
Single-Frontier Bidirectional Search

Carsten Moldenhauer
Humboldt-Universität zu Berlin

Institut für Informatik
10099 Berlin, Germany

moldenha@informatik.hu-berlin.de

Ariel Felner
Information Systems Engineering

Ben-Gurion University
Be’er-Sheva, Israel 85104

felner@bgu.ac.il

Nathan Sturtevant,,, Jonathan Schaeffer
Computing Science

University of Alberta
Edmonton, Alberta, Canada T6G 2E8
{nathanst, jonathan}@cs.ualberta.ca

Abstract

We introduce a new bidirectional search algorithm, Single-
Frontier Bidirectional Search (SFBDS). Unlike traditional
BDS which keeps two frontiers, SFBDS uses a single fron-
tier. At a particular node we can decide to search from start
to goal or from goal to start, choosing the direction with the
highest potential for minimizing the total work done. We pro-
vide theoretical analysis that explains when SFBDS will work
validated by experimental results.1

Single-frontier bidirectional search

We use the term node and use capital letters (e.g. N ) to
indicate nodes of the search tree, while the term state and
small letters (e.g., s) are used to indicate states (or vertices)
of the input graph.

Assume the task is to find a path between s and g on a
graph. Regular search algorithms formalize a search tree
such that each node of the tree includes one state of the
graph. Assume that node N corresponds to state x. The
task at N is to find a (shortest) path between x and g. When
a heuristic is applied, it estimates the length of the path from
x to g (h-cost) and adds this to the accumulated path from s
to x (g-cost). When the goal is reached via an optimal path,
we backtrack and the states of the path are passed up the tree
to construct the solution path.

Our new algorithm is called single-frontier bidirectional
search (SFBDS). In SFBDS each node is defined as a pair of
states x and y denoted by N(x, y). The task of such a node
is to find a shortest path between x and y. This can be done
by treating x as the start and y as the goal, searching from x
to y. An alternative is to reverse the direction of the search
by treating y as the start and x as the goal, searching from
y to x. If at N(x, y) both x and y have two neighbors, then
the children of N of the two alternatives are:

(a) regular direction (expand x): (x1, y) and (x2, y); or
(b) reverse direction (expand y): (x, y1) and (x, y2).

Each node N should be expanded according to one of these
alternatives. The search terminates when a goal node is
reached (N(x, y) where x = y). The choice of search di-
rection in N is reflected by N ’s children only, but no other
node in the search is influenced by this choice of direction.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1A full version of this works appears in (Felner et al. 2010)

Solutions or cost estimates from node N are naturally passed
up to the parent of N , regardless of the direction used for
N . Constructing the solution path is straightforward. When
backtracking up the search tree from a goal node, edges that
correspond to forward expansions are appended to the front
of the path while edges that correspond to backwards expan-
sions are appended to the end of the path.

We use a jumping policy to choose which direction to con-
tinue the search at each node. Define the task search tree
(task tree in short) for a given jumping policy as the tree
obtained by using N(s, g) as the root of the tree. Any ad-
missible algorithm can be used to search for a shortest path
from the root to any goal node in the task search tree.

The concept of duality and an algorithm called dual
search (DS) (Zahavi et al. 2008) was introduced in the con-
text of permutation state spaces. DS has two main limita-
tions. First, it only works in domains (e.g., combinatorial
puzzles) which have the special property that each operator
corresponds to a location-based permutation. Similarly, it
assumes that the same type of operators are applicable to all
states. Second, the concept of the dual state and the DS al-
gorithm are technically complicated and hard to understand.
SFBDS generalizes DS to all possible state spaces and is
simpler to understand.

Analysis

Given a specific jumping policy the task tree is determined.
Every shortest path in the task tree encodes a shortest path
in the graph and vice versa. Therefore, using any admissible
search algorithm on the task tree will return an admissible
solution for the original graph. No gains can be provided
by using any other search algorithm besides A* (or any of
its variants) because it is guaranteed to find the optimal path
and the nodes it expands are mandatory. This applies to any
type of search tree and to the task tree as well. The main aim
of SFBDS is to minimize search effort by choosing an ap-
propriate jumping policy. Regular unidirectional search uses
the policy never jump. Similarly, a unidirectional search
from the goal to the start employs the policy jump only at
the root. The idea is to improve upon these jumping policies.
Unfortunately, the space of jumping policies is exponential
in the number of nodes expanded and it is out of the scope
to determine an optimal jumping policy at runtime. How-
ever, heuristic approaches can be used. We distinguish two

151

Proceedings of the  Third Annual Symposium on Combinatorial Search (SOCS-10)



general types of domains for the effectiveness of SFBDS:
Case 1: Exponential domains with uniform branching

factor b where IDA* is traditionally used. Since the branch-
ing factor is uniform all the task trees have the same struc-
ture and they will all have O(bd) node expansions. In such
domains, specific jumping policies exploiting heuristic in-
formation have the potential to reduce the search effort.

