
Position Paper: Dijkstra’s Algorithm versus Uniform Cost Search
or a Case Against Dijkstra’s Algorithm

Ariel Felner
Information Systems Engineering

Ben-Gurion University
Be’er-Sheva, Israel 85104

felner@bgu.ac.il

Abstract

Dijkstra’s single-source shortest-path algorithm (DA) is one
of the well-known, fundamental algorithms in computer sci-
ence and related fields. DA is commonly taught in undergrad-
uate courses. Uniform-cost search (UCS) is a simple version
of the best-first search scheme which is logically equivalent
to DA. In this paper I compare the two algorithms and show
their similarities and differences. I claim that UCS is supe-
rior to DA in almost all aspects. It is easier to understand and
implement. Its time and memory needs are also smaller. The
reason that DA is taught in universities and classes around the
world is probably only historical. I encourage people to stop
using and teaching DA, and focus on UCS only.

Introduction

Edsger Wybe Dijkstra (1930-2002), a winner of the 1972
Turing award is perhaps best remembered by his single-
source shortest path algorithm. This algorithm is known to
anyone who studied computer science or relevant fields as
”Dijkstra’s algorithm”, or even as ”Dijkstra”. We denote it
hereafter by DA. The main idea is to place all vertices of
a graph in a priority queue which is keyed by the distance
from the source vertex s (labeled dist[s]). Then, vertices
that are closest to s are removed and the dist of their neigh-
bors is updated. This process is repeated until the shortest
path from s is found. The original paper was published in
1959 (Dijkstra 1959) and it is still cited 50 years later in
modern papers. According to Google scholar it has been
cited 7817 times (June 23, 2011). The Uniform cost search
algorithm (denoted hereafter as UCS) is a special case of the
general class of best-first search algorithms. An open-list
(denoted OPEN) of nodes is initiated. Then, at each cycle
a node with lowest cost in OPEN, according to some cost
function, is selected for expansion until the goal node is cho-
sen for expansion. In UCS the cost of a node is the shortest
distance found so far from the source node (g(n)).

The two algorithms have many similarities and are logi-
cally equivalent. The most important similarity is that they
expand exactly the same nodes and in exactly the same or-
der. However, there are many differences between these al-
gorithms as described in text books and taught in classes.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The main difference is the identity of the nodes in the pri-
ority queue. In DA, all nodes are initially inserted into the
queue. In UCS, nodes are inserted to the queue lazily dur-
ing the search. In this paper I would like to shed light on
this and on other differences between the algorithms with an
important message - In almost all aspects UCS is superior.
In my opinion, UCS has significant advantages over DA in
its pedagogical structure, in its pseudo code, in its time and
memory needs and in its behavior in practice. Based on Di-
jkstra’s own words (Dijkstra 1959) I also conjecture that he
formulated his algorithm as UCS but at some point of time
people reverted to the way DA is commonly presented. It is
therefore my opinion that scientists, university instructors,
teachers and practitioners should cease to use DA and teach,
implement and experiment with UCS. The name Dijkstra’s
algorithm can/should still be used as he was perhaps the first
to write about this logical behavior. However, in practice, we
must only use UCS.

Dijkstra’s algorithm (DA)

In this section I give the simplest possible description of
Dijkstra’s algorithm (DA) as provided in the common text-
book ”Introduction to algorithms” (Cormen et al. 2001)
and other classical books (Sedgewick and Wayne 2011;
Aho, Hopcroft, and Ullman 1987) and as is usually taught
around the world. Similarly, many scientific papers about
DA, use this framework (Sniedovich 2006; Cherkassky,
Goldberg, and Radzik 1996). Given a source vertex s in
a weighted directed graph G = (V,E) where all edges are
nonnegative, DA finds the path with lowest cost (shortest
path) between s and every other vertex in G.

DA, presented in Algorithm 1, maintains the vertices of
the graph V in two disjoint and complementary sets of ver-
tices S ⊆ V and Q ⊆ V . S, initialized by ∅ (line 2), in-
cludes all vertices whose shortest path from s has been de-
termined. Q is a priority queue initialized by all x ∈ V
(Line 4). Q is keyed by dist[x], which is the length of the
currently shortest known path from s to x ∈ Q. dist[] is
initialized (Lines 1-2) such that for x ∈ V \ s dist[x] = ∞
while dist[s] = 0. S is initialized by ∅.

