# Landmark Heuristics for the Pancake Problem 

Malte Helmert<br>Albert-Ludwigs-Universität Freiburg<br>Institut für Informatik<br>Georges-Köhler-Allee 52<br>79110 Freiburg, Germany<br>helmert@informatik.uni-freiburg.de


#### Abstract

We describe the gap heuristic for the pancake problem, which dramatically outperforms current abstraction-based heuristics for this problem. The gap heuristic belongs to a family of landmark heuristics that have recently been very successfully applied to planning problems.


## Introduction

The pancake problem is a famous search problem (e.g., Dweighter 1975; Gates and Papadimitriou 1979; Heydari and Sudborough 1997) where the objective is to sort a sequence of objects (pancakes) through a minimal number of prefix reversals (flips).

A state of the n-pancake problem represents a stack of $n$ pancakes of different size, commonly given as a permutation in sequence notation. To ease notation later on, we represent pancake stacks as sequences over $\{1, \ldots, n+1\}$, where the last sequence element is always $n+1$, representing the "plate" on which the $n$ pancakes are arranged. Successor states are obtained by flipping $k \in\{2, \ldots, n\}$ pancakes at the top of the stack (a $k$-flip, denoted by $F_{k}$ ), i. e., by reversing the order of the first $k$ sequence elements. The goal is to transform a given state into the identity permutation with as few flips as possible. Figure 1 shows a 6 -pancake instance with initial state $\langle 3,2,5,1,6,4,7\rangle$. An optimal solution is given by the flip sequence $\left\langle F_{5}, F_{6}, F_{3}, F_{4}, F_{5}\right\rangle$.

The prevalent approach for the pancake problem in the heuristic search literature is the use of pattern database (PDB) heuristics; the most important representatives are the nonadditive PDB heuristics of Zahavi et al. (2008) and the additive PDB heuristics of Yang et al. (2008). The literature does not provide experimental results for these approaches for instances with more than 17 pancakes. Our own experiments with the solver of Zahavi et al. suggest that it does not reliably scale to instances of size beyond 20 within usual memory constraints and a one-day timeout. According to Yang et al. (personal communications), neither does their approach. Here, we describe an alternative heuristic, not based on abstraction, that optimally solves instances with up to 60 pancakes in a matter of seconds for most cases and minutes for hard cases.

[^0]

Figure 1: A 6-pancake instance ( $s=\langle 3,2,5,1,6,4,7\rangle$ ).

## The Gap Heuristic

Let $s=\left\langle s_{1}, \ldots, s_{n+1}\right\rangle$ be an $n$-pancake state. Its heuristic value is the number of stack positions for which the pancake at that position is not of adjacent size to the pancake below:

$$
h^{\text {gap }}(s):=\left|\left\{i\left|i \in\{1, \ldots, n\},\left|s_{i}-s_{i+1}\right|>1\right\} \mid .\right.\right.
$$

We get $h^{\text {gap }}(s)=5$ for the state in Fig. 1 because there are 5 gaps in this pancake stack, namely below positions $2,3,4,5$, and 6 . For example, there is a gap below position 2 because the 2 nd and 3 rd pancake in the sequence differ in size by more than 1 , and there is a gap below position 6 because the 6th pancake and the "plate" differ in size by more than 1. The only place without a gap is below position 1 , since the two first pancakes in the sequence are of adjacent size. A pancake problem goal state has no gaps at all, and hence its heuristic value is 0 . It is easy to see that a $k$-flip can reduce the number of gaps by at most 1 : the only gap it can potentially "heal" is the one between positions $k$ and $k+1$. Hence, $h^{\text {gap }}$ is a consistent and admissible heuristic.

As far as we know, the gap heuristic has not been previously proposed in the academic literature. However, it was used by Tom Rokicki in his winning entry to a 2004 programming contest for finding short (possibly suboptimal) solutions for the pancake problem. ${ }^{1}$ Our discovery of the heuristic is independent from Rokicki's and was inspired by the article by Gates and Papadimitriou (1979), the first academic paper on the pancake problem. Gates and Papadimitriou show that the $n$-pancake state space $(n \geq 4)$ has a diameter of at least $n$ because there exist arrangements with $n$ gaps, and flips can only eliminate one gap at a time. (Instead of gaps, they speak of adjacencies, the absence of gaps.) We call the heuristic $h^{\text {gap }}$ because it counts gaps and because it is based on an idea of Gates and Papadimitriou.)

