
A Novel Technique for Compressing Pattern
Databases in the Pancake Sorting Problems

Morteza Keshtkaran, Roohollah Taghizadeh and Koorush Ziarati
Department of Computer Science and Engineering

Shiraz University, Shiraz, Iran
{mkeshtkaran,taghizadeh}@cse.shirazu.ac.ir

ziarati@shirazu.ac.ir

Abstract

In this paper we present a lossless technique to com-
press pattern databases (PDBs) in the Pancake Sorting
problems. This compression technique together with the
choice of zero-cost operators in the construction of ad-
ditive PDBs reduces the memory requirement for PDBs
in these problems to a great extent, thus making oth-
erwise intractable problems able to be efficiently han-
dled. Also, using this method, we can construct some
problem-size independent PDBs. This precludes the ne-
cessity of constructing new PDBs for new problems
with different numbers of pancakes. In addition to our
compression technique, by maximizing over the heuris-
tic value of additive PDBs and the modified version of
the gap heuristic, we have obtained powerful heuristics
for the burnt pancake problem.

Introduction

IDA* (Korf 1985) as a linear-space heuristic search algo-
rithm uses a cost function f to prune nodes. f assigns to
each state n, a cost f(n) = g(n) + h(n), where g(n) is the
cost of the shortest path found so far from the starting state
to state n and h(n) is the heuristic estimate of the lowest
cost to get from n to a goal state. If h(n) is guaranteed to
never overestimate the lowest cost from n to a goal state, it
is admissible and the optimality of the solution is insured.

For many problems, a heuristic evaluation function can
be calculated before the search and stored in a lookup table
called a pattern database (PDB) (Culberson and Schaeffer
1998). For example, for the Sliding-Tile-Puzzle problem we
can choose a subset of the tiles, the pattern tiles, and consider
the rest of the tiles indistinguishable from each other. For
each possible configuration of the pattern tiles among non-
pattern ones, we store in a lookup table the minimum num-
ber of moves required to bring the pattern tiles into their goal
positions. In general, a pattern is a projection of a state from
the original problem space onto the pattern space. The pro-
jection of the goal state is called the goal pattern. For each
pattern the minimum number of moves required to reach
the goal pattern in the pattern space is stored in the PDB.
PDBs are usually constructed through a backward breadth-
first search from the goal pattern in the pattern space. For

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

each pattern the entry in the PDB is the depth at which it
is first generated. Under certain conditions it is possible to
sum values from several PDBs without overestimating the
solution cost (Korf and Felner 2002). For the Sliding-Tile-
Puzzle problem we can partition all tiles into disjoint groups
and construct a PDB for each of these groups. Since each op-
erator moves only one tile, it only affects tiles in one PDB.
In general, if there is a way to partition all variables into
disjoint sets of pattern variables so that each operator only
changes variables from one set of pattern variables, the re-
sulting PDBs are called additive and such a set of PDBs are
called disjoint. In problems such as Pancake Sorting each
operator may change variables from different sets of pattern
variables. Hence it is not trivial to construct additive PDBs
for these problems. Yang et al. (2008) were first to suggest a
technique to construct more general additive PDBs for prob-
lems like this.

The main drawback of PDB heuristics lies in their mem-
ory requirement. To store more accurate heuristics we need
more amount of memory space while there may not be
enough. To address this issue, we need to compress them
in a way that they can fit into memory. As stated in (Fel-
ner et al. 2007), the best compression technique is to keep
for groups of equal heuristic values in the PDB, only one
value for each group. The main contribution of this paper is
to introduce a lossless compression technique for the Pan-
cake Sorting problem based on this concept. The advan-
tage of our method is that we can easily apply other gen-
eral compression techniques such as (Breyer and Korf 2010;
Felner et al. 2007) in tandem to achieve even higher com-
pression.

In additive PDBs, operators that move non-pattern tiles
have zero-cost. We use these zero-cost operators, which can
also be defined in general additive PDBs, to compress PDBs
in the pancake sorting problem without losing any informa-
tion. This enables us to solve problems that were unsolvable
otherwise because of the huge memory requirement for their
PDBs.

Pancake Sorting Problems

The original Pancake Sorting problem was first posed in
(Dweighter 1975). The problem is to sort a given stack of
pancakes of different sizes in as few operations as possible
to obtain a stack of pancakes with sizes increasing from top

68

Proceedings, The Fourth International Symposium on Combinatorial Search (SoCS-2011)

Figure 1: Three successors of the goal state in the 4-pancake
problem

to bottom. The only allowed operation is taking several pan-
cakes from top of the stack and flipping them.

In a more difficult problem called the burnt pancake prob-
lem, one side of each pancake in the pile is burnt, and the
sorting must be completed in a way that the burnt side of
every pancake is at the bottom, so that if you look from top,
no burnt side is seen.

In the rest of the paper, unless stated otherwise, Pancake
Sorting Problem refers to the original problem.

Formal Definition

For ease of reference, we will show the goal stack of the n-
pancake problem as a sequence < 1, 2, . . . , n >. In this se-
quence, numbers correspond to pancake sizes while indexes
correspond to pancake positions in the stack, with size one
denoting the smallest pancake and index one denoting the
top position. Now each state of this problem can be repre-
sented as a permutation of this sequence and each operation
can be done as a prefix reversal on the sequence.

If you consider s =< s1, s2, . . . , sn > , s will be a per-
mutation of the goal sate and si is the size of a pancake lo-
cated at position i from the top of the stack.

