering: For some events, that data collec-
tion period extends beyond the actual event dates. For
instance, for Hurricane Florence, our data collection pe-
riod is from Sep 11, 2018 to Nov 17, 2018 although the
hurricane actually dissipated on Sep 18. For this purpose,
we restrict the data sampling period to actual event days
as reported on their Wikipedia page.

2. Location-based filtering: Since our data collection was
based on event-specific keywords (i.e., we did not restrict
the data collection to any geographical area), it is likely
that a large portion of the collected data come from out-
side the disaster-hit areas. However, the most useful in-
formation for humanitarian organizations is the informa-
tion that originates from eyewitnesses or people from the
disaster-hit areas. Therefore, we discarded all tweets out-
side the disaster-hit areas by using a geographic filter.
The geographic filter uses one of the three fields (i.e., geo,
place, or user location) from a tweet. We prioritize the
geo field, as it comes from the user device as GPS coordi-
nates. If the geo field is not available, which is the case for
98% of the tweets, we use the place field. The place field
comes with a geographical bounding box, which we use
to determine whether a tweet is inside or outside an area.
As our last option, we use the user location field, which
is a free-form text provided by the user. Next, we use the
Nominatim8 service (an OpenStreetMap9 database) to re-
solve the provided location text into city, state, and coun-
try information. The resolved geo-information is then
used to filter out tweets which do not belong to a list of
locations that we manually curate for each event. A list of
target locations for each event is provided in the dataset
bundle.

3. Language-based filtering: We choose to only annotate
English tweets due to budget limitations. Therefore, we
discard all non-English tweets using the Twitter provided
language metadata for a given tweet. It would be interest-
ing to annotate tweets in other languages in future stud-
ies.

4. Classifier-based filtering: After applying the filters
mentioned above, the remaining data is still in the order
of millions (i.e.,∼7 million according to Table 1), a large
proportion of which might still be irrelevant. To that end,
we trained a Random Forest classifier10 using a set of
humanitarian categories labeled data reported in (Alam,
Imran, and Ofli 2019), which consists the classes similar
to our annotation task described in the next section. We
8http://nominatim.org
9https://www.openstreetmap.org

10The choice of this algorithm was based on previous studies and
its use in practical application (Imran et al. 2014). Also because
it is computationally simple, which enabled us to classify a large
number of tweets in a short amount of time.
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Event name Total Date range Date Location Language Classifier WC De-dup. Sampled
2016 Ecuador Earthquake 1,756,267 04/17 – 04/18 884,783 172,067 19,988 11,269 11,251 2,007 2,000
2016 Canada Wildfires 312,263 05/06 – 05/27 312,263 66,169 66,169 5,812 5,796 2,906 2,906
2016 Italy Earthquake 224,853 08/24 – 08/29 224,853 15,440 15,440 6,624 6,606 1,458 1,458
2016 Kaikoura Earthquake 318,256 09/01 – 11/22 318,256 44,791 44,791 11,854 11,823 3,180 3,180
2016 Hurricane Matthew 1,939,251 10/04 – 10/10 82,643 36,140 36,140 10,116 10,099 2,111 2,100
2017 Sri Lanka Floods 40,967 05/31 – 07/03 40,967 4,267 4,267 2,594 2,594 760 760
2017 Hurricane Harvey 6,384,625 08/25 – 09/01 2,919,679 1,481,939 1,462,934 638,611 632,814 97,034 13,229
2017 Hurricane Irma 1,641,844 09/06 – 09/17 1,266,245 563,899 552,575 113,757 113,115 29,100 13,400
2017 Hurricane Maria 2,521,810 09/16 – 10/02 1,089,333 541,051 511,745 202,225 200,987 17,085 10,600
2017 Mexico Earthquake 361,040 09/20 – 09/23 181,977 17,717 17,331 11,662 11,649 2,563 2,563
2018 Maryland Floods 42,088 05/28 – 06/07 42,088 20,483 20,483 7,787 7,759 1,155 1,140
2018 Greece Wildfires 180,179 07/24 – 08/18 180,179 9,278 9,278 4,896 4,888 1,815 1,815
2018 Kerala Floods 850,962 08/17 – 08/31 757,035 401,950 401,950 225,023 224,876 29,451 11,920
2018 Hurricane Florence 659,840 09/11 – 09/18 483,254 318,841 318,841 38,935 38,854 13,001 9,680
2018 California Wildfires 4,858,128 11/10 – 12/07 4,858,128 2,239,419 2,239,419 942,685 936,199 103,711 10,225
2019 Cyclone Idai 620,365 03/15 – 04/16 620,365 47,175 44,107 26,489 26,469 5,236 5,236
2019 Midwestern US Floods 174,167 03/25 – 04/03 174,167 96,416 96,416 19,072 19,037 3,427 3,420
2019 Hurricane Dorian 1,849,311 08/30 – 09/02 1,849,311 993,982 993,982 137,700 136,954 18,580 11,480
2019 Pakistan Earthquake 122,939 09/24 – 09/26 122,939 34,200 34,200 16,180 16,104 2,502 2,500

