
Degrees of Separation in Social Networks

Reza Bakhshandeh
Shiraz University

Shiraz, Iran
bakhshandeh@cse.shirazu.ac.ir

Mehdi Samadi
Carnegie Mellon University

Pittsburgh, United States
msamadi@cs.cmu.edu

Zohreh Azimifar
Shiraz University

Shiraz, Iran
azimifar@cse.shirazu.ac.ir

Jonathan Schaeffer
University of Alberta
Edmonton, Canada

jonathan@cs.ualberta.ca

Abstract

Social networks play an increasingly important role in today’s
society. Special characteristics of these networks make them
challenging domains for the search community. In particular,
social networks of users can be viewed as search graphs of
nodes, where the cost of obtaining information about a node
can be very high. This paper addresses the search problem of
identifying the degree of separation between two users. New
search techniques are introduced to provide optimal or near-
optimal solutions. The experiments are performed using Twit-
ter, and they show an improvement of several orders of mag-
nitude over greedy approaches. Our optimal algorithm finds
an average degree of separation of 3.43 between two random
Twitter users, requiring an average of only 67 requests for
information over the Internet to Twitter. A near-optimal so-
lution of length 3.88 can be found by making an average of
13.3 requests.

1 Introduction
Social networks are a collection of users that are connected
to each other by relations such as “friendship” or “follow-
ing”. Some of these Internet-based networks are special-
purpose in nature (e.g., sharing videos using YouTube;
micro-blogging with Twitter) while others are general pur-
pose (e.g., Facebook and Myspace). The role of social net-
works in daily life has been growing at an impressive rate.
For example, Facebook has over 500 million user accounts.

An interesting search problem in a social network is
to identify the degree of separation (“distance”) between
two users. Stanley and Milgram, in their pioneering work
in the 1960s, concluded that people in the United States
are approximately three “steps” (distance) away from each
other (Milgram 1967). Today, the claim is that that the av-
erage number of steps between any two people on Earth is
six (Kleinberg 2000b), and this is commonly referred to as
“six degree of separation” or “small world phenomenon”.
We expect to observe a smaller degree of separation in vir-
tual networks, such as Twitter and Facebook, since a con-
nection between people can be created quickly and easily, as
compared to real-world connections.

From the artificial intelligence point of view, a social net-
work of users can be thought of as a social graph of nodes.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Each node corresponds to a user in the social network, with
an edge showing direct connectivity of two users. Thus the
degree of separation between two users becomes a search
for the minimum cost connection between them. Computing
the degree of separation in a social network is an unusual
search problem. The tree has a shallow search depth but can
have an enormous branching factor (the number of “friends”
that each user has). The cost of obtaining the information
on the search graph means issuing a query over the Internet
(which is many orders of magnitude slower than CPU-based
search). An unwelcome complication is that most social net-
works limit the number of queries that can be issued per hour
(to reduce the abuse of resources). For example Twitter only
allows sending 150 queries per hour from each unique IP ad-
dress (Twitter 2011). Finally, the graph doesn’t have a well-
defined structure, the graph is dynamically changing, and
there are no obvious and effective distance heuristics.

Although the degree of separation is most commonly
thought of in the social context, being able to efficiently
solve this problem has important applications for other
network-based applications. For example, in Voice over In-
ternet Protocol (VoIP) networks, when a user calls another
user in the network, he/she is first connected to a VoIP carrier
(i.e., a main node in the network). The VoIP carrier connects
the call to the destination either directly or, more commonly,
through another VoIP carrier. The length of the path from
the caller to the receiver is important since it affects both the
quality and price of the call. The algorithms that are devel-
oped in this paper can be used to find a short path (fewest
carriers) between the initial (sender) and the goal (receiver)
nodes in the network. In the social network context, each
edge is assumed to have unit cost. In the VoIP example, the
costs need not be uniform: the cost of an edge could be tied,
for example, to the speed of the connection.