In the burnt pancake problem, the numbers corresponding
to the pancake sizes can have negative sign. The negative
sign shows that the burnt side of the pancake is up.

Pattern Database Heuristics

In this section we review the pattern database heuristics de-
signed for the original pancake sorting problem. All of these
methods are applicable to the burnt pancake problem, too.

The earliest pattern databases that are widely used for this
problem are non-additive ones choosing usually the right-
most tiles as pattern tiles and leaving the rest of them as in-
distinguishable (Zahavi et al. 2006). But more accurate PDB
based heuristics for this problem are two general additive
pattern databases investigated by Yang et al. (2008), which
are called ”cost-splitting” and ”location-based cost” meth-
ods. We briefly review these two methods on this problem.

Cost-splitting In this method the operator cost is divided
proportionally among the patterns based on the share of the
tiles moved by the operator that belong to each pattern. For
example, consider two patterns of the 4-pancake problem,
one consisting of tiles 1 and 2, the other consisting of tiles 3
and 4. Then the middle operator in Figure 1 will have a cost
of 2/3 in the first pattern space and 1/3 in the second pattern
space because it moves two tiles of the first pattern and one
tile of the second pattern.

Location-based cost Another method for dividing opera-
tor costs among patterns observes one or more specific loca-
tions and assigns the full cost of the operator to the pattern
which owns the tile that moves into the observed location.
In the pancake sorting problem it is intuitive to use the left-
most location as the observed location since every operator
changes the tile in this location. The middle operator in Fig-
ure 1 moves pancake 3, which belongs to the second pattern,
to the leftmost location. Therefore, this operator has zero-
cost in the first pattern space and a cost of 1 in the second
one.

For the rest of the paper, we will use the ”location-
based cost” method, since this technique characteristically
involves many zero-cost operators and this empowers us to
compress PDBs for this problem.

Another PDB heuristic for this problem recently pro-
posed is the Relative Order Abstractions (Helmert and Röger
2010). These PDBs are problem-size independent, just as
our PDBs are, and we will cover them in more detail later.

The Gap Heuristic

The best recently-introduced heuristic for the original pan-
cake sorting problem is the gap heuristic (Helmert 2010).

Consider a fixed pancake with size n+1 at the end of the
stack of pancakes. The value of this heuristic is the number
of stack positions for which the pancake at that position is
not of adjacent size to the pancake below it.

hgap(s) := |{i|i ∈ {1, 2, . . . , n}, |si − si+1| > 1}|
As it can be seen in the experimental results, this heuristic
is much stronger than the previously proposed PDB-based
heuristics and it is the state-of-the-art for this problem.

To the best of our knowledge, this heuristic is not applied
to the burnt pancake problem. So, in this part we introduce
a simple modification of the gap heuristic that enables us to
use it for the burnt pancake problem, too.

We define the value of the gap heuristic for this problem
as the number of stack positions for which the pancake at
that position is not of adjacent size to the pancake below it
or the pancake at that position has its burnt side in opposite
order in relation to the pancake below it.

hgap(s) = |{i|i ∈ {1, 2, ..., n},
|si − si+1| > 1, or, si × si+1 < 0}|

Similar to the original gap heuristic, this modified version is
a consistent and admissible heuristic, too.

Proposed Method

In this section we will put forth our lossless compression
technique for the Pancake Sorting Problem. The same state-
ments as the ones in this section can be used for the burnt
pancake problem, too. So, in this section our focus is on the
original pancake problem.

This compression method requires a specific partitioning
of the goal state that will be introduced next.

69

Partitioning the Goal State into Disjoint Partitions

We will be using a simple disjoint partitioning in which each
partition consists of some consecutive tiles of the goal state.
Therefore, each partition accounts for a specific kind of pat-
terns all of which have the tiles in the partition as their pat-
tern tiles. Symbolically, consider the general form of a par-
titioning,

P1P2...Pk

P ′
i s size is si and

∑
si = n

If we represent a non-pattern tile (gap) with g then the goal
pattern corresponding to the partition Pi can be represented
as:

gg · · · g︸ ︷︷ ︸
x

tile number
x+1︷ ︸︸ ︷

(x+ 1)(x+ 2) · · · (x+ si) gg · · · g︸ ︷︷ ︸
n−x−si

x =
i−1∑
j=1

sj

Example: 3-4-5 partitioning of 12-pancake,

1 2 3︸︷︷︸
P1

4 5 6 7︸ ︷︷ ︸
P2

8 9 10 11 12︸ ︷︷ ︸
P3

1st goal pattern : 1 2 3 * * * * * * * * *

2nd goal pattern : * * * 4 5 6 7 * * * * *

3rd goal pattern : * * * * * * * 8 9 10 11 12

We will use this partitioning in other examples in the rest
of the paper.

Definitions

In the following sections we will be referring to some terms
that we need to specify here.

Definition 1: Gap Space We define ”gap space” as a con-
tiguous group of adjacent gaps in a pattern. In our problem,
the mere existence of gap spaces is crucial and not the num-
ber of gaps in them.