Table 1: Event-wise data distribution, filtering and sampling. WC: Word Count, De-dup.: De-duplication. Date range format is
MM/DD and the year is specified in the Event name column.

follow widely used train/dev/test (70/10/20) splits to train
and evaluate the model. We prepossessed the tweets be-
fore training the classifier, which include removing stop
words, URLs, user mentions, and non-ASCII characters.
The trained classifier achieved an F1=76.9%, which we
used to classify and eliminate all the irrelevant tweets,
i.e., tweets classified as not-humanitarian.

5. Word-count-based filtering: We retain tweets that con-
tain at least three words or hashtags. The rationale be-
hind such a choice is that tweets with more tokens tend
to provide more information and likely to have additional
contextual information useful for responders. URLs and
numbers are usually discarded while training a classifier,
thus we ignore them while counting the number of tokens
for a given tweet.

6. Near-duplicate filtering: Finally, we apply de-
duplication to remove exact and near-duplicate tweets
using their textual content. This consists of three steps:
(i) tokenize the tweets to remove URL, user-mentions,
and other non-ASCII characters; (ii) convert the tweets
into vectors of uni- and bi-grams with their frequency-
based representations, (iii) compute the cosine similarity
between tweets and flag the one as duplicate that exceed
a threshold. Since threshold identification is a complex
procedure, therefore, we follow the findings in (Alam
et al. 2021b), where a threshold of 0.75 is used to flag
duplicates.

3.2 Sampling
Although the filtering steps help reduce the total number of
tweets significantly while maximizing the information theo-
retic value of the retained subset, there are still more tweets
than our annotation budget. Therefore, in the sampling step,
we select n random tweets from each class while also main-
taining a fair distribution across classes. In Table 1, we sum-
marize the details of the data filtering and sampling includ-
ing total number of tweets initially collected as well as the

total number of tweets retained after each filtering and sam-
pling step for each event. In particular, the last column of
the table indicates the total number of tweets sampled for
annotation for each disaster event.

4 Manual Annotations
Since the main purpose of this work is to create a large-
scale dataset that can be used to train models that understand
the type of humanitarian aid-related information posted in a
tweet during disasters, we first define what “humanitarian
aid” means. For the annotation we opted and redefined the
annotation guidelines discussed in (Alam, Ofli, and Imran
2018).

Humanitarian aid:11 In response to humanitarian crises
including natural and human-induced disasters, humanitar-
ian aid involves assisting people who need help. The primary
purpose of humanitarian aid is to save lives, reduce suffer-
ing, and rebuild affected communities. Among the people in
need belong homeless, refugees, and victims of natural dis-
asters, wars, and conflicts who need necessities like food,
water, shelter, medical assistance, and damage-free critical
infrastructure and utilities such as roads, bridges, power-
lines, and communication poles.

Based on the Humanitarian aid definition above, we de-
fine each humanitarian information category below.12 The
annotation task was to assign one of the below labels to a
tweet. Though multiple labels can be assigned to a tweet,
however, we limited it to one category to reduce the annota-
tion efforts.