In this paper we propose new approaches that are able
to efficiently search in social networks. Twitter is used as
the experimental domain for this research since other social
networks are either too small (e.g., FriendFeed) or too re-
strictive in letting an application access network data (e.g.,
Facebook). Our solution techniques are general and can be
applied to other social networks (or search graphs with simi-
lar characteristics). Researchers have shown that many other
social networks (e.g., MSN messenger network) and techno-
logical networks (e.g., a power grid) have similar character-

18

Proceedings, The Fourth International Symposium on Combinatorial Search (SoCS-2011)

Figure 1: Twitter profile [Kwak et al., 2010].

istics to what we have observed in Twitter: a small diameter
and a very large branching factor (Watts and Strogatz 1998;
Leskovec and Horvitz 2008).

The baseline for our work is two greedy algorithms that
have been widely used for search applications in social net-
works and also other types of networks (Adamic et al. 2001;
Kim et al. 2002; Adamic, Lukose, and Huberman 2003;
Watts, Dodds, and Newman ; Kleinberg 2000a; Şimşek and
Jensen 2008). We then show that search can be dramati-
cally improved through the use of perimeter (Manzini 1995)
and bidirectional (Pohl 1971) search. The bidirectional al-
gorithm yields optimal results (minimum degree of sepa-
ration). However, for many applications the time taken to
achieve optimality is unacceptable. Hence we introduce a
version that runs over an order of magnitude faster, but
is 13% sub-optimal. The resulting algorithm, bidirectional
search with a probabilistic heuristic, can determine the non-
optimal degree of separation on Twitter using an average of
13.3 Internet queries.

This paper expands our understanding of algorithms that
search Internet graphs as follows:

1. Applying well-known search techniques to find optimal
solutions to the degree of separation problem;

2. Introducing a new heuristic approach that finds a near-
optimal degree of separation;

3. Performance results that are over an order of magnitude
better than previous results.
Section 2 overviews the basics of Twitter and previous

work on search in social networks. Section 3 presents algo-
rithms and their performance for finding optimal and near-
optimal degrees of separation. Section 5 presents conclu-
sions and future research directions.

2 Background and Related Work
Twitter (twitter.com), the experimental domain used in this
paper, is a real-time information network that allows users
to send short (140 character) messages (“tweets”) to their
set of followers. To many, 140 characters does not seem like
much information, but around 200 million users, generating
95 million tweets per day, seems to disagree!

Kwak et al. collected and analyzed 41.7 million Twitter
users’ profiles (Kwak et al. 2010). Their results are impor-
tant to understanding the structure of the social graph and

give insights for choosing an appropriate algorithm to search
in this network. Figure 1 shows the distribution for the num-
ber of followings (people whose tweets you receive—solid
line) and the number of followers (people that receive your
tweets—dotted lines). More formally, for a Twitter user s re-
ceiving tweets from t, the number of followers is defined as
|s| that subscribe to t’s tweets and the number of followings
is defined for s as |t|. The y-axis shows the complementary
cumulative distribution function (CCDF). From the figure
we can observe that a small number of users have more than
10,000 followings. Kwak et al. showed that among the 41.7
million user profiles that they studied, only 40 had more than
one million followers.

Twitter has an Application Programming Interface (API)
that allows programmers to query information about the net-
work of users. A single Twitter query can obtain the profile
of at most 100 users. A user’s profile may include a brief bi-
ography, their location, and the number of followers. All the
followers and followings of a user can be obtained, but with
a maximum of 5,000 per query. A user’s tweets can be ob-
tained, to a maximum of 200 per query. Twitter has restricted
the number of API requests that an application is allowed to
send. Currently the limit for regular users is 150 per hour
and for registered Twitter applications is 350 per hour (Twit-
ter 2011). A search algorithm that makes 150 queries might
take a few minutes; one that executes 151 will take more
than an hour.

Although social networks have became wildly popular,
to the best of our knowledge there have been few research
projects that study how to efficiently search in such an en-
vironment. Most of the research has concentrated on identi-
fying heuristics to be used by a greedy algorithm and study-
ing their performance (Adamic et al. 2001; Kim et al. 2002;
Adamic, Lukose, and Huberman 2003; Kleinberg 2000a;
Şimşek and Jensen 2008; Adamic and Adar 2005; Liben-
Nowell et al. 2005). These papers view search in networks
as a message-passing problem, i.e., the algorithm builds the
path in a greedy manner. Popular heuristics that are used to
select a node for expansion include: 1) maximum out-going
degree, 2) similarity to the goal node, 3) selecting a node
that is directly connected to the goal (i.e., using breadth-first
search up to level one as a heuristic), and 4) geographical
information. Watts et al. presented a model for search in net-
works that have a hierarchical structure (Watts, Dodds, and
Newman). All these work have been tested either on the
small networks (e.g., email) or on the networks that are con-
structed by the authors by using a mathematical model (e.g.,
power-law and scale-free networks).