Example: An instance of a pattern state of 12-pancake
with pancakes 1, 2, 3 and 4 as pattern tiles is:

2︸︷︷︸
Pattern

tile

∗ ∗ ∗︸︷︷︸
Gap
space

1︸︷︷︸
Pattern

tile

∗ ∗ ∗︸︷︷︸
Gap
space

4︸︷︷︸
Pattern

tile

3︸︷︷︸
Pattern

tile

∗∗︸︷︷︸
Gap
space

Definition 2: Compressed Pattern Consider pattern P
which have m pattern tiles and more than m gaps. We de-
fine the group of Compressed Patterns (CPs) of this pattern
as patterns that have the following properties:

1. They have the same pattern tiles in the same order as
they appear in P .

2. They have exactly m+ 1 gaps.
3. When reduced, with single gaps replacing gap spaces

all of them should produce similar patterns.

Figure 2: An example of CPs of a pattern state

Conditions 1 and 3 combined, will require that a pattern
state and all its CPs to have the same order of pattern tiles
and gap spaces.

As an example, all CPs of a pattern of 8-pancake are
shown in Figure 2.

Definition 3: Left Sided CP of a Pattern

A left sided CP of a pattern is created by having every pattern
gap space except the rightmost one, dump all their gaps but
one into the rightmost gap space. As a result a left sided CP
has only single-gap gap spaces except the multi-gap right-
most gap space. The last CP in Figure 2 is an example of
this kind of CP.

Compression Method

Having presented the basic definitions, we now involve in
establishing propositions we will need in setting up our com-
pression framework.

Lemma 1: Each CP of a goal pattern is reachable from
every other CPs of the goal pattern with zero-cost operators.

Proof: This is obvious for goal patterns corresponding to
the leftmost and rightmost partitions of the goal state, be-
cause they have only a single CP. CPs of goal patterns of
other partitions can be formulized as follows:

gg...g︸ ︷︷ ︸
k

Pi g...gg︸ ︷︷ ︸
l

(0 < k, l) and (k + l = n− si)

So, there is at least one gap after the pattern tiles in Pi. Re-
versing up to the first gap after Pi, results in:

gP−1
i g...gg︸ ︷︷ ︸

n−si−1

Now reversing up to any gap following the reversed pattern
tiles of the partition, generates one of the CPs. So, each CP
can reach the above CP with one zero-cost operator and then
it can transform to any other CP with another zero-cost op-
erator.�

Corollary: PDBs constructed from each CP of a goal pat-
tern are all the same.

Lemma 2: If an operator transforms pattern P into pattern
Q in the pattern space, then there is a path with the same cost
from each CP of P to one of the CPs of Q in the compressed
pattern space.

70

Proof: Each transition in the pattern space can be shown
as:

P
R−→ Q

P and Q are two patterns and R is the reversing operator
indicating the location from which the reversal should be
applied to P in order to reach Q.

Consider the following definitions:

X , Y , Z A sequence of pattern tiles and gap spaces
in the pattern. It can also be empty.

X ′, Y ′, Z ′

A sequence of pattern tiles and gap spaces
in a compressed pattern with the same or-
der of pattern tiles and gap spaces as in X ,
Y , Z. So the difference between X , Y , Z
and X ′, Y ′, Z ′ is only in the number of
gaps in each gap space.

Bi, Wi i-th gap space in P,Q

B′
i ,W ′

i

i-th gap space in the compressed pattern
state that corresponds to Bi, Wi in the pat-
tern state and may have different number of
gaps in respect to Bi,Wi

p, q A pattern tile in P , Q

Regarding the location of reversal on the pattern tile, four
different situations may occur:

1. reversal is carried out from a gap space and there is
a gap space at the beginning of the state,

2. reversal is carried out from a pattern tile and there is
a gap space at the beginning of the state,

3. reversal is carried out from a pattern tile and there is
a pattern tile at the beginning of the state,

4. reversal is carried out from a gap space and there is
a pattern tile at the beginning of the state.

The general form of the pattern state corresponding to
each of the above cases is formulized in Table 1.

A pattern in the pattern space∗ Its CPs
(1) B1XBiY B′

1X
′B′

iY
′

(2) B1XpY B′
1X

′pY ′
(3) pXqY pX ′qY ′
(4) pXBiY pX ′B′

iY
′

Table 1: General form of the pattern state corresponding to
each of the four different situations that may occur

∗ Provided that X , X ′, Y , Y ′, Z and Z ′ are not empty,
when they come after a gap space, they should start with a
pattern tile and when they appear before a gap space they
should end in a pattern tile. These restrictions are due to our
definition of gap spaces. As stated before, all adjacent gaps
are considered as one gap space. Therefore, it is impossible
to have an independent gap before or after a gap space.
Consider also that in the case (1) if X is empty then we
should deem B1 and Bi as one gap space.

Now we investigate every possible transition in the pat-
tern space in order to verify that any transition and its
dual in the compressed pattern space have the same cost.