L1: Caution and advice: Reports of warnings issued or
lifted, guidance and tips related to the disaster;

11https://en.wikipedia.org/wiki/
Humanitarian_aid

12Note that we also supplemented these definitions by showing
example tweets in the instructions.
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Event name L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 Total
2016 Ecuador Earthquake 30 3 70 555 10 23 18 81 91 394 319 1,594
2016 Canada Wildfires 106 380 251 4 - 79 13 311 20 934 161 2,259
2016 Italy Earthquake 10 3 54 174 7 9 10 52 30 312 579 1,240
2016 Kaikoura Earthquake 493 87 312 105 3 224 19 311 24 207 432 2,217
2016 Hurricane Matthew 36 38 178 224 - 76 5 328 53 326 395 1,659
2017 Sri Lanka Floods 28 9 17 46 4 20 2 56 34 319 40 575
2017 Hurricane Harvey 541 688 1,217 698 10 410 42 1,767 333 2,823 635 9,164
2017 Hurricane Irma 613 755 1,881 894 8 615 60 2,358 126 1,590 567 9,467
2017 Hurricane Maria 220 131 1,427 302 11 270 39 1,568 711 1,977 672 7,328
2017 Mexico Earthquake 35 4 167 254 14 38 3 109 61 984 367 2,036
2018 Maryland Floods 70 3 79 56 140 77 1 137 1 73 110 747
2018 Greece Wildfires 26 7 38 495 20 74 4 159 25 356 322 1,526
2018 Kerala Floods 139 56 296 363 7 456 65 955 590 4,294 835 8,056
2018 Hurricane Florence 1,310 637 320 297 - 1,060 95 636 54 1,478 472 6,359
2018 California Wildfires 139 368 422 1,946 179 1,318 68 1,038 79 1,415 472 7,444
2019 Cyclone Idai 89 57 354 433 19 80 11 407 143 1,869 482 3,944
2019 Midwestern U.S. Floods 79 8 140 14 1 389 27 273 46 788 165 1,930
2019 Hurricane Dorian 1,369 802 815 60 1 874 46 1,444 179 987 1,083 7,660
2019 Pakistan Earthquake 71 - 125 401 1 213 32 154 19 152 823 1,991

Total 5,404 4,036 8,163 7,321 435 6,305 560 12,144 2,619 21,278 8,931 77,196

Table 2: Distribution of annotations across events and class labels.

L2: Displaced people and evacuations: People who have
relocated due to the crisis, even for a short time (in-
cludes evacuations);

L3: Infrastructure and utility damage: Reports of any
type of damage to infrastructure such as buildings,
houses, roads, bridges, power lines, communication
poles, or vehicles;

L4: Injured or dead people: Reports of injured or dead
people due to the disaster;

L5: Missing or found people: Reports of missing or found
people due to the disaster event;

L6: Not humanitarian: If the tweet does not convey hu-
manitarian aid-related information;

L7: Don’t know or can’t judge: If the tweet is irrelevant
or cannot be judged due to non-English content.

L8: Other relevant information: If the tweet does not be-
long to any of the above categories, but it still contains
important information useful for humanitarian aid, be-
long to this category;

L9: Requests or urgent needs: Reports of urgent needs or
supplies such as food, water, clothing, money, medical
supplies or blood;

L10: Rescue, volunteering, or donation effort: Reports of
any type of rescue, volunteering, or donation efforts
such as people being transported to safe places, peo-
ple being evacuated, people receiving medical aid or
food, people in shelter facilities, donation of money, or
services, etc.;

L11: Sympathy and support: Tweets with prayers,
thoughts, and emotional support;

For the manual annotation, we opted to use Amazon
Mechanical Turk (AMT) platform. In crowdsourcing, one
of the challenges is to find a large number of qualified
workers while filtering out low-quality workers or spam-
mers (Chowdhury et al. 2014). To tackle this problem, a typ-
ical approach is to use qualification tests followed by a gold

standard evaluation (Chowdhury et al. 2015). We created a
qualification test consisting of 10 tweets. To participate in
the task, each annotator first needs to pass the qualification
test. In order to pass the test, the annotator needs to correctly
answer at least 6 out of 10 tweets. The gold standard evalua-
tion is performed at the HIT (i.e., Human Intelligence Task)
level. A HIT consists of 30 tweets and in each HIT there
are 10 gold standard tweets (i.e., tweets with known labels)
and 20 tweets with unknown labels. These 10 gold standard
tweets are selected from a pool of tweets labeled by domain
experts. Note that developing a gold standard dataset is an-
other costly procedure in terms of time and money. There-
fore, we first randomly selected the tweets from different
events by focusing on disaster types such as hurricane, flood,
fire and earthquake, and then domain experts manually la-
beled them.

