
Simultaneously Searching with Multiple Settings: An Alternative to
Parameter Tuning for Suboptimal Single-Agent Search Algorithms∗

Richard Valenzano, Nathan Sturtevant, Jonathan Schaeffer
University of Alberta

{valenzan, nathanst, jonathan}@cs.ualberta.ca

Karen Buro
Grant MacEwan University

burok@macewan.ca

Akihiro Kishimoto
Tokyo Institute of Technology and

Japan Science and Technology Agency
kishimoto@is.titech.ac.jp

When constructing a suboptimal single-agent search sys-
tem, there are a number of decisions to be made that can sig-
nificantly affect search efficiency. Each of these design de-
cisions — including the selection of an algorithm, a heuris-
tic function, parameter values, etc. — can greatly impact
search speed. Following the work of others (Hutter, Hoos,
and Stützle 2007) we refer to the set of choices made for an
algorithm as the algorithm’s configuration.

In practice, configurations are tested offline so as to find
some single setting to be used in any future search. Unfor-
tunately, tuning is an expensive process that is specific to
each problem domain. Moreover, while a tuned system will
perform well on average, there are often other configuratons
with significantly better performance on certain problems.
This is true even if we restrict the space of candidate config-
urations to those only varying in parameter values. For ex-
ample, consider using weighted IDA* (WIDA*) (Korf 1993)
to solve the standard 100 4 × 4 sliding tile puzzle problems
(Korf 1985). From the set of weights S = {1, 2, ..., 25}, the
weight (denoted w) of 7 was found to have the fastest perfor-
mance on this problem set. However, on 82 of the 100 prob-
lems, there is a weight in S that expands less than half the
nodes that w = 7 does, and on 7 of these problems, there is
a weight that requires over a 100 fewer times the number of
node expansions than the w = 7 configuration. In fact, if we
could perfectly select the weight in S that performs best on
each problem before beginning a search, search speed would
improve by a factor of 25. These results demonstrate that
correctly selecting configurations on a problem-by-problem
basis can dramatically improve search speed.

Dovetailing has been shown to be an effective approach
to this problem in several domains (Valenzano et al. 2010).
Dovetailing is a technique from the parallel systems com-
munity that involves running a parallel algorithm on a single
processor. For our purposes, we define the input of this strat-
egy as a problem p, an algorithm a, and a set of configura-
tions Θ for a, called the candidate set. As each configuration
in Θ defines a unique instance of a, the candidate set can be
thought of as a set of algorithm instances.

The dovetailing procedure consists of a number of rounds.
Each round works as follows: each given algorithm instance

∗This paper has been accepted to ICAPS 2010.
Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

will, in order, advance its search by a single step. If some
algorithm finds a goal on its turn, the solution found will
be returned and dovetailing will stop. If a round completes
without having found a solution, a new round begins. The
process repeats until a solution is found.

A key component of dovetailing is that each algorithm
instance performs a completely independent search. There
is no memory shared between instances, and communication
is restricted to messages indicating that a solution has been
found for the current problem and the search should stop.

As each instance advances by a single step during each
round, any instance in Θ will have performed approximately
as much work as any other at any time. Therefore, the to-
tal problem-solving time when dovetailing on a problem p
is approximately |Θ| times the problem-solving time of the
candidate algorithm with the best performance on p. In the
experiments presented in this paper, each algorithm step cor-
responds to exactly a single node expansion.

Parallel dovetailing takes in an algorithm a and a candi-
date set Θ, and assigns a unique configuration θ ∈ Θ to
each of |Θ| processors. Each processor will then perform an
independent search on a problem p with the algorithm con-
figuration assigned to it. Again, communication is limited
to messages indicating that p has been solved and proces-
sors should proceed to the next problem. The time taken
by parallel dovetailing with an algorithm a and a candidate
configuration set Θ on a problem p is then given by the min-
imum time needed by any configuration in Θ to solve p.

The first test performed was of dovetailing over 15
WIDA* instances, where configurations only differ in the
assigned weight. In the case of the 5×5 sliding-tile puzzle,
the single WIDA* weight with the best performance over
1000 problems was the w = 5 configuration. Figure 1 shows
the dovetailing improvement when compared to this weight.
For each candidate set size k, the figure shows the ratio of
the number of nodes expanded by the w = 5 configuration

to the best of the
(

15

k

)

candidate sets of containing k con-
figurations, the worst of the candidate sets, and the average

performance over all
(

15

k

)

sets. This allows us to evaluate
how robust dovetailing is with respect to candidate set se-
lection. Wherever the value is greater than 1, dovetailing is
outperforming the single configuration of w = 5 alone.

The figure indicates that dovetailing offers significant
speedups. When the candidate set sizes reach 3 and 5, the

157

Proceedings of the Third Annual Symposium on Combinatorial Search (SOCS-10)

Figure 1: Dovetailing over weights in WIDA* on 1000 5×5

sliding-tile puzzles.

average and worst configurations, respectively, outperform
even the single best configuration alone (ie. have a ratio
greater than 1). An analogous set of experiments were run
when using WRBFS (Korf 1993) with the same starting con-
figuration set and on 1000 4×5 sliding-tile puzzle problems.
While still evident, the speedups are not as dramatic as with
WIDA*. For example, when the candidate set is of size 15,
dovetailing uses 1.9 times fewer node expansions than the
single best configuration of w = 3.