Case (1)

B1X

Bi︷ ︸︸ ︷
gg...g︸ ︷︷ ︸

k
1≤k

Y
m−th gap of Bi

1≤m≤k−−−−−−−−→
W1︷ ︸︸ ︷

gg...g︸ ︷︷ ︸
m

X−1

Wi︷ ︸︸ ︷
B1 gg...g︸ ︷︷ ︸

k−m

Y

B′
1X

′
B′i︷ ︸︸ ︷

gg...g︸ ︷︷ ︸
l

1≤l

Y ′
n−th gap of Bi

1≤n≤l−−−−−−−−→
W ′

1︷ ︸︸ ︷
gg...g︸ ︷︷ ︸

n

X ′−1

W ′
i︷ ︸︸ ︷

B′
1 gg...g︸ ︷︷ ︸

l−n

Y ′

Example

∗∗
︸︷︷︸

B1

2

B2
︷︸︸︷∗ 1

︸ ︷︷ ︸

X

∗ ∗ ∗
︸︷︷︸

B3

43 ∗ ∗
︸ ︷︷ ︸

Y

3rd gap of B3−−−−−−−→ ∗ ∗ ∗
︸︷︷︸

W1

1 ∗ 2
︸︷︷︸

X−1

∗∗
︸︷︷︸

W3

43 ∗ ∗
︸ ︷︷ ︸

Y

∗
︸︷︷︸

B′1

2 ∗ 1
︸︷︷︸

X′

∗∗
︸︷︷︸

B′3

43∗
︸︷︷︸

Y ′

1st gap of B′3−−−−−−−→ ∗
︸︷︷︸

W ′
1

1 ∗ 2
︸︷︷︸

X′−1

∗
︸︷︷︸

W ′
3

43∗
︸︷︷︸

Y ′

Case (2-a)

B1Xp

Y︷︸︸︷
qZ

p−→ pX−1

Wi︷︸︸︷
B1 qZ

B′
1X

′p

Y ′︷︸︸︷
qZ ′ p−→ pX ′−1

W ′
i︷︸︸︷

B′
1 qZ ′

Example

∗∗
︸︷︷︸

B1

2 ∗ 1 ∗ ∗∗
︸ ︷︷ ︸

X

4
︸︷︷︸

p

Y
︷ ︸︸ ︷

3
︸︷︷︸

q

∗∗
︸︷︷︸

Z

p−→ 4
︸︷︷︸

p

∗ ∗ ∗1 ∗ 2
︸ ︷︷ ︸

X−1

∗∗
︸︷︷︸

W3

3 ∗ ∗
︸︷︷︸

Z

∗
︸︷︷︸

B′1

2 ∗ 1 ∗ ∗
︸ ︷︷ ︸

X′

Y ′
︷ ︸︸ ︷

4
︸︷︷︸

p

3
︸︷︷︸

q

∗
︸︷︷︸

Z′

p−→ 4
︸︷︷︸

p

∗ ∗ 1 ∗ 2
︸ ︷︷ ︸

X′−1

∗
︸︷︷︸

W ′
3

3
︸︷︷︸

q

∗
︸︷︷︸

Z′

Case (2-b)

B1Xp

Y︷︸︸︷
BiZ

p−→ pX−1

Wi−1︷ ︸︸ ︷
B1Bi Z

B′
1X

′p

Y ′︷ ︸︸ ︷
B′

iZ
′ p−→ pX ′−1

W ′
i−1︷ ︸︸ ︷

B′
1B

′
i Z

′
Example

∗∗
︸︷︷︸

B1

2 ∗ 1 ∗ ∗∗
︸ ︷︷ ︸

X

4
︸︷︷︸

p

Y
︷ ︸︸ ︷

∗
︸︷︷︸

B4

3∗
︸︷︷︸

Z

p−→ 4
︸︷︷︸

p

∗ ∗ ∗1 ∗ 2
︸ ︷︷ ︸

X−1

∗ ∗ ∗
︸︷︷︸

W3

3∗
︸︷︷︸

Z

∗
︸︷︷︸

B′1

2 ∗ 1∗
︸ ︷︷ ︸

X′

4
︸︷︷︸

p

Y ′
︷ ︸︸ ︷

∗
︸︷︷︸

B′4

3∗
︸︷︷︸

Z′

p−→ 4
︸︷︷︸

p

∗1 ∗ 2
︸ ︷︷ ︸

X′−1

∗∗
︸︷︷︸

W ′
3

3∗
︸︷︷︸

Z′

Case (3)
pXqY

q−→ qX−1pY

pX ′qY ′ q−→ qX ′−1pY ′
Example

2
︸︷︷︸

p

∗ ∗ ∗1 ∗ ∗∗
︸ ︷︷ ︸

X

4
︸︷︷︸

q

3 ∗ ∗
︸︷︷︸

Y

q−→ 4
︸︷︷︸

q

∗ ∗ ∗1 ∗ ∗∗
︸ ︷︷ ︸

X−1

2
︸︷︷︸

p

3 ∗ ∗
︸︷︷︸

Y

2
︸︷︷︸

p

∗ ∗ 1 ∗ ∗
︸ ︷︷ ︸

X′

4
︸︷︷︸

q

3∗
︸︷︷︸

Y ′

q−→ 4
︸︷︷︸

q

∗ ∗ 1 ∗ ∗
︸ ︷︷ ︸

X′−1

2
︸︷︷︸

p

3∗
︸︷︷︸

Y ′

71

Case (4-a)