At every cycle, DA extracts the vertex u ∈ Q with the
minimal dist[] in Q. Then, for each neighbor v of u it sets
dist[v] = min(dist[v], dist[u] +w(u, v)) (this is called the
relax operation). u is then added to S. DA maintains an

47

Proceedings, The Fourth International Symposium on Combinatorial Search (SoCS-2011)

Algorithm 1: Dijkstra’s algorithm
Input: Graph G = (V,E)

1 (∀x �= s)dist[x] = +∞ //Initialize dist[]
2 dist[s] = 0
3 S = ∅
4 Q = V // Keyed by dist[].
5 while Q �= ∅ do
6 u = extract min(Q)
7 S = S ∪ {u}
8 foreach vertex v ∈ Adj(u) do
9 dist[v] = min(dist[v], dist[u] + w(u, v))

10 //”Relax” operation.

invariant that whenever u is chosen from Q then it must be
that dist[u] = δ(u), where δ(x) is the shortest path from s
to x. The proof is by induction. Initially this is true for s.
Then, every time u is chosen, since it was the node with the
minimal dist[] in Q it follows that dist[u] must be equal to
δ(u), otherwise, we reach a contradiction. We note here that
the exact formal proof as presented by (Cormen et al. 2001)
is very long and rather complicated.

It is important to note that DA in its basic form as usually
appears in text books is designed to find the shortest paths to
all vertices of the graph (known as the single-source shortest
path problem). However, with a small modification, it can be
used to only find a shortest path to any given goal (a source-
target shortest-path problem) or to any set of goals. Once S
includes the goal(s), the algorithm halts.

Uniform Cost Search (UCS)

Best-first search, shown in Algorithm 2 is a class of algo-
rithms which includes uniform cost search (UCS) as a spe-
cial case. The main data structure is the open-list (OPEN).
OPEN is a priority queue initialized with the source vertex
s. Then, at each cycle, a node u with the lowest cost is ex-
tracted from OPEN. This is referred to the expansion of u.
Each of its neighbors v is now generated and its cost is de-
termined. A duplicate check (see below) is performed on v
and if v passed the duplicate check it is inserted to OPEN.
u itself is inserted into the closed-list (CLOSED). Nodes in
OPEN are usually referred to as the frontier of the search.

Versions of best-first search differ by the cost function

Algorithm 2: Best-first search algorithm
Input: Source vertex s

1 OPEN .insert(s)
2 while OPEN �= ∅ do
3 u = OPEN .extract min()
4 foreach vertex v ∈ Adj(u) do
5 g(v) = g(u) + w(u, v)
6 v′ = check for duplicates(v)
7 OPEN .insert(v′)
8 CLOSED .insert(u)

used to rank nodes in OPEN. Breadth-first search is a special
case of best-first search where the cost of a node n is d(n) -
the depth of the node in the search tree. UCS is a straight-
forward generalization of breadth-first search where the cost
function is g(n), the sum of the weights of the edges from
the source node to node n along the shortest currently known
path. In UCS, when a node u is expanded and its neighbor v
is generated, its cost is set to g(v) = g(u) + w(u, v).

It is important to note that in DA, all nodes were initially
inserted to Q, while in UCS, as a best-first search, nodes are
inserted to the queue only when they are generated by the
search. This is a great advantage of UCS as detailed below.

Duplicate check for UCS

Duplicate checks might be slightly different for different
versions of best-first search. For UCS it is done as follows.
When a new node v is generated we check whether it is al-
ready in OPEN. If it is, we keep a single copy of v with the
smallest g-value among the two copies (labeled v′ in Algo-
rithm 2). If v is in CLOSED, its new copy is discarded.1

Correctness of UCS

It is easy to see that when all edges are nonnegative, then
when a node n is chosen for expansion, its g-value equals
the shortest path to n. This is due to a list of easy to verify
UCS invariants which can be briefly sketched as follows:
Invariant 1: OPEN (the frontier nodes) is a perimeter of
nodes around s.
Invariant 2: Since all edges are non-negative, g(n) is
monotonically non decreasing along any path.
Invariant 3: When a node n is chosen for expansion, g(n)
is the length of a path which is smaller than or equal to the
g-value of all other nodes in OPEN.
Consequence: If there is a shorter path to n, there must be
an ancestor a of n in OPEN (Invariant 1) with g(a) smaller
than g(n) (Invariant 2). This is impossible (Invariant 3).
Note that Invariant 2 is not true if edges might be negative.