Kwak et al. created a static snapshot of Twitter, saved it on
disk, and then analyzed the resulting 41.7 million user pro-
files (Kwak et al. 2010). They reported the average shortest
path of 4.12 based on analysis of 8,000 pairs of users. Our
results give a shortest path of 3.43 based on 1,500 random
Twitter pairs. There are two main reasons for this difference.
First, the number of Twitter users at 2010 year end is esti-
mated to be more than 200 million, 4.7 times larger than the
dataset that was used by Kwak et al. As the number of users
in the social network increases, the number of connections
between users increases, reducing the average length of the

19

shortest path. Second, our test data was sampled from Twit-
ter’s June 2010 “public timeline”, which is biased towards
active Twitter users. Active users tend to have more con-
nections in the network. Having more connections can only
help decrease the length of the shortest paths from a user. In
contrast, Kwak et al. used a uniform sample of users. Our
sampling technique doesn’t affect our contributions since
our experiments were designed to evaluate search algorithm
performance; the precise value of the shortest path is of pe-
ripheral interest.

3 Search Algorithms
There are two goals for this research, which may conflict:

1. Find the least cost path (degree of separation) between
two users, and

2. Find a solution by making the least number of requests to
Twitter for information.

The former implies optimality; the latter implies speed. It is
important to recognize that sending a request over the Inter-
net is slow—many orders of magnitude slower than the cost
of a graph query for a CPU-based search algorithm. Depend-
ing on network traffic, it is not uncommon for a single query
to take several seconds. Under these circumstances, it is crit-
ical to minimize the number of requests for information.

In this section we describe different search techniques that
can be used to find a path between two users in a social net-
work (nodes in the search graph). The performance of these
algorithms are given in Table 1. Each algorithm is imple-
mented using Twitter’s APIs and is run over the Internet. All
algorithms are compared using 50 random pairs of Twitter
users. These pairs were chosen randomly during Twitter’s
June 2010 “public timeline”. Since Twitter allows us to only
send 150 requests per hour, running all these algorithms on
a larger dataset is not practical; some algorithms required
sending more than 10,000 Twitter requests for each of the
problem instances. Time is dominated by the cost of send-
ing/receiving messages over the network; hence, local CPU
processing time is essentially irrelevant.

Algorithm performance is compared using several met-
rics, including the length of the path (degree of separation),
the number of generated nodes, and the number of requests
for information sent to Twitter. In a social graph, a node is a
user. Hence, the number of generated nodes is defined to be
the number of users whose Twitter profiles are downloaded
by the algorithm. The subset of the Twitter graph used by
any of our algorithms to solve a problem instance is small
enough that memory size is not a consideration.

Greedy: Maximum Number of Followings
We start with a simple greedy algorithm that at each step
chooses a node with the maximum number of followings
to expand (i.e., maximum number of users that this node
follows). The goal is to find a path between the initial and the
goal node. This algorithm and the one in the next subsection
(greedy enhanced with geographic information) are used as
a baseline for our comparisons.

Starting from the initial node, the algorithm first checks
if the goal node appears as one of the neighbors (i.e., is a

following). If so, then the algorithm ends. Otherwise, a node
is selected that has the maximum number of followings (ties
are broken randomly). The algorithm continues this process
until it finds the goal or it reaches a node with no following.
In the latter case, the algorithm reports failure and exits. The
algorithm will report failure if the path length exceeds 325.

A limitation of the greedy algorithm is that it may en-
ter into a loop by visiting a node that has already been vis-
ited. For example, 4.9 million Twitter users follow “Barack
Obama”, and he also follows 717 thousand people. In our
experiments we observed that in many cases the greedy al-
gorithm falls into a loop and revisits “Barack Obama” after a
few steps. To avoid loops, we record which nodes have been
visited in the search (the path from the start node to the cur-
rent node), and then choose a node with the largest number
of followings that have not previously been visited.