The annotator who participates in the HIT needs to read
each tweet and assign one of the above labels to complete
the task. The participation and completion of a HIT by an
annotator are referred to as an assignment. We set the assign-
ment approval criterion to 70%, which means an assignment
of the HIT will be automatically approved if the annotator
correctly labels at least 7 out of 10 gold standard tweets.

For each HIT and the associated tweets, we wanted to
have three judgments. As our HIT design consists of 20
tweets with unknown labels and we wanted to automatically
approve the HIT, we set the HIT approval criterion to 66%.
That is, a HIT is approved if the annotators agree on a label
for at least 14 out of 20 tweets. In order to approve the label
for a tweet, we also set a threshold of 66%, which means
out of three annotators two of them have to agree on the
same label. Since the social media content is highly noisy
and categories can be subjective, we choose to use a min-
imum threshold of 66% for the agreement of the label for
each tweet.
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4.1 Crowdsourcing Results
In Table 1, the last column represents the number of tweets
sampled for the annotation (i.e., 109,612 in total). Since in
AMT our minimum threshold to accept a HIT was 66%,
we can expect to acquire agreed labels for a minimum of
66% of the tweets. In Table 2, we present the annotated
dataset, which consists of class label distribution for each
event along with the total number of annotated tweets. In
summary, we have ∼70% tweets with agreed labels, which
results in 77,196 tweets. To compute the annotation agree-
ment we considered the following evaluation measures.
1. Fleiss kappa: It is a reliability measure that is applicable

for any fixed number of annotators annotating categori-
cal labels to a fixed number of items, which can handle
two or more categories and annotators (Fleiss, Levin, and
Paik 2013). However, it can not handle missing labels,
except for excluding them from the computation.

2. Average observed agreement: It is an average observed
agreement over all pairs of annotators (Fleiss, Levin, and
Paik 2013).

3. Majority agreement: We compute the majority at the
tweet level and take the average. The reason behind this
is that for many tweets the number of annotators vary be-
tween three and five, and hence, it is plausible to evaluate
the agreement at the tweet level.

4. Krippendorff’s alpha: It is a measure of agreement that
allows two or more annotators and categories (Krippen-
dorff 1970). Additionally, it handles missing labels.
For the first two methods, we selected three annotations

whereas for the last two methods we considered all anno-
tations (i.e., three to five). In Table 3, we present the an-
notation agreement for all events with different approaches
mentioned above. The average agreement score varies 55%
to 83%. Note that in Kappa measurement value of 0.41-0.60,
0.61-0.80, and 0.81-1 refers to the moderate, substantial, and
perfect agreement, respectively (Landis and Koch 1977).
Based on such measurements we conclude that our anno-
tation agreement score leads to moderate to the substantial
agreement. We also investigated the quality of the annotated
labels and it suggests that tweet texts clearly demonstrate the
labels, as can be seen in Table 4.

4.2 Lexical Analysis and Statistics
To understand the lexical content, we check the number of
tokens for each tweet in each event. This information help
in understanding the characteristics of the dataset. For ex-
ample, the maximum number of tokens can help define max
sequence length in deep learning-based architectures such
as CNN. In Table 5, we provide results for each event. The
minimum number of tokens is 3 for all the events, therefore,
we have not reported that number in the table. From the ta-
ble, we can observe that for some events, (e.g., Hurricane
Maria, Maryland Floods), the max token limits are higher.
This is because Twitter extended its character limit to 280
from September 2017. In Figure 1, we provide statistics of
the tweet lengths in the overall dataset in different bins. The
majority of the tweets is appearing with a range of length
10-20 tokens, second bin in the figure.