In general a node n in UCS (and in best-first search in
general) is going through the following three stages:

Unknown: n was not yet generated.
Opened: n was generated and it is in OPEN.
Closed: n was expanded and added to CLOSED.
As in DA, UCS can be tuned to halt either when a goal

node is chosen for expansion (or when the set of goals were
expanded), or when all nodes were closed. That is, both the
single-source shortest path problem and the source-target
shortest-path problem can be solved by UCS.

Similarities of DA and UCS

In this section, we show that the two algorithms are simi-
lar. In particular, we will show that DA is a simulation of
UCS. In a deeper inspection of DA, one can recognize both
OPEN and CLOSED. It is easy to see that the set of nodes

1In some versions of best-first search, if the new copy of v
has a better cost than the copy in CLOSED, v is removed from
CLOSED and is reinserted to OPEN with the new cost. This pro-
cess is called node reopening and only occurs if the cost function
is non-monotonic (Felner et al. 2010).

48

Figure 1: Stages of DA Vs. UCS
S in DA is equivalent to CLOSED in UCS. Once a node is
added to S or inserted into CLOSED, the shortest path to it
has been found. Recognizing OPEN in DA is more tricky.
In UCS, the set of OPEN nodes is exactly the set of nodes in
the priority-queue. In DA, however, all nodes were initially
entered to the priority-queue. A simple well-known obser-
vation about best-first search is that OPEN is a frontier or a
perimeter of nodes around CLOSED. Thus, OPEN can be
recognized in DA as all the nodes in Q which are neighbors
of S. When a node in a best-first search is expanded and
moved to CLOSED, its neighbors are generated and added
and to OPEN. Their g-value is that of their parent plus the
edge connecting them. In DA, the OPEN nodes are nodes in
Q whose dist[] is no longer ∞, i.e., some node which was
removed from Q relaxed/changed their dist[] value.

Based on this, the three stages of UCS can be recognized
in DA. Unknown nodes are all the nodes in Q with dist[] =
∞. Opened nodes are all the nodes in Q with dist[] �= ∞.
Closed nodes are those in S. The different sets of nodes of
the two algorithms are shown in figure 1.

Duplicate pruning

The relax operation in DA (lines 9-10) is identical to the
duplicate pruning mechanism in UCS. In DA, dist[x] is de-
creased if the known path to x via its parent is smaller than
the previously known path (which might be ∞). This is ex-
actly the duplicate check of UCS. A node is generated by
adding the edge cost to the g-value of its parent. Then, we
compare this to the best previously known path and keep
only the copy with the minimum g-value.

Differences between DA and UCS
DA and USC are different in many aspects. We discuss this
in this section.

Applicability

In DA, all the vertices of the input graph are initially inserted
to Q. Therefore, in this formalization DA is only applicable
in explicit graphs where the entire graph (e.g., the set of ver-
tices V and the set of edges E) is explicitly given as input.
By contrast, UCS only needs the description of the source
vertex along with a list of applicable operators. UCS starts
with the source vertex and gradually traverses the necessary
parts of the graph. Therefore, it is applicable for both ex-
plicit graphs and implicit graphs.

Memory consumption

The main difference between DA and UCS is which nodes
are stored in Q. This directly influences the memory needs.

In DA, all nodes of the graph are initially inserted to Q. Q
always includes all the Unknown nodes and all the Opened
nodes. S includes all other nodes (Closed nodes). Q starts
with |V | nodes and they are dynamically moved from Q to
S. However, the memory needs of the data structures of
DA is O(|S|+ |Q| = |V |) at all times because each node is
either in Q or in S. In other words, the entire graph is always
stored in the different data structures of DA.