pX

Bi︷ ︸︸ ︷
gg...g︸ ︷︷ ︸

k
1≤k

Y
last gap of Bi−−−−−−−−→

W1︷ ︸︸ ︷
gg...g︸ ︷︷ ︸

k

X−1pY

pX ′
B′i︷ ︸︸ ︷

gg...g︸ ︷︷ ︸
l

1≤l

Y ′ last gap of Bi−−−−−−−−→
W ′

1︷ ︸︸ ︷
gg...g︸ ︷︷ ︸

l

X ′−1pY ′

Example

2
︸︷︷︸

p

∗ ∗ ∗1
︸ ︷︷ ︸

X

∗ ∗ ∗
︸︷︷︸

B2

43 ∗ ∗
︸ ︷︷ ︸

Y

last gap of B2−−−−−−−−→ ∗ ∗ ∗
︸︷︷︸

W1

1 ∗ ∗∗
︸ ︷︷ ︸

X−1

2
︸︷︷︸

p

43 ∗ ∗
︸ ︷︷ ︸

Y

2
︸︷︷︸

p

∗ ∗ 1
︸︷︷︸

X′

∗∗
︸︷︷︸

B′2

43∗
︸︷︷︸

Y ′

last gap of B′2−−−−−−−→ ∗∗
︸︷︷︸

W ′
1

1 ∗ ∗
︸︷︷︸

X′−1

2
︸︷︷︸

p

43∗
︸︷︷︸

Y ′

Case (4-b)

pX

Bi︷ ︸︸ ︷
gg...g︸ ︷︷ ︸

k
2≤k

Y
m-th gap of Bi
1≤m<k−−−−−−→

W1︷ ︸︸ ︷
gg...g︸ ︷︷ ︸

m

X−1p

Wi+1︷ ︸︸ ︷
gg...g︸ ︷︷ ︸
k−m

Y

pX ′
B′i︷ ︸︸ ︷

gg...g︸ ︷︷ ︸
l

2≤l

Y ′
n-th gap of Bi
1≤n<l−−−−−−→

W ′
1︷ ︸︸ ︷

gg...g︸ ︷︷ ︸
l

X ′−1p

W ′
i+1︷ ︸︸ ︷

gg...g︸ ︷︷ ︸
l−n

Y ′

Example

2
︸︷︷︸

p

∗ ∗ ∗1
︸ ︷︷ ︸

X

∗ ∗ ∗
︸︷︷︸

B2

43 ∗ ∗
︸ ︷︷ ︸

Y

2nd gap of−−−−−−→
B2

∗∗
︸︷︷︸

W1

1 ∗ ∗∗
︸ ︷︷ ︸

X−1

2
︸︷︷︸

p

∗
︸︷︷︸

W3

43 ∗ ∗
︸ ︷︷ ︸

Y

2
︸︷︷︸

p

∗ ∗ 1
︸︷︷︸

X′

∗∗
︸︷︷︸

B′2

43∗
︸︷︷︸

Y ′

1st gap of−−−−−→
B′2

∗
︸︷︷︸

W ′
1

1 ∗ ∗
︸︷︷︸

X′−1

2
︸︷︷︸

p

∗
︸︷︷︸

W ′
3

43∗
︸︷︷︸

Y ′

Case (4-c) Troublesome case

pX

Bi︷ ︸︸ ︷
gg...g︸ ︷︷ ︸

k
2≤k

Y
m-th gap of Bi
1≤m<k−−−−−−→

W1︷ ︸︸ ︷
gg...g︸ ︷︷ ︸

m

X−1p

Wi+1︷ ︸︸ ︷
gg...g︸ ︷︷ ︸
k−m

Y

pX ′
B′i︷︸︸︷
g Y ′ the gap of Bi−−−−−−−→

W ′
1︷︸︸︷
g X ′−1pY ′

As is evident in this last case (4-c), the result of the second
transition is not a CP of the result of the first one. That is,
unlike the first result, there is no gap space between p and Y ′
in the second result. Here, we need more than one zero-cost
move in the compressed pattern space.

As stated before, the CPs of a pattern state with m pat-
tern tiles have m+1 gaps. Since the gaps are one more than
tiles, the only configuration that has no multiple gap space
is the one with alternating gaps and pattern tiles, which in-
evitably has a gap on either end. Hence, the pattern state in
hand which starts with a pattern tile must have at least one
multiple gap space. If this gap space is located somewhere
in X ′ then we can reformulize the pattern state as:

p

X′︷ ︸︸ ︷
X ′

1ggX
′
2

B′i︷︸︸︷
g Y ′

and use the following zero-cost moves to transform the pat-
tern state into a CP of Q:

p

X′
︷ ︸︸ ︷

X ′
1ggX

′
2

B′i
︷︸︸︷

g Y ′
1st gap between−−−−−−−−→
X′1 and X′2

W ′
1

︷︸︸︷

g X ′
1
−1

pgX ′
2

W ′
i+1

︷︸︸︷

g Y ′

the gap between−−−−−−−−→
p and X′2

W ′
1

︷︸︸︷

g p

X′′
︷ ︸︸ ︷

X ′
1gX

′
2

W ′
i+1

︷︸︸︷

g Y ′

the gap of−−−−−→
W ′

i+1

W ′
1

︷︸︸︷

g X ′′−1p

W ′
i+1

︷︸︸︷

g Y ′

Since X ′′ has the same order of pattern tiles and gap spaces
as X ′ (only one of its gap spaces has one gap less than the
corresponding gap space in X ′), it in turn has the same
order of pattern tiles and gap spaces as X too.

Taking into account the complementary condition, if the
gap space having multiple gaps is located somewhere in Y ,
similar zero-cost transitions can be applied to come by the
CP.