Event name Fleiss (κ) K-α A/O M/A
2016 Ecuador Earthquake 0.65 0.64 0.73 0.86
2016 Canada Wildfires 0.54 0.61 0.63 0.85
2016 Italy Earthquake 0.64 0.69 0.74 0.89
2016 Kaikoura Earthquake 0.57 0.57 0.63 0.81
2016 Hurricane Matthew 0.60 0.57 0.66 0.82
2017 Sri Lanka Floods 0.47 0.51 0.61 0.83
2017 Hurricane Harvey 0.55 0.57 0.62 0.82
2017 Hurricane Irma 0.55 0.53 0.63 0.80
2017 Hurricane Maria 0.54 0.53 0.62 0.80
2017 Mexico Earthquake 0.57 0.62 0.67 0.86
2018 Maryland Floods 0.52 0.56 0.58 0.81
2018 Greece Wildfires 0.63 0.65 0.70 0.86
2018 Kerala Floods 0.50 0.50 0.63 0.82
2018 Hurricane Florence 0.50 0.54 0.57 0.80
2018 California Wildfires 0.55 0.59 0.61 0.83
2019 Cyclone Idai 0.51 0.52 0.61 0.82
2019 Midwestern U.S. Floods 0.48 0.50 0.58 0.80
2019 Hurricane Dorian 0.59 0.55 0.65 0.81
2019 Pakistan Earthquake 0.55 0.61 0.65 0.85

Average 0.55 0.57 0.64 0.83

Table 3: Annotation agreement scores for different events.
Metrics: Fleiss κ, Krippendorff alpha (K-α), Average
observed agreement (A/O), Average majority agreement
(M/A).

Figure 1: Number of tweet with different lengths in overall
dataset.

5 Experiments and Results
In this section, we describe the details of our classification
experiments and results. To run the experiments, we split
data into training, development, and test sets with a propor-
tion of 70%, 10%, and 20%, respectively. We removed low
prevalent classes (i.e., number of tweets with a class label
less than 15, e.g., in event 2016 Ecuador Earthquake, there
were only 3 tweets with the class label Displaced people and
evacuations) in some events from the classification experi-
ments. This approach reduced from 77196 to 76484 tweets
for the experiments. Event-wise data split and class label dis-
tribution are reported in Table 6.

We ran the classification experiments at three levels: (i)
event level, (ii) event-type level, and (iii) all data combined.
The purpose of event and event type level experiments is
to provide a baseline, which can be used to compare cross
event experiments in future studies.
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Tweet Label
VLEs extending helping hands to provide relief
material to affected people in Keralas
Chenganoor, Alapuzha and Idukki districts.
They distributed food, water, clothing, medicine
etc to flood people as humanitarian work is still on.
#KeralaFloodRelief #KeralaFloods2018 #OpMadad

L10

@narendramodi Sir, Chenganoor area is in very
dangerous condition..We need more army assistance
there..Please Please help.@PMOIndia
#KeralaFloodRelief

L9

In this difficult period. My prayers for all flood
affected people of Kerala. We know Kerala is
most beautiful state of india and people of Kerala
part of UAE success. Let us extend
our hands in support in their difficulties.
#KeralaFloods #Kerala in our hearts

L11

Table 4: Examples of annotated tweets.

Event name Std. Mean Max
2016 Ecuador Earthquake 4.24 13.84 27
2016 Canada Wildfires 4.10 14.27 28
2016 Italy Earthquake 4.44 14.11 25
2016 Kaikoura Earthquake 5.01 15.39 28
2016 Hurricane Matthew 4.51 15.76 29
2017 Sri Lanka Floods 4.15 15.93 24
2017 Hurricane Harvey 4.70 15.45 31
2017 Hurricane Irma 4.89 15.47 29
2017 Hurricane Maria 4.95 15.96 51
2017 Mexico Earthquake 4.64 15.49 37
2018 Maryland Floods 11.06 22.75 51
2018 Greece Wildfires 11.73 23.06 54
2018 Kerala Floods 11.43 26.38 54
2018 Hurricane Florence 10.98 25.57 55
2018 California Wildfires 12.02 24.72 57
2019 Cyclone Idai 11.12 28.46 53
2019 Midwestern U.S. Floods 11.62 27.50 54
2019 Hurricane Dorian 12.14 25.73 57
2019 Pakistan Earthquake 11.71 22.80 54

Table 5: Descriptive statistics (i.e., std., max and mean num-
ber of token) for each event

For the data splits we first create splits for each event sep-
arately. Then, for the event-type experiments, we combine
the training, development, and test sets of all the events that
belong to the same event type. For example, we combine all
training sets of specific earthquake collections into the gen-
eral earthquake-type training set. Since combining data from
multiple events can result in near-duplicate tweets13 across
different data splits (i.e., training, development, and test),
we applied the same near-duplicate removal approach dis-
cussed earlier to eliminate such cases. With this approach,
we removed only nine tweets, which leads to having a total
of 76,475 tweets in event-type experiments. Similarly, the
same duplicate removal approach was applied when com-
bining data from all the events, which also reduced another
9 tweets, resulting 76,466 tweets.