Row #1 in Table 1 shows the experimental results for
this algorithm. The third column is the number of pairs (out
of 50) that are solved by the algorithm. The next column
shows the degree of separation (path length) averaged over
all the pairs that were solved. The standard deviation of the
degree of separation over all the pairs that were solved is
shown in column five. The number of generated nodes and
the the number of Twitter requests are shown in the next two
columns. The last column shows the average time (in min-
utes) to solve one of the pairs. To measure the time, we sent
600 requests to Twitter and calculated the average time that
each request took to complete. It took an average of 1.314
seconds to respond to a request (obtained during non-peak
network usage time). There was no significant difference in
the time required for different types of requests. The value
in the last column is calculated by multiplying the number
of Twitter requests (Column 7) by the time that each request
needs to be completed (CPU time is negligible). The time
that is written in parenthesis also includes the wall clock
time, i.e. considering the fact the algorithm is able to only
send 150 requests/hour.

The greedy algorithm using the maximum number of fol-
lowings heuristic can only solve 21 of the 50 problems
(42%) with an average path length of 92.23. This is achieved
by generating 6,103,060 nodes and submitting 61,050 Twit-
ter requests. Taking into account the Twitter limitation of
150 requests per hour, the average greedy solution took over
400 hours (61, 050/150) of real time!

Greedy: Geographic Heuristic
The simple greedy algorithm can be improved by taking ad-
vantage of information in the user’s profile. The geographic
heuristic selects a node for expansion based on the user’s
geographic location. The city and the country are extracted
from the user’s profile. The algorithm first looks at the geo-
graphic information of the goal node. In some cases the goal
user has not posted any location information in their profile.
For these cases the algorithm extracts all the users that the
target node is following and chooses as the target location
the location that most frequently occurs in this set of users.
A database that contains all the cities of different countries is
used by our algorithm. If user has posted only the city name
in his profile, then our algorithm extracts the country name

20

Row Heuristic Hits Degree of Standard Node Generation Twitter Requests Time (minutes)
for tie-breaking (out of 50) Separation Deviation (average) (average) (average)

Greedy
1 Max #followings 21 92.23 103.6 6,103,060 61,050 1,336 (25,756)
2 Geographic 25 100.88 141.3 1,004,773 10,073 220 (4,240)

Greedy: Perimeter Depth 1
3 Max #followings 50 7.50 13.6 1,254,024 12,551 274 (5,254)
4 Geographic 50 18.94 58.1 1,321,512 13,231 289 (5,569)

Greedy: Perimeter Depth 2
5 Max #followings 48 3.46 0.7 46,612 1,463 32 (1,382)
6 Geographic 48 3.60 1.0 55,898 1,555 34 (634)

Bidirectional Search: Breadth-first (optimal)
7 Max #followings 50 3.18 0.7 157 164 3.6 (63)

Bidirectional Search: Probabilistic
8 Max #followings 50 3.68 0.9 165 9.5 0.2 (0.2)

Table 1: Experimental results on 50 random pairs chosen from Twitter.

from this database. For the cases that multiple countries have
the same city name, the algorithm considers all of them.

In the node expansion phase, the greedy algorithm ex-
tracts the location of all the neighbors of the current node.
If there exists a node with the same city as the target city,
then it is selected for expansion, otherwise we check if there
exists any node with the same country as that of the target
node. If none of the users are from the same city or country,
a node with the maximum number of followings is selected.
In all cases we break ties by selecting a node that has the
maximum number of followings.

Row #2 shows the result of the greedy algorithm using the
geographic heuristic. Compared to Row #1, we can see that
this version solves a larger number of problems (25 versus
21), but the average length of the degree of separation in-
creases from 92.23 to 100.88. Using the geographic heuris-
tic improves the speed of the algorithm by roughly a factor
of six, both in the number of generated nodes and the num-
ber of Twitter requests. However, even this algorithm is far
too slow.

Greedy: Perimeter Search
Perimeter search is well known in the heuristic search com-
munity (Manzini 1995). In this section we propose to en-
hance greedy search with a perimeter around the goal node.
The perimeter is built by running a backward breadth-first
search starting from the the goal node. Experimentally, we
observed that on average there are 377 nodes in a perimeter
of depth one from the goal, and 177,315 nodes in a perimeter
of depth two. Perimeters beyond depth two are not consid-
ered: the number of nodes in the perimeter grows exponen-
tially.