Case 2: Polynomial domains where A* is traditionally
used. In such case, usually the graphs have many cycles.
Best-first algorithms like A* store open- and closed-lists and
perform duplicate detection (DD). However, performing DD
in SFBDS is more complicated than in A*. If there are V
states in the graph, there are O(V 2) possible tasks that can
be created out of all possible pairs of states and the chance
for identifying a duplicate node is much smaller than uni-
directional search. Therefore SFBDS has the potential to
asymptotically increase the size of the search space. Fur-
thermore, unlike exponential domains, polynomial domains
might have deadends. SFBDS with might not recognize
dead ends until at least one of the two states of a node is
a dead end. This has the potential to significantly increase
the search effort.

Jumping policies

SFBDS has the flexibility of deciding which side of the
search to expand next by choosing an appropriate jumping
policy. In general, one wants to expand the side with the
subtree below it that can be searched most efficiently. Three
possible features for a jumping policy are considered here.

(1) Branching factor: For a node N(x, y), x and y may
have different branching factors. Expand the state with the
smallest branching factor.

(2) Side with larger heuristics: Assume that the graph
is undirected and thus for every two states, x and y,
dist(x, y) = dist(y, x). In many cases, admissible heuris-
tics are symmetric too, meaning that h(x, y) = h(y, x) (e.g.,
Manhattan distance). However, some admissible heuristics
are not symmetric: h(x, y) 6= h(y, x). An example is a
goal-oriented PDB. When an asymmetric heuristic exists we
can perform these two possible lookups for node N(x, y).
If h(x, y) > h(y, x) we choose to expand x and vise versa.
This was called the jump if larger policy (JIL) in (Zahavi
et al. 2008). Even if the heuristic is symmetric we can do
the following. Perform a 1-step lookahead and peek at all
the children of x (y) and measure their heuristic towards y
(x). If one side tends to have larger heuristic values, choose
to expand that side. We refer to this as the JIL(k) policy,
where k is the lookahead depth. The JIL method described
above is JIL(0).

Experiments

Puzzles have a small and stable branching factor and belong
to case 1 above. We demonstrate the effectiveness of SFBDS
on the 15 puzzle and on the pancake puzzle. We repeated the
experiments first performed in (Korf 1985) using the simple
Manhattan distance (MD) heuristic; this time including SF-
BDS with a number of jumping policies. The results are in
Table 1 (top). The first line uses IDA* without any jump-
ing and produces the identical node counts to those reported
in (Korf 1985). The second line uses SFBDS-IDA* with

H Alg. Policy Nodes Time

15 puzzle

MD IDA* Never 363,028,020 51s

MD SFBDS BF 256,819,013 37s
MD SFBDS JIL(1) 91,962,501 18s
MD SFBDS JIL(2) 71,290,100 17s

17 pancake

regular IDA* Never 342,308,368,717 284,054s
reversed IDA* Never 14,387,002,121 12,485s

max IDA* Never 2,478,269,076 3,086s

max SFBDS JIL(0) 260,506,693 362s
max SFBDS JIL(1) 17,336,052 120s

Table 1: 15 puzzle (top). 17 pancake (bottom).

the jumping policy of expanding the side with the smaller
branching factor (BF). The next line reports the results for
JIL(1). The results show the great potential in this direc-
tion. Even though the heuristic is symmetric, performing
the JIL(1) policy reduced the number of generated nodes by
a factor of 4 and the time overhead by almost a factor of 3.
Further lookahead, JIL(2), provided modest gains.

A PDB is usually built to estimate the distance to a given
goal state. However, in many permutation puzzles with the
appropriate mapping of the tiles the same PDB can be used
to estimate distances between any pairs of states. There-
fore, given a node N(x, y) and a PDB both hx(y) (regular
lookup) as well as hy(x) (reverse lookup) can be calculated.
Different PDB lookups are performed and different values
can be obtained. Table 1 (bottom) presents results averaged
over 10 random instances of the 17-pancake puzzle. We used
the same 7-token PDB used by (Zahavi et al. 2008) of the
largest pancakes. The first line is a regular IDA* search with
one PDB lookup. The second line always uses the reverse
lookup. It produced inconsistent heuristic values because
different tokens are being looked up at every step. Adding
BPMX on top results in a 24-fold reduction in the number
of nodes generated. Taking the maximum of both heuristics
further improved the results. Line 4 shows the results of SF-
BDS with the JIL(0) policy where another 10-fold improve-
ment was obtained. The first four lines already appeared in
(Zahavi et al. 2008). However, we now also applied the new
JIL(1) policy. With JIL(1), we get a further reduction by a
factor of 15 in nodes, but only a factor of 3 in time because
of the lookahead overhead. These are the state-of-the-art re-
sults for such PDBs on this domain. Similar tendencies were
obtained for smaller sizes of this puzzle.

We experimented with scale-free graphs and with grids
which are commonly used for pathfinding as examples for
polynomial domains where A* is used. Since dead ends oc-
cur and the graph is highly connected our results suggest that
the gains from SFBDS are minimal for these domains.

References
Felner, A.; Moldenhauer, C.; Sturtevant, N.; and Schaeffer, J. 2010.
Single frontier bidirectional search. In AAAI-10.

Korf, R. E. 1985. Depth-first iterative-deepening: An optimal
admissible tree search. Artificial Intelligence 27(1):97–109.

Zahavi, U.; Felner, A.; Holte, R. C.; and Schaeffer, J. 2008. Duality
in permutation state spaces and the dual search algorithm. Artif.
Intell. 172(4-5):514–540.

152