Example

2
︸︷︷︸

p

∗ ∗ ∗1
︸ ︷︷ ︸

X

∗ ∗ ∗
︸︷︷︸

B2

43 ∗ ∗
︸ ︷︷ ︸

Y

2nd gap of B2−−−−−−−−→

∗∗
︸︷︷︸

W1

1 ∗ ∗∗
︸ ︷︷ ︸

X−1

2
︸︷︷︸

p

∗
︸︷︷︸

W3

43 ∗ ∗
︸ ︷︷ ︸

Y

2
︸︷︷︸

p

X′1
︷︸︸︷ ∗ ∗

X′2
︷︸︸︷

∗1
︸ ︷︷ ︸

X′

∗
︸︷︷︸

B′2

43∗
︸︷︷︸

Y ′

the first gap after 2−−−−−−−−−→

∗
︸︷︷︸

W ′
1

︸︷︷︸

X′1
−1

2
︸︷︷︸

p

∗ ∗1
︸︷︷︸

X′2

∗
︸︷︷︸

W ′
3

43∗
︸︷︷︸

Y ′

the first gap after 2−−−−−−−−−→

∗
︸︷︷︸

W ′
1

2
︸︷︷︸

p

X′′
︷ ︸︸ ︷

︸︷︷︸

X′1

∗ ∗1
︸︷︷︸

X′2

∗
︸︷︷︸

W ′
3

43∗
︸︷︷︸

Y ′

gap of W ′
3−−−−−−→

∗
︸︷︷︸

W ′
1

1 ∗ ∗
︸︷︷︸

X′′−1

2
︸︷︷︸

p

∗
︸︷︷︸

W ′
3

43∗
︸︷︷︸

Y ′

We demonstrated that any transition in the pattern space
that takes P to Q has its parallel set of transitions in the
compressed pattern space which takes a CP of P to a CP of
Q with equal costs. Thus we conclude this lemma.�

Lemma 3: If an operator transforms a CP of P into Q′ in
the compressed pattern space then there is a path with the
same cost from P to a pattern Q for which, Q′ is a CP.

Proof: The same transitions as mentioned in the previous
lemma can be applied.�

Constructing Problem-Size Independent PDBs

Now it is obvious that the cost of the shortest path between
a pattern state and its goal pattern is equal to the cost of the
shortest path between a CP of this pattern state and a CP of
the goal pattern. So, instead of constructing PDBs from the
goal patterns, we can construct them from arbitrary CPs of
the goal patterns.

As we already know that all CPs of a goal pattern are
reachable from each other with zero-cost operators, we are
entitled to construct our PDBs from the Left Sided CPs of
the goal patterns.

72

Lemma 4: The PDBs constructed for partitions other than
the leftmost and rightmost partitions, in case of equal num-
ber of pattern tiles, are identical.

Proof: We know that the goal patterns corresponding to
these partitions have the same Left Sided CP and only dif-
fer in their pattern tile numbers. So they will have the same
PDBs too.�

The CPs of goal patterns with m pattern tiles in n-pancake
problems where n ≥ 2m+1, have exactly 2m+1 tiles. So,
we only need to construct one set of PDBs for m pattern
tiles in (2m + 1)-pancake and use it for any goal with m
pattern tiles in n-pancakes. That is why these kind of PDBs
are problem-size independent.

Recently, another type of problem-size independent PDBs
was proposed, known as relative order abstractions (Helmert
and Röger 2010). In these PDBs the shortest paths from all
instances of the k-pancake problem to its goal state are ini-
tially stored. Then, the heuristic value of a state of an n-
pancake problem (n ≥ k), are estimated accordingly. To that
aim, a group of k pancakes of the state are considered and
the heuristic value stored in the k-pancake PDB for the con-
figuration of these k tiles as regarded independent of other
n− k tiles is adopted as the heuristic value for this state.

The largest storable PDB that can be constructed in this
fashion is that of 12-pancake problem. Besides, the maxi-
mum heuristic value of these kinds of PDBs is 14. Therefore,
the heuristic values obtained from these PDBs are weaker
from that of ours for problems with large number of pan-
cakes. That is because of the fact that we use additive PDBs
which allows us to produce heuristic values greater than 14.
This fact is observable in the experimental results section.

Memory Requirements for Compressed PDBs

Consider the following partitioning that was previously in-
troduced:

P1P2...Pk

P ′
i s size is si and

∑
si = n

For this partitioning we only need to store n1 entries in-
stead of n2 entries in the PDBs where n1 and n2 are defined
as follows:

Pancake Problem

n1 =
k∑

i=1

mi!

(mi − si)!
, mi = min(n, 2si + 1) 1 ≤ i ≤ k

n2 =

k∑
i=1

n!

(n− si)!

Burnt Pancake Problem

n1 =
k∑

i=1

mi!2
si

(mi − si)!
, mi = min(n, 2si + 1) 1 ≤ i ≤ k

n2 =
k∑

i=1

n!2si

(n− si)!

Table 2 and Table 3 compare the number of entries needed
to be stored in PDBs of our proposed method with the

numbers needed in PDBs without our compression for pan-
cake problem and the burnt version respectively. Table 2 fea-
tures instances for 17-pancake and (25–28)-pancake prob-
lems and Table 3 features instances for (17–18)-burnt pan-
cake problems.

