
Partial-Expansion A* with Selective Node Generation
Ariel Felner

Meir Goldenberg
Guni Sharon

Roni Stern, Tal Beja
ISE Department

Ben-Gurion University (Israel)
felner@bgu.ac.il

{mgoldenbe,gunisharon,roni.stern}@gmail.com

Nathan Sturtevant
CS Department

University of Denver (USA)
Sturtevant@cs.du.edu

Jonathan Schaeffer
Robert C. Holte

CS Department
University of Alberta (Canada)
{Jonathan,holte}@cs.ualberta.ca

Abstract

A* is often described as being ‘optimal’, in that it expands
the minimum number of unique nodes. But, A* may generate
many extra nodes which are never expanded. This is a per-
formance loss, especially when the branching factor is large.
Partial Expansion A* (PEA*) (Yoshizumi, Miura, and Ishida
2000) addresses this problem when expanding a node, n, by
generating all the children of n but only storing children with
the same f -cost as n. We introduce an enhanced version of
PEA* (EPEA*). Given a priori domain knowledge, EPEA*
only generates the children with the same f -cost as the par-
ent. State-of-the-art results were obtained for a number of
domains. Drawbacks of EPEA* are also discussed. A full
version of this paper appears in the proceedings of AAAI-
2012 (Felner et al. 2012).

A*
It is well known that A* expands the minimum number of
unique nodes. But A* also generates many nodes that it
doesn’t expand. Let X be the number of nodes that A* ex-
pands and let b be the average branching factor. Every time a
node is expanded, b children are inserted into the OPEN list.
Therefore, a total of b × X nodes are generated. However,
once a solution of cost C is found, the algorithm only needs
to verify that no solution with cost < C exists. Therefore,
when the minimal-cost node in OPEN has f = C, the algo-
rithm halts and all other nodes in OPEN (most of them have
f > C) are discarded. Nodes with f > C are designated as
being surplus. The number of surplus nodes in OPEN can
grow exponentially in the size of the domain, resulting in
significant costs.

Partial Expansion A*
Partial Expansion A* (PEA*) (Yoshizumi, Miura, and
Ishida 2000) never adds surplus nodes (with f > C) to
OPEN (Yoshizumi, Miura, and Ishida 2000). When expand-
ing node n, PEA* first generates a list of all the children of
n,CH(n). Only nodes c fromCH(n) with f(c) = f(n) are
added to OPEN. The remaining children are discarded but n
is added back to OPEN with the smallest f -value greater
than f(n) among the remaining children. We refer to this

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

algorithm as Basic PEA* (BPEA*). The memory benefit
of BPEA* is straightforward. Assume the goal node has
f = C. All nodes with f > C that were generated (as chil-
dren of expanded nodes with f ≤ C) will not be added to
OPEN. However, BPEA* incurs extra time overhead when it
repeatedly generates all the children of a node n every time
n is expanded. Thus, while memory is always saved, a time
tradeoff exist.

We borrow the terminology first used in RBFS. Denote
the regular f -value (g + h) of node n as its static value,
which we denote by f(n) (small f). The value stored in
OPEN for n is called the stored value of n, which we denote
by F (n) (capital F). Initially F (n) = f(n). After n is
expanded for the first time, F (n) might be set to v > f(n)
when its minimal remaining child has a static f -value of v.

Enhanced PEA*
We introduce Enhanced PEA* (EPEA*). Assume we are
now expanding a node n with f(n) = K. While BPEA*
generates all the children of n, EPEA* uses a mechanism
which only generates the children with f = K, without gen-
erating and discarding the children with values f < K or
f > K. Thus, each node is generated only once through-
out the search process and no child is regenerated when its
parent is re-expanded.

This is achieved with the following idea. In many do-
mains, one can classify the operators applicable to a node
n based on the change to the f -value (denoted ∆f) of the
children of n that they generate. The idea is to use this
classification and only apply the operators of the relevant
class. EPEA* creates a domain-dependent Operator Selec-
tion Function (OSF) which receives a state p and a value v.
The OSF has two outputs: (1) a list of operators that, when
applied to state p, will have ∆f = v. (2) vnext — the value
of the next ∆f in the set of applicable operators. Now as-
sume node n is expanded with a stored value F (n). F (n)
might be larger than the static value of f(n) = g(n) + h(n)
in cases where n was already expanded in the past. In such
cases, F (n) was inherited from one of its children. We
only want to generate a child c for which f(c) = F (n).
Thus, we only need the operators which will increase f(n)
by ∆f = F (n) − f(n). OSF (n,∆f) is used to iden-
tify the list of relevant operators. Node n is re-inserted
into OPEN with the next possible value for this node, i.e.,

180

Proceedings of the Fifth Annual Symposium on Combinatorial Search

F (n) = f(n) + vnext(n,∆f). If no larger value is possible
(vnext = nil) then node n is moved to the CLOSED list.
Of course, if the goal node is found before n is moved to
CLOSED, EPEA* never generates any of the surplus nodes
with an f -value larger than the f -value of the goal.

In the full paper (Felner et al. 2012), we give deeper
theoretical analysis by comparing the different operations
needed by the different algorithms. In addition, we provide
a number of methods to create OSFs.