13This happens when more than one crisis events occur at the
same time and same tweets are collected for different events.

To measure the performance of each classifier, we use
weighted average precision (P), recall (R), and F1-measure
(F1). The choice of the weighted metric is to factor in the
class imbalance problem.

5.1 Preprocessing
Tweet text consists of many symbols, emoticons, and invis-
ible characters. Therefore, we preprocess them before using
in model training and classification experiments. The pre-
processing part includes removal of stop words, non-ASCII
characters, punctuations (replaced with whitespace), num-
bers, URLs, and hashtag signs.

5.2 Models
For this study, we focus on multiclass classification experi-
ments using both classical and deep learning algorithms dis-
cussed below. As for the classical models, we used the two
most popular algorithms (i) Random Forest (RF) (Breiman
2001), and (ii) Support Vector Machines (SVM) (Platt
1998).

As deep learning algorithms, we used FastText (Joulin
et al. 2017) and transformer-based models such as BERT
(Devlin et al. 2019), RoBERTa (Liu et al. 2019), XLM-
RoBERTa (Conneau et al. 2019) and DistilBERT (Sanh et al.
2019). The reason to choose XLM-RoBERTa is that some
tweets can have mix-language (e.g., English tweets with
some French words) and we wanted to see how model per-
forms given that it is a multilingual model.

5.3 Classification Experiments
To train the classifiers using the aforementioned classical
algorithms, we converted the preprocessed tweets into bag-
of-n-gram vectors weighted with logarithmic term frequen-
cies (tf) multiplied with inverse document frequencies (idf).
Since contextual information, such as n-grams, are useful
for classification, we extracted unigram, bigram, and tri-
gram features. For both SVM and RF we use grid search
to optimize the parameters.

For FastText, we used pre-trained embeddings trained on
Common Crawl14 and default hyperparameter settings.

For transformer-based models, we use the Transformer
Toolkit (Wolf et al. 2019) and fine-tune each model using
the settings as described in (Devlin et al. 2019) with a task-
specific layer on top of the transformer model. Due to the
instability of the pre-trained models as reported by (Devlin
et al. 2019), we do 10 runs of each experiment using differ-
ent random seeds and choose the model that performs the
best on the development set. For training the BERT model
for each event, event-type and all combined dataset, we use
a batch size of 32, learning rate of 2e-5, maximum sequence
length 128, and fine tune 10 epochs with the ‘categorical
cross-entropy’ as the loss function.

5.4 Results
In Table 7, we report the classification results (weighted F1)
for each event, event type and combined dataset with all

14https://fasttext.cc/docs/en/crawl-
vectors.html
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Ev. L1 L2 L3 L4 L5 L6 L8 L9 L10 L11
1 21/3/6 - 49/7/14 388/57/110 - 16/2/5 57/8/16 64/9/18 276/40/78 223/33/63
2 74/11/21 266/39/75 176/25/50 - - 55/8/16 218/32/61 14/2/4 653/95/186 113/16/32
3 - - 38/5/11 122/18/34 - - 36/5/11 21/3/6 218/32/62 405/59/115
4 345/50/98 61/9/17 218/32/62 73/11/21 - 157/23/44 218/32/61 17/2/5 145/21/41 302/44/86
5 25/7/4 27/7/4 125/35/18 157/44/23 - 53/15/8 229/66/33 37/11/5 228/65/33 276/79/40
6 20/3/5 - 12/2/3 32/5/9 - 14/2/4 39/6/11 24/3/7 223/32/64 28/4/8
7 379/55/107 482/70/136 852/124/241 488/71/139 - 287/42/81 1237/180/350 233/34/66 1976/288/559 444/65/126
8 429/62/122 528/77/150 1317/192/372 626/91/177 - 430/63/122 1651/240/467 88/13/25 1113/162/315 397/58/112
9 154/22/44 92/13/26 999/145/283 211/31/60 - 189/28/53 1097/160/311 498/72/141 1384/202/391 470/69/133
10 24/4/7 - 117/17/33 178/26/50 - 27/4/7 76/11/22 43/6/12 688/100/196 257/37/73
11 49/7/14 - 55/8/16 39/6/11 98/14/28 54/8/15 96/14/27 - 51/7/15 77/11/22
12 18/3/5 - 27/4/7 346/50/99 14/2/4 52/8/14 111/16/32 18/2/5 249/36/71 225/33/64
13 97/14/28 39/6/11 207/30/59 254/37/72 - 319/47/90 669/97/189 413/60/117 3005/438/851 585/85/165
14 917/134/259 446/65/126 224/33/63 208/30/59 - 742/108/210 445/65/126 38/5/11 1034/151/293 330/48/94
15 97/14/28 258/38/72 295/43/84 1362/199/385 125/18/36 923/134/261 727/106/205 55/8/16 991/144/280 330/48/94
16 62/9/18 40/6/11 248/36/70 303/44/86 13/2/4 56/8/16 285/41/81 100/15/28 1308/191/370 338/49/95
17 55/8/16 - 98/14/28 - - 272/40/77 191/28/54 32/5/9 552/80/156 116/16/33
18 958/140/271 561/82/159 571/83/161 42/6/12 - 612/89/173 1011/147/286 125/18/36 691/101/195 758/110/215
19 50/7/14 - 87/13/25 281/41/79 - 149/22/42 108/15/31 13/2/4 106/15/31 576/84/163