In the first phase of the algorithm, a perimeter of depth
one or two is built around the goal node. In the second phase,
a greedy search is started from the initial node. At each step
of the search a check is made to see if any of the neighbors
of the current node are present in the perimeter. If such a
node is found then the search can stop with success. The
path from the start node to the current node and the path
from the current node to the goal node (which exists in the

perimeter) are merged and returned as the final path.
Rows #3 and #4 show the results of greedy search en-

hanced with a perimeter of depth one. Row #3 shows the
result when using the maximum number of followings as
the heuristic. Compared to the simple greedy algorithm, the
addition of a perimeter has resulted in a dramatic improve-
ment in the search: all the problems are now solved with an
average 12-fold improvement in path length and a five-fold
reduction in search effort. Row #4 shows the results of using
the geographic heuristic. All problems are now solved with
an average five-fold improvement in path length. However,
surprisingly the search effort is slightly more. Note the real-
time cost of running this algorithm is now under 100 hours.

Rows #5 and #6 show the results for both heuristics when
the perimeter is of depth two. Surprisingly the number of
solved problems reduces from 50 to 48. Two of the problem
instances had enormous perimeters that had to be built, re-
sulting in over two million requests being sent to Twitter be-
fore being aborted. The solution quality is excellent: 3.46 for
the followings heuristic and 3.60 for the geographic heuris-
tic. Clearly, a perimeter of depth two is a huge performance
enhancement since, effectively the perimeter represents over
half of the average path length. Both node generation (factor
of over 25 for followings and over 20 for geographic) and
Twitter requests (factor of eight) are greatly reduced. The
wall clock time for the solved problems is down to an aver-
age of 10 hours.

Although greedy perimeter search has achieved signifi-
cantly better results comparing to pure greedy methods, the
number of requests sent to Twitter is still too high for an
online application.

Bidirectional Search: Breadth-first
When the start and the goal nodes are explicitly defined and
the search operators are reversible then we can use bidirec-
tional search; these conditions hold for the degree of separa-
tion problem. Bidirectional search proceeds simultaneously
from both the start and the goal nodes (Pohl 1971). Given
that the depth of search for the degree of separation is rel-
atively shallow, the simplest bidirectional search would run

21

breadth-first searches simultaneously from the start and goal
nodes. Two open lists can be used, one for each search direc-
tion. The algorithm alternates between the open lists at each
step. For each node in the selected open list, all of its chil-
dren are expanded. Each child is checked to see if it exists
in the other open list; if so then a solution has been found. A
solution, when found, is guaranteed to be optimal.

Bidirectional search is an efficient algorithm for domains
where the branching factor is large and the diameter of the
graph is small. Twitter is an example of a domain with such
properties. Our experimental results support this claim as
bidirectional search outperforms all the previous greedy-
based algorithms. Row #7 shows that bidirectional search
finds an average optimal path length of 3.18. Only 157 nodes
are generated using 164 Twitter requests.1 The number of
nodes is reduced by over two orders of magnitude and the
number of Twitter requests decreases by roughly one order
of magnitude over the best greedy result (Row #5), while
producing an optimal result.

Although bidirectional search represents a major perfor-
mance gain, the real time cost is still unacceptable for an
online application. The number of requests for information
(164) exceeds Twitter’s hourly limit (150), meaning on av-
erage a degree of separation calculation requires more than
one hour of wall clock time. Another issue is the open list: it
can get too big. In effect, bidirectional search is simultane-
ously building a perimeter for the initial and goal nodes. If a
particular problem instance hits a node with a huge branch-
ing factor or has a large solution length (say six), memory
can become exhausted.

Bidirectional Search: Probabilistic
Requiring an optimal solution implies additional search ef-
fort: one needs to find the best solution and guarantee that
there is no better. Relaxing optimality can reduce search ef-
fort. Bidirectional search, as described above, has an im-
plicit heuristic ordering of its open lists. Because of the
breadth-first search, nodes are ordered on their distance to
the initial/goal state. Bidirectional search with the proba-
bilistic heuristic injects a greedy aspect to the search. At
each step, the algorithm alternates between lists selecting
the node with the highest score (greedy) for expansion with-
out enforcing the breadth-first search constraint. By using
the distance from the initial/goal state as its heuristic, bidi-
rectional search can guarantee optimality; the probabilistic
heuristic does not.