Enhanced partial expansion IDA* (EPE-IDA*)
Partial expansion and OSF work naturally in IDA*. In fact,
IDA* can be viewed as using basic partial expansion. As-
sume that the IDA* threshold is T . Once a node n is ex-
panded, all the children are generated. Children with f ≤ T
are expanded, while children with f > T are generated and
discarded. This satisfies the basic partial expansion crite-
ria. However, augmenting IDA* with an OSF (enhanced
partial expansion) may significantly reduce the number of
node generations. This is done with EPE-IDA*.

EPE-IDA* is simpler than EPEA*. EPE-IDA* associates
each node only with its static value. There is only one
“stored” value for the entire tree — the value for the next
iteration. Given an expanded node n, let d = T −f(n). The
OSF will identify the applicable operators with ∆f ≤ d.
These operators will be applied. Operators with ∆f > d
need not be applied as the children they produce will have
f -value > T . Thus, for every iteration, EPE-IDA* gener-
ates exactly the nodes that will be expanded. The next IDA*
threshold is set to the minimal vnext() among the expanded
nodes.

Experiments: Rubik’s cube
OSFs can be built on top of PDB heuristics. The result-
ing PDB is called ∆-PDB. The entry ∆-PDB[a, σ] indicates
how much the heuristic value h(p) will change when an op-
erator σ is applied to any state p such that φ(p)=a where
φ(p) gives the relevant entry in the PDB for state p. This
technique was applied to Rubik’s Cube PDB based on the
corner cubies (Korf 1997). This abstraction has 88, 179, 840
abstract states. In the ∆-PDB, each of these states further
included an array of size 18, one index per operator (each
requiring 2 bits) for a total of 396,809,280 bytes of memory
(396 MB, compared to 42 MB for the original PDB). Note
that the ∆-PDB can be potentially compressed to reduce its
memory needs.

Results using the corner ∆-PDB are given in Table 1
(top). Each line is the average over 100 instances of depth
13-15. The reduction (ratio column) in the number of nodes
generated is a factor of 13.3 (the known effective branching
factor) and the time improvement is only 3.7-fold. The rea-
son for the discrepancy is that the constant time per node of
EPE-IDA* is larger than that of IDA* since it includes the
time to retrieve values from the ∆-PDB.

Experiments: Pancake puzzle (GAP heuristic)
In the pancake puzzle a state is a permutation of the values
1...N . Each state has N − 1 children, with the kth succes-

IDA* EPE-IDA ratio IDA* EIDA* ratio
Rubik’s Cube (Corner PDB)

Generated Nodes - Thousands Time (mm:ss)
13 434,671 32,610 13.32 0:53 0:15 3.53
14 3,170,960 237,343 13.37 5:31 1:32 3.68
15 100,813,966 7,579,073 13.30 175:25 47:16 3.71

Pancake Puzzle (GAP Heuristic)
Generated Nodes Time (ms)

20 18,592 1,042 17.84 1.5 0.1 11.23
30 241,947 8,655 27.95 24.9 1.2 20.00
40 1,928,771 50,777 37.98 247 8.5 30.75
50 13,671,072 284,838 47.99 2,058 57 36.15
60 92,816,534 1,600,315 57.99 16,268 359 45.32
70 754,845,658 11,101,091 67.99 155,037 2,821 54.90

Table 1: Rubik’s Cube and pancake puzzle results

sor formed by reversing the order of the first k+ 1 elements
of the permutation (1 ≤ k < N). The experimental re-
sults for 100 random instances for 10 to 70 pancakes are
given in Table 1 (bottom). The heuristic used is the most
effective heuristic on this puzzle, known as the GAP heuris-
tic (Helmert 2010). The GAP heuristic iterates through the
state and counts the number of neighboring pancakes that
are not consecutive in their numbers. This heuristic is ad-
missible. For 70 pancakes, EPE-IDA* generated 68 times
fewer nodes than IDA*. Most of this is reflected in the run-
ning time (54-fold). To the best of our knowledge, these are
the state-of-the-art results for this puzzle.

Other domains
In the full paper (Felner et al. 2012), we provide additional
experimental results for various domains including the 15
puzzle and multi-agent path finding. These results confirm
the advantage of EPEA* over BPEA* and A*.

However, we also show that EPEA* has limitations and
in some cases it is not beneficial to use it. In particular, in
polynomial domains with small branching and many cycles,
there is the danger of inflating the OPEN list, thus reduc-
ing the potential for performance gains despite fewer dis-
tinct nodes being generated. Experimental evidence for this
is shown for grid-based navigation.

References
Felner, A.; Goldenberg, M.; Stern, R.; Sharon, G.; Beja, T.;
Holte, R.; Schaeffer, J.; Sturtevant, N.; and Zhang, Z. 2012.
Partial-expansion a* with selective node generation. Proc.
AAAI, To appear.
Helmert, M. 2010. Landmark heuristics for the pancake
problem. In SOCS, 109–110.
Korf, R. E. 1997. Finding optimal solutions to Rubik’s Cube
using pattern databases. In AAAI, 700–705.

Yoshizumi, T.; Miura, T.; and Ishida, T. 2000. A* with
partial expansion for large branching factor problems. In
AAAI, 923–929.

181