Partitioning
Number of Entries

in Compressed
PDBs

Number of Entries
in PDBs without

Compression
3-7-7 64,865,010 196,039,920

4-7-7-7 64,867,824 7,268,487,600
5-7-7-7 64,920,240 9,953,829,600
6-7-7-7 66,100,320 13,640,140,800
7-7-7-7 97,297,200 23,870,246,400

Table 2: Comparison of the number of entries needed to be
stored in PDBs with our method and without it in the original
pancake problem

Partitioning
Number of Entries

in Compressed
PDBs

Number of Entries
in PDBs without

Compression
2-5-5-5 3,548,240 71,286,848
5-6-6 159,920,640 1,164,334,080
6-6-6 237,219,840 2,566,287,360

Table 3: Comparison of the number of entries needed to be
stored in PDBs with our method and without it in the burnt
pancake problem

These numbers are calculated according to the assumption
in Lemma 4. Note that for the 7-7-7-7 partitioning of 28-
pancake problem, we need two PDBs for the leftmost and
rightmost partitions and one for the two middle partitions.

If we allot one byte of memory for each entry in the PDBs,
the above table suggests that for a problem like 25-pancake
with 4-7-7-7 partitioning, without considering our method
we would need about 6.7 GB of memory to store the PDBs
while our compression shrinks this memory requirement to
about 61.8 MB. Hence, it is clear that our technique de-
creases the memory required for this problem to a great ex-
tent.

Experimental Results

In this section, we compare different heuristic evaluation
methods discussed in the previous sections.

In all cases we use standard IDA* algorithm as our search
algorithm. Since, relative order abstraction produces incon-
sistent heuristics, we use IDA* with BPMX for this method.

Compressed PDBs in Comparison with PDBs
without Compression

We used additive PDBs constructed with location-based
costs to keep the heuristic information in a standard IDA*
search so as to solve random instances of sizable pancake
sorting problems with different numbers of pancakes.

73

In buying memory space by compressing patterns, we are
forfeiting time. To appraise how much time we are sac-
rificing, we check the results of solving 100 random in-
stances of the (15–17)-pancake problem. Table 4 holds the
running times when the problem instances are solved with
compressed PDBs along with running times when they are
solved without compression. The compression based ap-
proach takes longer to complete, as we expect, but the excess
time is not quite significant.

Problem 15-pancake 16-pancake 17-pancake
Partitioning 3-6-6 3-6-7 3-7-7

Avg. Solution
Length 13.80 14.86 15.80

Avg. Initial Heuristic 11.48 12.57 13.30
Avg. Nodes
Generated 340,706 526,212 1,596,538

Time (sec.)
(PDBs without/with

compression)
0.08/0.13 0.15/0.21 0.50/0.68

Table 4: Running times of solving 100 random instances of
the (15–17)-pancake problem when the problem instances
are solved with compressed PDBs along with running times
when they are solved without compression

We can have a similar comparison for the burnt pancake
problem.

Additive PDBs in Comparison with Relative Order
Abstraction and the Gap Heuristic

In this part, we apply additive PDBs, relative order abstrac-
tion and the gap heuristic to the pancake problems.

Pancake Sorting Problem Table 5 shows the results of
solving 100 random instances of (16–17)-pancake prob-
lem using additive PDBs, relative order abstraction and gap
heuristic. In our implementation of the relative order ab-
straction, for each state, we have taken the maximum heuris-
tic value resulted from 10 random pancake sets of size 12.

Additive PDB Relative-Order
Abstraction

Gap
Heuristic

16-Pancake (Avg. Solution Length 14.86)
Initial

Heuristic 12.57 11.96 14.19

Nodes 526,211 117,602 3,436
Time(s) 0.25 2.48 0.00

17-Pancake (Avg. Solution Length 15.8)
Initial

Heuristic 13.3 12 14.98

Nodes 1,596,538 3,539,478 9,577
Time(s) 0.79 47.12 0.00

Table 5: Results of solving instances of (16–17)-pancake
problem

Being able to solve instances of this problem with about
60 pancakes and also more than that, as it was shown in

(Helmert 2010), proves that the gap heuristic is state-of-the-
art for this problem. The results presented here also confirm
this fact.

Although using relative order abstraction may produce
fewer nodes than additive PDBs for this problem, it takes
time to evaluate stronger heuristics by selecting more sets of
random pancakes and also to evaluate their heuristic values.
The results for the relative order abstraction show that this
heuristic becomes weaker whenever the number of pancakes
increases. This stems from the fact that this heuristic is not
scalable to larger problems and it has a maximum heuris-
tic value that we cannot exceed that. For this problem, this
maximum heuristic value is 14.

In Table 6, we present the results of solving 10 random
instances of pancake sorting problem with 25–27 pancakes.
We previously witnessed, in Table 2, how these instances are
intractable using additive PDBs without compressing their
PDBs. Here, we verify the effectiveness of our approach in
tackling those problems. In this table, we also present the re-
sults of solving these problems with the gap heuristic, which
shows that this heuristic is very stronger than additive PDBs
for the original pancake sorting problem. As we will show
in the next part, this is not true for the burnt version of this
problem. Comparing the initial heuristic values in this table
with the maximum heuristic value that can be obtained from
the relative order abstraction, we can see that the relative or-
der abstraction is not successful in solving these problems.

Problem 25-pancake 26-pancake 27-pancake
Compressed Additive PDBs

Partitioning 4-7-7-7 5-7-7-7 6-7-7-7
Avg. Initial
Heuristic 20.40 21.50 22.70

Avg. Solution
Length 23.80 24.90 26.30

Avg. Nodes
Generated 2,334,475,851 3,259,099,635 6,638,171,227

Gap Heuristic
Avg. Initial
Heuristic 23.2 24.2 25.4

Avg. Nodes
Generated 28,744 34,647 150,949

Table 6: Solving 10 random instances of pancake sorting
problem with 25–27 pancakes

Burnt Pancake Sorting Problem We have used addi-
tive PDBs, relative order abstraction and the modified gap
heuristic for solving this problem. Table 7 shows the results
of solving 100 random instances of (13–14)-burnt pancake
problem using these heuristics.