By contrast, while CLOSED of UCS is identical to S of
DA, OPEN of UCS is much smaller than Q of DA. OPEN
only includes nodes with dist[] �= ∞ but no nodes with
dist[] = ∞. This is a great advantage of UCS over DA.
In UCS, OPEN and CLOSED start with sizes 1 and 0, re-
spectively. They grow until the algorithm halts when a goal
was expanded in the source-target shortest-path problem or
until |CLOSED| = |V | in the single-source shortest-path
problem. So, at any given time step, the memory needs of
DA is larger than that of UCS. For example, assume a case
of a very large graph where the goal node is relatively close
to the source node. UCS will clearly demand a much smaller
amount of memory than DA in this case.

Running Time

The same reasoning applies to the time overhead of ma-
nipulating OPEN or Q. In general, the time complex-
ity for all operations of a priority queue Q (i.e., insert(),
exctract min() and change priority()) for commonly
used data structures such as binary heaps is O(log(n))
where n is the number of nodes in Q.2

It is easy to see that at all times at least one node with
dist �= ∞ must exist in Q. Therefore, no node with dist[] =
∞ will ever be chosen for expansion by DA. However, in
most steps, Q also includes many nodes with dist[] = ∞.
These nodes will incur a great amount of overhead when
performing operations on Q despite the fact that they are
not logically needed as they will never be chosen. By con-
trast, in UCS, OPEN only includes nodes with dist �= ∞,
i.e., only the nodes that are logically needed and might be
chosen for expansion. Therefore, a much smaller amount of
overhead will be caused by the queue of UCS.

For example, consider a graph with one million nodes.
Assume that currently 20 nodes are closed and 40 nodes are
opened. Q of DA includes nearly 1 million nodes and a
basic operation might take O(log(1, 000, 000) ≈ 20) opera-
tion. OPEN of UCS only includes 40 nodes (i.e., and a basic
operation takes only O(log(40) ≈ 5) steps.

Consider the common case where Q is implemented with
the binary heap data structure. The heap condition might
be violated by a node x when (1) its priority is changed by
change priority(), (2) when it is inserted to the heap by
insert() operation, or (3) when it replaces the root when
the root was removed by exctract min(). In all these case,
a chain of swap operations is performed and x is propagated
up or down the heap until the heap condition is met again. In
larger heaps (as in DA) the chain of swaps might be larger.

In particular, consider the following observation regard-
ing a node v. In DA, v will be initially inserted to Q

2There are advanced data structures, e.g., Fibonacci heaps
where better bounds can be given for some of the operations.

49

with dist[v] = ∞. Then, if/when v is opened (i.e.,
dist[v] is changed from ∞), v will incur the overhead
of a change priority() operation. v will now propa-
gate through other nodes (most of them with dist[] = ∞
too) until it reaches its location in the heap. In addi-
tion, whenever a relax operation further decreases dist[v],
change priority() is called again. By contrast, in UCS
v will only be inserted to OPEN when it is first generated
(Opened) with its non-∞ value, canceling the need to per-
form the first change priority() operation and canceling
the need to propagate through many nodes with dist[] = ∞.
A change priority() operation will only be called during
the duplicate pruning process when a shorter path to v was
found (equivalent to the relax operation). So, when |V | ver-
tices exist in the graph, DA incurs |V | insert() operation
plus |V | change priority() operations when the dist[] of
these vertices is decreased from ∞. For the same set of op-
erations UCS will only incur |V | insert() operations.

Max-Q Swaps Time
Single-source all shortest paths

DA 900,435 15,579,369 13.778
UCS 1,802 8,040,484 8.444

Source-target shortest path
DA 900,435 7,910,200 7.473
UCS 1,469 3,900,530 4.234
Table 1: DA Versus UCS on a small map

Experimental results To demonstrate these differences,
we performed simple experiments with the two algorithms
on a four-connected squared grid of size 1000×1000 where
10% of the cells were randomly chosen as obstacles. In
order to have variable edge costs, the cost of an edge was
uniformly randomized to be an integer between 1 and 10.
We performed two sets of experiments. In the first set, we
randomly chose a source vertex and a goal vertex. Then,
both DA and UCS were executed until the shortest path be-
tween these two vertices was found. In the second set, only
a source vertex was chosen and the algorithms were exe-
cuted until the shortest paths to all vertices in the graph were
found. Table 1 shows results averaged over 100 such in-
stances. The first column gives the largest number of ver-
tices kept in the priority queue at any given time. It is easy
to see that UCS used a much smaller queue. The second col-
umn counts the number of swap operations performed in the
priority queue in order to preserve the heap condition when
insert, change priority() or extract min() were called.
Clearly, UCS performs a smaller number of those. Finally
the time in seconds needed to solve the problem. Again,
UCS outperforms DA in both experiments.