The probabilistic bidirectional search algorithm uses the
following node evaluation criteria. For each node in the open
list, the distance of the node from the initial/goal node is
maintained (breadth-first search information). Consider set
D that contains all the distances of the nodes in a given
open list (|D| is very small). At each step, our algorithm

1It may sound odd to have fewer nodes than Twitter requests.
Recall that a node reflects information from Twitter about a user.
However, a single user may generate multiple requests. For exam-
ple, a user may have more than 5,000 followers, exceeding the
Twitter maximum per request. Retrieving all of Barak Obama’s
followers (one user) requires multiple Twitter requests (roughly
1,000).

first chooses one of the d ∈ D with probability p(d), where
p(d) depends on the value of d and

∑
d∈D p(d) = 1. Intu-

itively, the smaller the d, the higher the chance it should be
selected. The probability of depth d being selected (p(d)) is
calculated as follows. For each d ∈ D:

p(d) =
eαd

∑Dmax

i=1 eαi
(1)

where Dmax is the maximum depth of the nodes in the open
list and α is the decay parameter. The decay parameter deter-
mines the magnitude of the probability difference between
depths. The probabilistic bidirectional search combines ex-
ploitation (greedy) and exploration (breadth-first), with the
decay parameter defining this trade-off. The algorithm is bi-
ased towards expanding nodes in a breadth-first order, but
with a small probability it will make a greedy decision. In
our experiments, the decay parameter is set to -2.

Having chosen a depth d, then from all the nodes that have
distance d select for expansion a node that has the maximum
number of followings. After expanding this node, the algo-
rithm checks if any of its children exists in the other open
list. If so, then a solution has been found (possibly non-
optimal) and the search terminates.

Row #8 shows the result of bidirectional search using
the probabilistic heuristic. Comparing its results to that of
bidirectional search using the breadth-first search heuristic
(Row #7) shows that the new version found an average path
length of 3.68, 15% larger than the optimal path length of
3.18. An average of 9.5 requests were sent to Twitter, an im-
provement of 17-fold. This version can be considered usable
in real time, as the average degree of separation search takes
less than 15 seconds.

4 Experiments on Larger Dataset
The previous section showed results for different search ap-
proaches using 50 randomly selected pairs of Twitter users.
We were unable to test all of our algorithms on a larger
dataset since some of the algorithms took many days to run.
In this section we present the result of different versions of
bidirectional search algorithm on a larger dataset.

Table 2 shows results for using bidirectional search al-
gorithms on 1,500 random pairs chosen from Twitter. The
results are obtained by taking the average over the instances
that are solved by each algorithm. Row #1 shows that the
optimal version of bidirectional search could not solve 20 of
1,500 instances, the consequence of exhausting the number
of requests to Twitter. The search is stopped if it sends more
than 10,000 requests to Twitter. Row #2 shows that by using
the probabilistic heuristic and relaxing optimality, all 1,500
problem instances are solved. The average degree of sepa-
ration found is 3.88 (13% suboptimal). This is achieved by
sending an average of 13.3 requests to Twitter, a 27-fold re-
duction over the cost of computing the optimal answer. This
translates to a wall clock time of less than a minute for the
non-optimal answer, to more than two hours for an optimal
answer (assuming memory is not exhausted).

Given that the probabilistic version is so fast and the qual-
ity of its answers are quite good, this suggests a simple way

22

Row Heuristic Hits Degree of σ Node Generation Twitter Requests Time (minutes)
for tie-breaking (out of 1,500) Separation (average) (average) (average)

Bidirectional Search: Breadth-first (optimal)
1 Max #followings 1480 3.43 0.68 337 371 8.1 (128)

Bidirectional Search: Probabilistic
2 Max #followings 1,500 3.880 0.77 204 13.3 0.3 (0.3)

Bounded Bidirectional Search (optimal)
3 Max #followings 1,500 3.435 0.67 222 67 1.4 (1.4)

Table 2: Experimental results on 1,500 random pairs chosen from Twitter.

to reduce the cost of obtaining an optimal solution. First, run
the probabilistic search, obtaining a solution of length K.
Second, run the breadth-first bidirectional search to a maxi-
mum combined depth of K − 1. If this latter search is suc-
cessful then the optimal solution has been found. If it fails,
then the probabilistic search result of K is optimal.