[^1]
## Evaluation

We implemented the gap heuristic within a standard IDA* algorithm and evaluated it on instances with 2-60 pancakes. The results in Tab. 1 show that the heuristic scales much better than previous approaches. Further improvements should be possible, e. g. by making the heuristic computation incremental and by ordering gap-removing moves first.

As mentioned in the introduction, current PDB-based approaches do not reliably scale beyond size 19 or 20 . The advantage of $h^{\text {gap }}$ can be explained by theoretical considerations: a PDB which distinguishes the $k$ largest pancakes, as considered by Zahavi et al., never gives heuristic values beyond $2 k$. For a 60-pancake instance, a size-6 PDB of this form already has at about 36 billion entries, yet its heuristic values are bounded by 12 . By contrast, we can show analytically that the expected value of $h^{\text {gap }}$ on a random $n$-pancake state is $n-2+\frac{1}{n}$, i. e., about 58.02 for size- 60 instances.

## Beyond Pancakes

The gap heuristic can be seen in a wider context as a special case of an admissible landmark heuristic, a family of heuristics which set the current state of the art in optimal classical planning (Helmert and Domshlak 2009). Indeed, if we define the pancake problem as a STRIPS planning domain in a natural way (as a thought experiment - the representation would be too large in practice), standard polynomial-time techniques based on delete relaxation can prove that disjunctions of the form on $(i, i+1) \vee$ on $(i+1, i)$, expressing that there is no gap between pancakes $i$ and $i+1$, are landmarks (Richter, Helmert, and Westphal 2008). This means that they must be achieved at some point in any solution, and by using these landmarks within the admissible landmark heuristic of Karpas and Domshlak (2009), we can exactly recover $h^{\text {gap }}$. This shows that techniques based on landmarks and delete relaxation can be fruitfully applied to classical permutation puzzles. In the future, we would like to further explore this idea in the context of other puzzles, such as TopSpin.

## References

Dweighter, H. 1975. Elementary problem E2569. The American Mathematical Monthly 82(10):1010.
Gates, W. H., and Papadimitriou, C. H. 1979. Bounds for sorting by prefix reversal. Discrete Math 27:47-57.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical paths and abstractions: What's the difference anyway? In Proc. ICAPS 2009, 162-169.
Heydari, M. H., and Sudborough, I. H. 1997. On the diameter of the pancake network. Journal of Algorithms 25(1):67-94.
Karpas, E., and Domshlak, C. 2009. Cost-optimal planning with landmarks. In Proc. IJCAI 2009, 1728-1733.
Richter, S.; Helmert, M.; and Westphal, M. 2008. Landmarks revisited. In Proc. AAAI 2008, 975-982.
Yang, F.; Culberson, J.; Holte, R.; Zahavi, U.; and Felner, A. 2008. A general theory of additive state space abstractions. JAIR 32:631662.

Zahavi, U.; Felner, A.; Holte, R. C.; and Schaeffer, J. 2008. Duality in permutation state spaces and the dual search algorithm. AIJ 172(4-5):514-540.