When dovetailing over candidate sets in which the con-
figurations differ only in the operator ordering used, the
speedups are similarly dramatic. With a candidate set con-
taining 24 configurations, all with a weight of 5 but a differ-
ent order, the speedup seen when dovetailing over WIDA*
instances on the 5×5 sliding-tile puzzle is by a factor of 37.1
over the single best configuration. When all configurations
have a weight of 10, the speedup factor is 142.5. Similar
behaviour is seen when using WRBFS instead of WIDA*.

To determine the effectiveness of parallel dovetailing with
WIDA* and WRBFS, the speedups reported above are mul-
tiplied by the candidate set size being used. For example,
parallel dovetailing with 24 cores in the 5×5 sliding-tile
puzzle over 24 WIDA* configurations each with a weight
of 5 but a different operator ordering, results in a speedup
of 37×24 = 888 over the single best ordering alone. As
such, in most of the experiments parallel dovetailing results
in a super-linear speedup, which occurs when the speedup
is greater than the number of processors being used.

Dovetailing is less suitable for use with high-memory al-
gorithms such as WA* and BULB (Furcy and Koenig 2005)
since the memory demands grow linearly in the candidate set
size. However, the parallel version of dovetailing can be use-
ful when applied to these algorithms in a distributed memory
system. For example, in the 4 × 4 sliding-tile puzzle do-
main, dovetailing with WA* over instances differing only in
operator ordering performs comparably with a state-of-the-
art parallelization of WA* known as wPBNF (Burns et al.
2009). In this domain, wPBNF outperforms parallel dove-
tailing when small weights are used. However, dovetailing
scales much better to larger weights for which wPBNF is
unable to achieve any speedups. For such weights, paral-
lel dovetailing does not achieve super-linear speedups but it
does effectively speed up the search. This performance is

even more impressive when we consider that parallel dove-
tailing is very simple and easy to implement.

When parallel dovetailing is used with BULB, the
speedups are modest when compared to the single fastest
configuration. For example, when using 24 instances with
a beam width of 7 but different operator orderings, the
speedup factor is 3.8 on 7 × 7 sliding-tile puzzle problems.
However, the solution quality improves substantially as the
speedup is by a factor of 44 when compared to the beam
width with the most similar solution quality.

Parallel dovetailing was also found to be a useful when
used with an automated planner. 36 different configurations
of the WA*-based Fast Downward planner (Helmert 2006)
were constructed by varying the weight, the heuristic, and
the use of preferred operators. Each configuration was given
30 minutes and 2 GB of memory to solve each of 846 prob-
lems taken from the satisficing track of the last planning
competition. The average configuration solved 653 of prob-
lems and the best solved 746. When using parallel dovetail-
ing over all 36 configurations in a distributed setting, 789 of
the 846 problems were solved — 43 more than the single
best configuration alone.

These experiments demonstrate the effectiveness of dove-
tailing, and its corresponding parallelization. Additional
experiments indicate that speedups are also seen when the
technique is used in the pancake puzzle domain with WIDA*
or WRBFS (Valenzano et al. 2010). Parallel dovetailing has
also been shown to offer super-linear speedups when used
with these algorithms and has been shown to be an effec-
tive parallelization of WA* and BULB. In addition, it can be
used to increase the number of problems that a WA*-based
planner can solve. Therefore, dovetailing should be viewed
as an attractive form of parallelization for such systems, and
as an effective enhancement to the linear-space algorithms
described above.

Acknowledgments
This research was supported by iCORE, NSERC, and JST
Presto.

References
Burns, E.; Lemons, S.; Ruml, W.; and Zhou, R. 2009.
Suboptimal and anytime heuristic search on multi-core ma-
chines. In ICAPS.

Furcy, D., and Koenig, S. 2005. Limited Discrepancy Beam
Search. In IJCAI, 125–131.

Helmert, M. 2006. The fast downward planning system. J.
Artif. Intell. Res. (JAIR) 26:191–246.

Hutter, F.; Hoos, H. H.; and Stützle, T. 2007. Automatic
Algorithm Configuration Based on Local Search. In AAAI,
1152–1157. AAAI Press.

Korf, R. E. 1985. Iterative-Deepening-A*: An Optimal
Admissible Tree Search. In IJCAI, 1034–1036.

Korf, R. E. 1993. Linear-Space Best-First Search. Artif.
Intell. 62(1):41–78.

Valenzano, R.; Sturtevant, N.; Schaeffer, J.; Buro, K.; and
Kishimoto, A. 2010. Simultaneously Searching with Multi-
ple Settings: An Alternative to Parameter Tuning for Subop-
timal Single-Agent Search Algorithms. In ICAPS, 177–184.

158