This technique, called Bounded Bidirectional Search, can
significantly reduce the number of Twitter requests needed
to obtain an optimal solution by avoiding the last (and most
expensive) iteration of the breadth-first bidirectional search.
Row #3 shows the result of this algorithm. An optimal solu-
tion for all 1,500 problem instances is found. Comparing to
Row #1, bounded bidirectional search reduces the number of
Twitter requests by a factor of 5.5, enabling optimal search
with an average time 1.4 minutes (very good, but perhaps
still not practical).

5 Conclusions
Social networking is a transformative Internet phenomenon.
With networks like Facebook and its more than 500 million
users, researchers will want to investigate properties of this
evolving web of interconnected users and communities. The
degree of separation is an important property of such a net-
work and one that is of great interest, especially to social
scientists. Twitter’s 3.43 degree of separation is surprisingly
small (or, rather, we were surprised) and perhaps is indica-
tive of changing social norms. It would be very interest-
ing to do a more definitive study of this number for Twitter
and other social networking sites, and then monitor how this
changes over time. It reflects the truism that the world gets
smaller every day.

This paper has discussed search algorithms and heuris-
tics for dynamic Internet-based graphs. In this environment,
many of the traditional assumptions of heuristic search al-
gorithms are not applicable. Two in particular stand out:
nodes are expensive to evaluate and the cost can vary dra-
matically deepening on conditions out of the application’s
control (e.g., network load), and there is the potential for an
enormous branching factor. Our research represents a step
forward in applying traditional search algorithms designed
for memory-based search (or even disk-based search (Korf
2004)) to the challenging world of the Internet.

Acknowledgements
Financial support from iCORE and NSERC is greatly appre-
ciated.

References
Adamic, L. A., and Adar, E. 2005. How to search a social
network. Social Networks 27:2005.
Adamic, L. A.; Lukose, R. M.; Puniyani, A. R.; and Hu-
berman, B. A. 2001. Search in power-law networks.
PHYS.REV.E 64:046135.
Adamic, L. A.; Lukose, R. M.; and Huberman, B. A. 2003.
Local search in unstructured networks. In Handbook of
Graphs and Networks, 295–317. Wiley-VCH.
Kim, B. J.; Yoon, C. N.; Han, S. K.; and Jeong, H. 2002.
Path finding strategies in scale-free networks. Phys. Rev. E
65(2):027103.
Kleinberg, J. 2000a. Navigation in a small world. Nature
406(6798):845.
Kleinberg, J. 2000b. The small-world phenomenon: an al-
gorithm perspective. In STOC’00, 163–170. New York, NY,
USA: ACM.
Korf, R. E. 2004. Best-first frontier search with delayed
duplicate detection. In AAAI’04, 650–657. AAAI Press.
Kwak, H.; Lee, C.; Park, H.; and Moon, S. 2010. What
is twitter, a social network or a news media? In WWW’10,
591–600. ACM.
Leskovec, J., and Horvitz, E. 2008. Planetary-scale views on
a large instant-messaging network. In WWW’08, 915–924.
Liben-Nowell, D.; Novak, J.; Kumar, R.; Raghavan, P.; and
Tomkins, A. 2005. Geographic routing in social net-
works. Proceedings of the National Academy of Sciences
102(33):11623–11628.
Manzini, G. 1995. Bida: an improved perimeter search al-
gorithm. Artif. Intell. 75:347–360.
Milgram, S. 1967. The small world problem. Psychology
Today 1:61.
Pohl, I. 1971. Bi-directional search. Machine Intelligence
6:127–140.
Şimşek, Ö., and Jensen, D. 2008. Navigating networks by
using homophily and degree. Proceedings of the National
Academy of Sciences 105(35):12758–12762.
Twitter. 2011. http://dev.twitter.com/pages/rate-limiting.
Watts, D. J., and Strogatz, S. H. 1998. Collective dynamics
of ‘small-world’ networks. Nature 393(6684):440–442.
Watts, D. J.; Dodds, P. S.; and Newman, M. E. J. Identity
and search in social networks. Science.

23