| $n$ | $L^{*}$ | $h($ init $)$ | nodes | time |
| ---: | ---: | ---: | ---: | ---: |
| 2 | 0.515 | 0.515 | 2 | 0.002 |
| 3 | 1.503 | 1.338 | 3 | 0.002 |
| 4 | 2.506 | 2.249 | 7 | 0.002 |
| 5 | 3.545 | 3.211 | 13 | 0.002 |
| 6 | 4.601 | 4.193 | 25 | 0.002 |
| 7 | 5.601 | 5.144 | 46 | 0.002 |
| 8 | 6.677 | 6.155 | 87 | 0.002 |
| 9 | 7.721 | 7.186 | 164 | 0.002 |
| 10 | 8.692 | 8.093 | 293 | 0.002 |
| 11 | 9.732 | 9.034 | 517 | 0.002 |
| 12 | 10.689 | 9.974 | 782 | 0.002 |
| 13 | 11.791 | 11.078 | 1456 | 0.002 |
| 14 | 12.715 | 11.970 | 2042 | 0.002 |
| 15 | 13.735 | 12.979 | 3527 | 0.002 |
| 16 | 14.809 | 14.085 | 4264 | 0.003 |
| 17 | 15.770 | 15.088 | 6279 | 0.003 |
| 18 | 16.673 | 15.937 | 10295 | 0.003 |
| 19 | 17.707 | 16.999 | 12824 | 0.004 |
| 20 | 18.783 | 18.070 | 17050 | 0.005 |
| 21 | 19.707 | 19.015 | 24758 | 0.006 |
| 22 | 20.801 | 20.083 | 33120 | 0.008 |
| 23 | 21.721 | 21.019 | 40844 | 0.009 |
| 24 | 22.749 | 22.066 | 58086 | 0.013 |
| 25 | 23.723 | 23.000 | 76054 | 0.017 |
| 26 | 24.740 | 24.047 | 101902 | 0.022 |
| 27 | 25.741 | 25.052 | 116458 | 0.025 |
| 28 | 26.760 | 26.081 | 167192 | 0.036 |
| 29 | 27.683 | 27.009 | 162738 | 0.036 |
| 30 | 28.730 | 28.059 | 225059 | 0.050 |
| 31 | 29.688 | 28.965 | 314542 | 0.069 |
| 32 | 30.732 | 30.068 | 333153 | 0.074 |
| 33 | 31.684 | 31.024 | 455745 | 0.103 |
| 34 | 32.707 | 32.045 | 549673 | 0.126 |
| 35 | 33.731 | 33.053 | 762250 | 0.175 |
| 36 | 34.751 | 34.093 | 926060 | 0.217 |
| 37 | 35.694 | 35.040 | 930314 | 0.222 |
| 38 | 36.693 | 36.037 | 1308683 | 0.318 |
| 39 | 37.675 | 36.983 | 1817656 | 0.444 |
| 40 | 38.670 | 38.012 | 1913381 | 0.476 |
| 41 | 39.668 | 39.032 | 1793336 | 0.455 |
| 42 | 40.693 | 40.066 | 3096624 | 0.793 |
| 43 | 41.687 | 41.040 | 3227706 | 0.842 |
| 44 | 42.722 | 42.069 | 4511476 | 1.197 |
| 45 | 43.635 | 43.027 | 5127214 | 1.386 |
| 46 | 44.635 | 43.995 | 6368582 | 1.739 |
| 47 | 45.709 | 45.071 | 7076578 | 1.961 |
| 48 | 46.689 | 46.071 | 10832404 | 3.074 |
| 49 | 47.627 | 46.997 | 11700248 | 3.345 |
| 50 | 48.626 | 48.000 | 14933748 | 4.303 |
| 51 | 49.663 | 49.046 | 14654504 | 4.314 |
| 52 | 50.741 | 50.103 | 19757127 | 5.898 |
| 53 | 51.688 | 51.061 | 25437072 | 7.705 |
| 54 | 52.703 | 52.095 | 29253338 | 8.996 |
| 55 | 53.644 | 53.017 | 42889898 | 13.422 |
| 56 | 54.700 | 54.053 | 48810889 | 15.395 |
| 60 | 55.649 | 55.025 | 52892442 | 16.948 |
| 56.611 | 55.967 | 62612914 | 20.476 |  |
| 58.697 | 57.084 | 87169465 | 28.741 |  |
|  |  | 57.947 | 95385185 | 31.931 |

Table 1: IDA $^{*}+h^{\text {gap }}$ performance. Each row gives averages for 1000 instances selected uniformly randomly. The columns denote problem size, optimal solution length, initial $h^{\text {gap }}$ value, generated nodes, and runtime in seconds.


[^0]:    Copyright © 2010, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

[^1]:    ${ }^{1}$ See http://tomas.rokicki.com/pancake/.