Table 6: Event-wise data split and distribution of class labels. First column (i.e., Ev) enumerates all 19 events in the same
ordered as in Table 1. The numbers in each cell represent train/dev/test for each class label and event.

models. The column # Cls reports number of class labels
available after removing low prevalent class labels. Between
classical algorithms, overall, the performance of SVM is bet-
ter than RF.

The comparison between SVM and FastText, the perfor-
mances are quite close for many events, and event types. The
transformer based models are outperforming across events,
event types, and combined dataset.

The comparison of different transformer-based models
entails that DistilBERT shows similar performance as op-
posed to BERT model, therefore, the use of DistilBERT in
real applications might be a reasonable choice. RoBERTa
and XLM-RoBERTa are outperforming BERT and Distil-
BERT, which comes with the cost of their large number of
parameters. In terms of comparing monolingual (RoBERTa)
vs. multilingual (XLM-RoBERTa) version of RoBERTa the
gain with monolingual training is higher. In terms of com-
paring event type and all data, for the earthquake event type,
we attain higher performance as the classifier is trained and
evaluated on nine class labels as opposed to ten class labels
for other event types and the combined dataset.

6 Discussions
There has been significant progress in crisis informatics re-
search in the last several years due to the growing interest in
the community and publicly available resources. One of the
major interests is analyzing social media data and finding
actionable information to facilitate humanitarian organiza-
tions. Models have been developed using publicly available
datasets to streamline this process. Currently publicly avail-
able datasets are limited in different respects such as dupli-
cates, and no fixed test set for the evaluation. These issues
make it difficult to understand whether one approach outper-
forms another.

While closely inspecting the available datasets, we ob-
served that there are duplicates and near-duplicates, which

results in misleading performance figures. Another major
limitation is that the reported results are not comparable be-
cause there is no fixed test set for the evaluation. That is,
each set of results has been reported on its own data split,
which makes it difficult to understand whether one approach
outperforms another. To address such limitations and ad-
vance the crisis informatics research, in this study, we report
our efforts to develop the largest-to-date Twitter dataset (i.e.,
∼77,000 tweets) focusing on humanitarian response tasks.
While developing the dataset we carefully designed a unique
data filtering and sampling pipeline, which ensured the fol-
lowing characteristics: (i) four major disaster types, ii) disas-
ters have occurred in different parts of the world at different
times, (iii) selected samples are from disasters that created
impact on land and caused major damage, (iv) content lan-
guage is English, (v) data sampling is based on an in-house
classifier to eliminate irrelevant content, (vi) there are at least
three words in a tweet, (vii) exact and near-duplicates are re-
moved (even across events for the combined dataset), and
(viii) moderate to substantial inter-annotator agreement.

While using AMT for annotation, we ensured higher qual-
ity annotations by putting in place a qualification test, in-
cluding gold-standard evaluation inside the tasks, and re-
quiring an agreement score of minimum 66%.