In our implementation of the relative order abstraction,
for each state, we have taken the maximum heuristic value
resulted from 10 random pancake sets of size 9.

We observe that, in this problem, the gap heuristic is not
as powerful as it was in the original pancake problem.

In relative order abstraction, the largest storable PDB that
can be constructed is that of 9-burnt pancake problem. Be-

74

Additive Relative-Order Gap
PDB Abstraction Heuristic

13-Burnt Pancake (Avg. Solution Length 15.71)
Initial Heuristic 11.8 12.38 11.98

Nodes 7,900,800 222,656 52,415,891
Time(s) 4.11 3.55 5.40

14-Burnt Pancake (Avg. Solution Length 16.89)
Initial Heuristic 12.93 12.51 13.01

Nodes 15,389,772 5,236,687 158,458,282
Time(s) 8.98 82.19 16.81

Table 7: Results of solving 100 random instances of (13–
14)-burnt pancake problem

sides, the maximum heuristic value of this PDB is 17 and
the average of the heuristic values is 11.0868. So, the rela-
tive order abstraction is good for problems with small num-
ber of pancakes. Yet, evaluating the heuristic value of each
state takes time, especially when the number of pancakes
increases. Table 8 shows the results of solving the 17-burnt
pancake problem. Although this problem can be solved with
2-5-5-5 partitioning without the necessity of compressing
its PDBs, this table shows that 5-6-6 partitioning produces
much fewer number of nodes. Note that PDBs of 5-6-6 par-
titioning cannot fit into 1 GB of memory without our com-
pression technique. In this table, we also show that maximiz-
ing over the additive PDBs and the modified gap heuristic
results in a less time-consuming performance than consider-
ing each method individually.

Initial
Heuristic Nodes Time(s)

2-5-5-5
Partitioning 14.68 12,274,499,928 8009.79

5-6-6
Partitioning (1) 15.68 615,546,492 375.68

Modified Gap (2) 16.00 2,213,592,360 239.42
Maximizing over

(1) and (2) 16.28 52,833,226 35.53

Table 8: Results of solving the 17-burnt pancake problem

To show the effectiveness of our compression technique,
we also solve 25 random instances of the 18-burnt pancake
problem. The results are presented in Table 9. Since one of
the instances of this problem needs a lot more time to be
solved than the other ones, we do not include it in the aver-
age time and the average generated nodes. The solution of
this difficult instance is also reported in Table 10.

Conclusion

In this paper we proposed a compression technique for the
PDBs in the pancake sorting problems without losing infor-
mation. This technique is applicable with the choice of zero-
cost operators in additive PDBs and reduces the memory re-
quirements for the PDBs in this problem to a great extent.

Maximizing over the heuristic value of additive PDBs

Initial
Heuristic Nodes Time(s)

6-6-6
Partitioning (1) 16.64 466,864,181 298.09

Modified Gap (2) 17.09 1,184,064,949 134.15
Maximizing over

(1) and (2) 17.18 52,701,921 34.46

Table 9: Results of solving 25 random instances of the 18-
burnt pancake problem

A problem instance with optimal solution of 24
<-6 -7 -13 9 5 -15 -18 -1 -10 -11 -8 16 -3 17 14 4 12 2>

Initial
Heuristic Nodes Time(s)

6-6-6
Partitioning (1) 17 54,995,040,183 35,424.5

Modified Gap (2) 16 1,870,773,430,432 213,254
Maximizing over

(1) and (2) 17 19,078,583,943 12,558.8

Table 10: Solving the most difficult case of the 25 random
instances of the 18-burnt pancake problem

and the modified gap heuristic, we have obtained powerful
heuristics for the burnt pancake problem.

We are hopeful that our compression technique can be ap-
plied to other heuristic search domains for which general ad-
ditive PDBs with zero-cost operators can be defined.

References

Breyer, T. M., and Korf, R. E. 2010. 1.6-bit pattern
databases. In AAAI.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Dweighter, H. 1975. Problem e2569. American Mathemat-
ical Monthly 82:1010+.
Felner, A.; Korf, R. E.; Meshulam, R.; and Holte, R. C.
2007. Compressed pattern databases. J. Artif. Intell. Res.
(JAIR) 30:213–247.
Helmert, M., and Röger, G. 2010. Relative-order abstrac-
tions for the pancake problem. In ECAI, 745–750.
Helmert, M. 2010. Landmark heuristics for the pan-
cake problem. In 3rd Annual Symposium on Combinatorial
Search (SoCS 2010), 109110.
Korf, R. E., and Felner, A. 2002. Disjoint pattern database
heuristics. Artif. Intell. 134(1-2):9–22.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artif. Intell. 27(1):97–109.
Yang, F.; Culberson, J. C.; Holte, R.; Zahavi, U.; and Felner,
A. 2008. A general theory of additive state space abstrac-
tions. J. Artif. Intell. Res. (JAIR) 32:631–662.
Zahavi, U.; Felner, A.; Holte, R.; and Schaeffer, J. 2006.
Dual search in permutation state spaces. In AAAI.

75