Pedagogical aspects

Consider a basic Algorithms course usually given to sec-
ond year students in computer science or related fields. The
first graph algorithms studied are breadth-first search and
depth-first search. Then, the course moves to finding paths
in general weighted graphs and the single-source shortest
path problem is presented. DA is then introduced to the

students. Probably, its relation to breadth-first search is not
even mentioned or very briefly mentioned. DA, as a stand
alone algorithm is rather complex. In DA, the frontier of the
search is not directly defined - as both Unknown and Opened
nodes are in Q and there is no distinction between them in
the way DA is described. Therefore, the different invari-
ants in DA, which actually mimic a best-first search behavior
of the frontier are not easy to recognize and understand by
students. Proving optimality and the need for non-negative
edges needs either an indirect definition of the frontier or
an indirect description of the UCS invariants (given above).
This will certainly demand large amount of time and effort
from both the instructor and the student. Probably, only if a
student later takes an Introduction to AI course, the best-first
search framework is taught and UCS is shown as a very sim-
ple special case, and its relation to DA might be mentioned.

By contrast, assume that at this point of the course, instead
of DA the instructor presents UCS in two stages. First, the
best-first search framework is introduced. The students will
not have any problem to understand this framework as they
have just studied breadth-first search, which is a simple spe-
cial case. Second, the instructor introduces UCS as a gener-
alization of breadth-first search to weighted graphs. In order
to understand UCS, a student only needs to realize the dif-
ference between a FIFO queue and a priority queue, and, be-
tween the number of edges in a path d(n) and their weighted
sum g(n). Most importantly, the notion of the frontier of the
search is an inherent component of the structure of best-first
search - as the best node of the frontier is chosen for ex-
pansion. The frontier is easy to recognize as it is the exact
content of OPEN. The frontier nodes in UCS have many im-
portant attributes and invariants, as detailed above. These
invariants directly explain why UCS provides the optimal
solution and why this is only true with non-negative edges
as detailed above.

One might claim that the way DA is described where all
vertices are initially placed in Q is easier to understand than
the way it is done lazily in UCS. I disagree. But, even if
this claim is true, still, breadth-first search can only be de-
scribed according to the best-first search framework. The
reason is that breadth-first search uses a FIFO queue and
thus adding nodes to the queue must be done lazily. Given
that breadth-first search is described this way, I think that
using the same framework of popping a node from the prior-
ity queue and inserting all its neighbors would be easier for
students to understand. Yet, in most textbooks, breadth-first
search is taught along the best-first search framework while
DA is taught differently. This causes pedagogical trouble to
students and to their instructors.

Practical implementation

Consider a case where an implementer needs to solve the
shortest path problem when a heuristic estimation is not
given or when the implementer does not know how to use
it (e.g., is not even familiar with A*). In such cases, the
implementer probably remembers that DA exists and starts
to implement it. Then, the implementer might realize that
the Q as defined by DA is not efficient and modify the code
to only include Opened nodes in Q, or in other words, con-

50

verts DA into UCS. In many other cases, the implementer
implements UCS to begin with. Both implementers do not
know the term UCS and continue to use the term DA for
describing their implementation. This is probably true for
scientific papers too. Furthermore, even within the heuristic
search community the differences between DA and UCS is
not always recognized and/or mentioned. DA is a very well
known term and researchers might use this term even if in
practice they implement UCS.

My suggestion
The late Dijkstra wrote a very famous paper by the name of
“A case against the goto statement” (Dijkstra 1968). Along
the same way, this paper can be seen as ”A case against Di-
jkstra’s algorithm”. My main claim and suggestion is that
DA as presented in textbooks should not be taught in classes
and not be used by implementers. Instead, UCS should be
introduced, taught and used.

I am definitely not arguing against using the name “Dijk-
stra’s algorithm” for UCS. Dijkstra was the first to mention
this logical behavior.“Dijkstra’s algorithm” is a very com-
mon term which is widely used and calling an algorithm or
a hypothesis after the person who invented it, is very com-
mon in science. My claim is that the UCS framework should
be used instead of that of DA.

