
On the Scaling Behavior of HDA*

Akihiro Kishimoto
Tokyo Institute of Technology

and JST PRESTO

Alex Fukunaga
University of Tokyo

Adi Botea∗
NICTA and

The Australian National University

1 Introduction
Parallel search on parallel clusters has the potential to pro-
vide the memory and the CPU resources needed to solve
challenging search problems, including planning instances.

The Hash Distributed A* (HDA*) algorithm (Kishimoto,
Fukunaga, and Botea 2009) is a simple, scalable paralleliza-
tion of A*. HDA* runs A* on every processor, each with
its own open and closed lists. HDA* uses the work distri-
bution mechanism of PRA* (Evett et al. 1995), in which a
hash function assigns each state to a unique “owner” proces-
sor, and newly generated states are sent to their owner. This
allows effective load balancing and duplicate pruning.

Some recent approaches parallel best-first search (Korf
and Schultze 2005; Zhou and Hansen 2007; Burns et al.
2009) are multi-threaded, and limited to shared-memory en-
vironments, which typically have few processors (currently,
8 or fewer). HDA*, on the other hand, does not rely on
shared memory. It is implemented using the standard MPI
message passing library, which allows to run it on a wide
array of parallel environments.

Using AI planning instances, we recently showed that
HDA* scaled up well on both shared memory multicores
with up to 8 cores, and distributed memory clusters with up
to 128 cores (Kishimoto, Fukunaga, and Botea 2009). In
this paper, using both planning and 24-puzzle instances, we
show that the algorithm scales up further on larger clusters,
with up to 1024 cores and two terabytes of RAM.

2 Experiments
The experiments were performed on a Sun Fire X4600 clus-
ter. Each node has 32 GB RAM and 8 AMD dual core
Opteron processors (total 16 cores per node), with a clock
speed of 2.4GHz. We used 1-64 nodes (i.e., 16-1024 cores).

We evaluate HDA* on two high-performance problem
solvers. The first solver is the Fast Downward domain-
independent planner, using the optimal version with the
merge-and-shrink abstraction heuristic reported by Helmert,
Haslum, and Hoffmann (2007). The second solver is
the application-specific 24-puzzle solver by Korf and Fel-
ner (2002). The latter processes states 2-5x faster, which

∗NICTA is funded by the Australian Government.
Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

emphasizes parallel-specific costs such as the communica-
tion and the synchronization overhead. Hence, integrating
HDA* into both types of solvers helps us get a more com-
plete picture of its efficiency across a range of problems.

1 core 16 cores 64 cores 128 cores 512 cores 1024 cores Abst Opt
RAM: 1 node 4 nodes 8 nodes 32 nodes 64 nodes time len
128GB 32GB 128GB 256GB 1TB 2TB

Driverlog13 n/a n/a n/a n/a 41.01 27.43 0.63 26
Freecell6 n/a n/a n/a 137.08 50.36 23.39 8.45 34
Freecell7 2864.64 n/a 66.85 34.00 11.59 18.92 10.52 41

n/a 42.85 84.25 247.16 151.41
Rover12 1149.74 109.62 17.68 14.50 4.06 3.47 0.17 19

10.49 65.03 79.29 283.19 331.34
Satellite7 n/a n/a 502.51 209.73 55.31 37.64 0.34 21
ZenoTrav11 546.67 61.26 16.58 8.55 2.76 9.05 0.35 14

8.92 32.97 63.94 198.07 60.41
ZenoTrav12 n/a n/a n/a n/a 180.80 90.14 0.48 21
PipNoTk24 1396.29 139.25 40.34 20.47 6.11 11.60 7.24 24

10.03 34.61 68.21 228.52 120.37
Pegsol28 1010.65 83.22 21.77 10.41 3.23 2.93 1.04 35

12.14 46.42 97.08 312.90 344.93
Pegsol29 5143.24 n/a n/a 52.28 13.86 7.89 16.76 37

n/a n/a 98.38 371.09 651.87
Pegsol30 n/a n/a n/a n/a 34.14 18.19 3.30 48
Sokoban24 2635.37 n/a 57.29 33.52 15.97 47.91 1.55 205

n/a 46.00 78.62 165.02 55.01
Sokoban26 n/a n/a 155.20 77.60 25.29 26.50 2.34 135
Sokoban27 n/a n/a n/a n/a 36.53 26.57 3.68 87

Table 1: Search time (excluding abstraction initialization) and
speedup relative to 1 core (bottom line in cells, where applicable).
“n/a” = exhausted-memory failure. No speedup can be computed
in cases with n/a in the “1 core” cell.

We first describe the planning results, obtained with ab-
straction size 1000. As shown in Table 1, the speedup of
HDA* vs. A* was between 9-12 with 16 cores, 33-65 with
64 cores, 64-98 with 128 cores, 165-371 with 512 cores, and
55-651 with 1024 cores. The parallel efficiency of HDA*
relative to 1 core ranges between 0.56-0.76 for 16 cores,
0.52-1.02 for 64 cores, 0.50-0.77 for 128 cores, 0.32-0.72
with 512 cores, and 0.05-0.64 with 1024 cores.