To allow for accurate performance comparison and re-
porting across future studies, we make the data splits pub-
licly available. We have conducted experiments using dif-
ferent classification algorithms on these data splits to pro-
vide baseline results for future research. In total, our experi-
mental setup consists of more than 1000 experiments. Event-
wise classification results can be useful to realize within- and
across-event experimental comparisons. Whereas, the event-
type results can be helpful to develop a generalized event-
type-based model and compare it with new approaches. Sim-
ilarly, a more generalized classifier can be developed using
the combined dataset and our provided results can be helpful
in future experimental comparison.
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Data # Cls RF SVM FT BERT D-B RT X-R
2016 Ecuador Earthquake 8 0.784 0.738 0.752 0.861 0.872 0.872 0.866
2016 Canada Wildfires 8 0.726 0.738 0.726 0.792 0.781 0.791 0.768
2016 Italy Earthquake 6 0.799 0.822 0.821 0.871 0.878 0.885 0.877
2016 Kaikoura Earthquake 9 0.660 0.693 0.658 0.768 0.743 0.765 0.760
2016 Hurricane Matthew 9 0.742 0.700 0.704 0.786 0.780 0.815 0.784
2017 Sri Lanka Floods 8 0.613 0.611 0.575 0.703 0.763 0.727 0.798
2017 Hurricane Harvey 9 0.719 0.713 0.718 0.759 0.743 0.763 0.761
2017 Hurricane Irma 9 0.693 0.695 0.694 0.722 0.723 0.730 0.717
2017 Hurricane Maria 9 0.682 0.682 0.688 0.715 0.722 0.727 0.723
2017 Mexico Earthquake 8 0.800 0.789 0.797 0.845 0.854 0.863 0.847
2018 Maryland Floods 8 0.554 0.620 0.621 0.697 0.734 0.760 0.798
2018 Greece Wildfires 9 0.678 0.694 0.667 0.788 0.739 0.783 0.783
2018 Kerala Floods 9 0.670 0.694 0.714 0.732 0.732 0.745 0.746
2018 Hurricane Florence 9 0.731 0.717 0.735 0.768 0.773 0.780 0.765
2018 California Wildfires 10 0.676 0.696 0.713 0.760 0.767 0.764 0.757
2019 Cyclone Idai 10 0.680 0.730 0.707 0.790 0.779 0.796 0.793
2019 Midwestern U.S. Floods 7 0.643 0.632 0.624 0.702 0.706 0.764 0.726
2019 Hurricane Dorian 9 0.688 0.663 0.693 0.691 0.691 0.686 0.691
2019 Pakistan Earthquake 8 0.753 0.766 0.787 0.820 0.822 0.834 0.827

Earthquake 9 0.766 0.783 0.789 0.833 0.839 0.836 0.837
Fire 10 0.685 0.717 0.727 0.771 0.771 0.787 0.779
Flood 10 0.653 0.693 0.704 0.749 0.734 0.758 0.755
Hurricane 10 0.702 0.716 0.730 0.740 0.742 0.741 0.739

All 10 0.707 0.731 0.744 0.758 0.758 0.760 0.758

Average 0.700 0.710 0.712 0.768 0.769 0.781 0.777

Table 7: Classification results (weighted F1) for events, event-type and combined (All) dataset. Cls: Number of class labels, FT:
FastText, X-R: XLM-RoBERTa, D-B: DistilBERT, RT: RoBERTa, Best results are highlighted with bold form.

7 Conclusions
The information available on social media has been widely
used by humanitarian organizations at times of a disaster,
which has been posted during an ongoing crisis event. How-
ever, most of these posts are not useful or relevant and need
to be filtered out to have a concise summary. Besides, fine-
grained analysis and understanding are also necessary to
take actionable decisions. Such fine-grained analysis could
be a report of “infrastructure or utility damage,” “urgent
needs,” and so on. This requires having a classifier that can
categorize such information. Our study focused on creating
a dataset, which can be used to train a classifier and to cat-
egorize such information useful for actionable decisions. To
this end, HumAID is the largest dataset, which will be pub-
licly available for the research community. We also provide
classification benchmark results, which can used to compare
in future studies.

Broader Impact
We collected tweets from Twitter using Twitter streaming
API by following its terms of service. The annotated dataset
can be used to develop a model for humanitarian response
tasks. We release the dataset by maintaining Twitter data re-
distribution policy.
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