In addition, I also suggest use the term weighted breadth-
first search instead of UCS. As explained above, the two
algorithms are very similar where the only difference is the
the weight of the edges.

What would Dijkstra say?
It would have been be very interesting to hear Dijkstra’s
opinion on this matter. Unfortunately, he passed away in
2002. However, I went back and read his original semi-
nal paper: “A Note on Two Problems in Connexion with
Graphs” (Dijkstra 1959).3 The paper is very short and only
includes one page for this fundamental algorithm. Amaz-
ingly, Dijkstra recognizes exactly the three sets of vertices
(Unknown, Opened and Closed) described above. He de-
notes them as the sets C, B and A, respectively. Dijkstra
(who denotes the source vertex by P) specially writes that
in the main loop, “the node with minimum distance from P
is transferred from set B to set A”. While he does not give
an exact pseudo code, this can be interpreted more like UCS
which only keeps the frontier (set B) in the queue but not
all nodes (those with infinity) as in DA. To be on the safe
side, one might say that Dijkstra was vague about the matter
in question. But certainly he never wrote specifically that
all nodes should be added to the queue at the initialization
phase. Therefore, this paper is targeted against the way DA
is commonly described but not against Dijkstra himself.

I would to point out the following two notes. First, Dijk-
stra specifically addresses the source-target shortest path. In
his words, he is interested to:“find the path of minimum total
length between two given nodes P and Q”. Probably the ex-
tension to single-source shortest path was made later by oth-
ers. Second, when Dijkstra wrote his paper, priority queues

3This paper can be found at http://www-
m3.ma.tum.de/foswiki/pub/MN0506/WebHome/dijkstra.pdf.

did not yet exist. He probably meant to use a sorted-list of
the elements. In this case the difference in the time overhead
between DA and UCS is less significant. In DA, all nodes
with dist[] = ∞ are at the tail of the list and they cause
no overhead. Nodes with dist[] �= ∞ should only propa-
gate through nodes at the head of the list. When the priority
of a node with dist[] = ∞ is first changed to dist[] �= ∞
it can jump at a constant cost to the head of the list, or to
a pointer indicating the border between non − ∞ and ∞
nodes. However, when priority queues were introduced, in-
cluding nodes with dist[] = ∞ makes a huge difference on
the running time as explained above. Based on this, the fol-
lowing conjecture might be a possible historical explanation.
In the early days, it was not that harmful (time-wise) to insert
all nodes to Q. Thus, for some reason textbooks decided to
adopt this formalization. Then, when priority queues were
introduced, the DA formalization was so common and was
never reconsidered.

Algorithms books are usually written by theoretical com-
puter scientists. They might claim, that in the worst-case
(e.g. when the graph is fully connected) the queue will look
similarly in both DA and UCS so from the theoretical point
of view, there is no difference. However, as explained in this
paper, in practice there are many advantages in using UCS
and not DA.

Acknowledgments

I would like to thank Robert C. Holte and Carlos Linares
Lopez for helpful discussions. Special thanks to Eyal Weiss-
man and Shahar Kosti for helping with the experiments.

References

Aho, A. V.; Hopcroft, J. E.; and Ullman, J. D. 1987. Data
Structures and Algorithms. Addison-Wesley.
Cherkassky, B. V.; Goldberg, A. V.; and Radzik, T. 1996.
Shortest paths algorithms: Theory and experimental evalua-
tion. Mathematical Programming 73:129–174.
Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; and Stein,
C. 2001. Introduction to Algorithms. Cambridge, Mas-
sachusetts: MIT Press. 2nd edition.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1:269–271.
Dijkstra, E. W. 1968. A case against the go to statement -
was published as a letter entitled go-to statement considered
harmful. Commun. ACM, 11 3:147–148.
Felner, A.; Zahavi, U.; Holte, R. C.; Schaeffer, J.; Sturtevant,
N. R.; and Zhang, Z. 2010. Inconsistent heuristics in theory
and practice. Artificial Intelligence Journal 175:1570–1603.
Sedgewick, R., and Wayne, K. 2011. Algorithms. Pearson
Education. 4th edition.
Sniedovich, M. 2006. Dijkstras algorithm revisited: the
dynamic programming connexion. Control and Cybernetics
35(3):599–620.

51