Figure 1 highlights more clearly the speedup. We show
the number of processors on the x-axis and relative runtime
on the y-axis, where the relative runtime of HDA* on an in-

61

Proceedings of the Third Annual Symposium on Combinatorial Search (SOCS-10)

Figure 1: HDA* relative runtime in planning.

stance for n cores is defined as tn/tmin, where tn is the run-
time with n cores, and tmin is the runtime for the minimal
number of cores cmin ∈ {1, 16, 64, 128, 256, 512, 1024}
which was required to solve the problem. For the easier
problems which could be solved with only a single core,
HDA* scales well for up to 64 cores, but from 128 cores
the speedups begin to deteriorate. For the hardest problems,
HDA* displays good scaling even for 1024 cores – for the 4
problem instances that required 512 cores to solve, the rel-
ative runtime with 1024 cores ranges from 0.5-0.7. In other
words, while the scalability of HDA* eventually degrades
for easier problems, the algorithm scales well, relative to the
minimal number of processors needed to solve the problem,
on the hardest problems.

We briefly summarize other results from the planning ex-
periments. Kumar et al (1988), as well as Karp and Zhang
(1988) proposed a random work distribution strategy for
best-first search where generated nodes are sent to a random
processor. This achieves good load balancing but, unlike
hash-based distribution, has no global duplicate detection.
When both are implemented in HDA*, hash-based distribu-
tion is more than one order of magnitude better than random
distribution in terms of execution time and expanded nodes.

As the number of machines increases, the larger aggre-
gate RAM allows to solve more hard IPC instances. For
example, with sequential Fast Downward on a machine with
32GB, we could only solve 22 out of the 30 IPC-6 Sokoban
instances. Using 512 cores and aggregate 1024GB RAM, 28
instances were solved. Furthermore, it was possible to solve
all 30 Pegsol instances with 512 cores. As shown in Table
1, Driverlog13, Zenotrav12, Pegsol30, and Sokoban-27 re-
quired more than 128 cores and 256GB aggregate memory.

One counterintuitive result is that memory contention
within each node is more expensive than the communication
between nodes. Thus, on clusters with fast interconnections
(ours uses Infiniband), if the number of cores is kept con-
stant, it can be better to distribute them among more nodes.

Now we turn to the 24-puzzle experiments, which used
the 50-instance set reported in (Korf and Felner 2002), Table
2. First, we investigated the scalability of HDA* by solv-
ing two instances (p1 and p29) on 1-1024 cores, using the
maximal number of cores per node. For a given number of
cores, the speedups reported in Table 2 are lower than most

speedups observed in planning. States are processed much
faster in the application specific 24-puzzle solver, and there-
fore parallel-specific overheads have a greater weight in the
total running time. Note the speedup degraded as the num-
ber of cores grows from 512 to 1024. Similarly to planning
we observe a significant search overhead (Table 2).

Execution time and speedup
1 core 64 cores 128 cores 512 cores 1024 cores

4 nodes 8 nodes 32 nodes 64 nodes
p1 828.07 30.13 16.93 8.94 15.95

(27.48) (48.91) (92.63) (51.92)
p29 1144.36 39.17 20.55 8.00 13.92

(29.22) (55.69) (143.05) (82.20)
Node generation (millions)

p1 382.09 559.21 603.20 1161.53 3704.54
p29 513.80 706.86 728.58 999.06 3122.84

Load Balance (Node Generation)
p1 1.20 1.35 1.34 1.36

p29 1.21 1.33 1.34 1.32

Table 2: 24 puzzle scaling.

Next, we ran the 24-puzzle solver on a set of 64 nodes,
which have 1024 cores in total, and varied the number of
cores used per node between 1-16, so that 64-1024 cores
were used. HDA* solved 31 problems using 512 cores
(4GB/core), 34 problems on 256 cores (8GB/core), 36 prob-
lems on 128 cores (16GB/core), and 39 problems on 64
cores (32GB/core). That is, reducing the number of pro-
cesses down to one process per node increases the number
of solved instances. Using more cores on one node increases
the search overhead and partitions the local RAM into more
equal-size parts, one for each core. These two effects com-
bined make it more likely that the RAM partition of one core
will be exhausted before finding a solution.

References
Burns, E.; Lemons, S.; Zhou, R.; and Ruml, W. 2009. Best-first
heuristic search for multi-core machines. In Proc. IJCAI.
Evett, M.; Hendler, J.; Mahanti, A.; and Nau, D. 1995. PRA∗:
Massively parallel heuristic search. Journal of Parallel and Dis-
tributed Computing 25(2):133–143.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexible abstrac-
tion heuristics for optimal sequential planning. In Proceedings of
ICAPS-07, 176–183.
Karp, R., and Zhang, Y. 1988. A randomized parallel branch-and-
bound procedure. In Symp. on Theory of Computing, 290–300.
Kishimoto, A.; Fukunaga, A.; and Botea, A. 2009. Scalable, paral-
lel best-first search for optimal sequential planning. In ICAPS-09,
201–208.
Korf, R. E., and Felner, A. 2002. Disjoint pattern database heuris-
tics. Artificial Intelligence 134(1-2):9–22.
Korf, R., and Schultze, P. 2005. Large-scale parallel breadth-first
search. In Proc. AAAI, 1380–1386.
Kumar, V.; Ramesh, K.; and Rao, V. N. 1988. Parallel best-first
search of state-space graphs: A summary of results. In Proceedings
of AAAI-88, 122–127.
Zhou, R., and Hansen, E. 2007. Parallel structured duplicate de-
tection. In Proc. AAAI, 1217–1223.

62

