
Towards Rational Deployment of Multiple Heuristics in A* (Extended Abstract)

David Tolpin, Tal Beja
Solomon Eyal Shimony

CS Department
Ben-Gurion University

Israel
{tolpin,bejat,shimony}@cs.bgu.ac.il

Ariel Felner
ISE Department

Ben-Gurion University
Israel

felner@bgu.ac.il

Erez Karpas
IEM Department

Technion
Israel

karpase@gmail.com

Abstract

In this paper we discuss and experiment with Lazy A∗, a vari-
ant of A∗ where heuristics are evaluated lazily and with ratio-
nal lazy A∗, which decides whether to compute the more ex-
pensive heuristics at all, based on a myopic value of informa-
tion estimate. Full version appears in IJCAI-2013 (Tolpin
et al. 2013)

Lazy A*
This paper examines the case where we have several avail-
able admissible heuristics. Clearly, we can evaluate all these
heuristics, and use their maximum as an admissible heuris-
tic, a scheme we call A∗

MAX . The problem with naive max-
imization is that all the heuristics are computed for all the
generated nodes. In order to reduce the time spent on heuris-
tic computations, Lazy A∗ (or LA∗, for short) evaluates the
heuristics one at a time, lazily. When a node n is gener-
ated, LA∗ only computes one heuristic, h1(n), and adds n
to OPEN. Only when n re-emerges as the top of OPEN is
another heuristic, h2(n), evaluated; if this results in an in-
creased heuristic estimate, n is re-inserted into OPEN. This
idea was briefly mentioned by Zhang and Bacchus (2012) in
the context of the MAXSAT heuristic for planning domains.
LA∗ is as informative as A∗

MAX , but can significantly re-
duce search time, as we will not need to compute h2 for
many nodes. In this paper we provide a deeper examination
of LA∗and describe several technical optmizations for LA∗.

The pseudo-code for LA∗ is shown in Algorithm 1. In
fact, without lines 7 – 10, LA∗ would be identical to A∗ us-
ing the h1 heuristic. When a node n is generated we only
compute h1(n) and n is added to OPEN (Lines 11 – 13),
without computing h2(n) yet. When n is first removed from
OPEN (Lines 7 – 10), we compute h2(n) and reinsert it into
OPEN, this time with fmax(n).

It is easy to see that LA∗ is as informative as A∗
MAX , as

they both generate and expand and the same set of nodes (up
to differences caused by tie-breaking). The reason is that
a node n is expanded by both A∗

MAX and by LA∗ when
fmax(n) is the best f -value in OPEN.

In its general form A∗ generates many nodes that it does
not expand. These nodes, called surplus nodes (Felner et

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Algorithm 1: Lazy A∗

Input: LAZY-A∗

1 Apply all heuristics to Start
2 Insert Start into OPEN
3 while OPEN not empty do
4 n← best node from OPEN
5 if Goal(n) then
6 return trace(n)
7 if h2 was not applied to n then
8 Apply h2 to n
9 insert n into OPEN

10 continue //next node in OPEN
11 foreach child c of n do
12 Apply h1 to c.
13 insert c into OPEN

14 Insert n into CLOSED

15 return FAILURE

al. 2012), are in OPEN when we expand the goal node with
f = C∗. LA∗ avoids h2 computations for many of these
surplus nodes. By contrast, A∗

MAX computes both h1 and
h2 for all generated nodes. Thus, LA* can potentially run
faster than A∗

MAX in many cases.

Rational lazy A*
LA∗ offers us a very strong guarantee, of expanding the
same set of nodes as A∗

MAX . However, often we would pre-
fer to expand more states, if it means reducing search time.
We now present Rational Lazy A* (RLA∗), an algorithm
which attempts to optimally manage this tradeoff.

Using principles of rational meta-reasoning (Russell and
Wefald 1991), theoretically every algorithm action (heuris-
tic function evaluation, node expansion, open list opera-
tion) should be treated as an action in a sequential decision-
making meta-level problem: actions should be chosen so as
to achieve the minimal expected search time. However, the
appropriate general meta-reasoning problem is extremely
hard to define precisely and to solve optimally.

Therefore, we focus on just one decision type, made by
LA∗, when n re-emerges from OPEN (Line 7). We have two

Proceedings of the Sixth International Symposium on Combinatorial Search

220



Problems Solved Planning Time (seconds) GOOD
Domain hLA lmcut max selmax LA∗ RLA∗ hLA lmcut max selmax LA∗ RLA∗ LA∗ RLA∗

miconic 141 140 140 141 141 141 0.13 0.55 0.58 0.57 0.16 0.16 0.87 0.88
sokoban-opt08 23 25 25 24 26 27 3.94 1.76 2.19 2.96 1.9 1.32 0.04 0.4
OVERALL 698 697 722 747 747 750 1.18 0.98 0.98 0.89 0.79 0.77 0.27 0.34

Table 1: Planning Domains — Number of Problems Solved, Total Planning Time, and Fraction of Good Nodes

options: (1) Evaluate the second heuristic h2(n) and add the
node back to OPEN (Lines 7-10) like LA∗, or (2) bypass the
computation of h2(n) and expand n right way (Lines 11 -
13), thereby saving time by not computing h2, at the risk of
additional expansions and evaluations of h1.

The only addition of RLA∗ to LA∗ is the option to bypass
h2 computations (Lines 7-10). Suppose that we choose to
compute h2 — this results in one of the following outcomes:
1: n is still expanded, either now or eventually.
2: n is re-inserted into OPEN, and the goal is found without
ever expanding n.

Computing h2 is helpful only in outcome 2, where poten-
tial time savings are due to pruning a search subtree at the
expense of t2(n). Since we do not know this in advance, we
calculate and use ph - the probability that h2 is helpful.

In order to choose rationally, we define a criterion based
on value of information (VOI) of evaluating h2(n) in this
context. The following notations are used. b(n) is the
branching factor at node n, td is the to time compute h2

and re-insert n into OPEN thus delaying the expansion of n,
te is the time to remove n from OPENand ph the probability
that h2 is helpful.

As we wish to minimize the expected regret, we should
thus evaluate h2 just when (1 − b(n)ph)td < phte and
bypass this computation otherwise. The complete derivation
appears in our full paper (Tolpin et al. 2013).

Experimental results
We experimented with LA* and RLA* on a number of do-
mains but focus here on planning domains where we exper-
imented with two state of the art heuristics: the admissible
landmarks heuristic hLA (used as h1) (Karpas and Domsh-
lak 2009), and the landmark cut heuristic hLMCUT (Helmert
and Domshlak 2009) (used as h2). We experimented with all
planning domains without conditional effects and derived
predicates (which the heuristics we used do not support)
from previous IPCs.

Table 1 depicts the experimental results (for two of our
domains and the overall over all domains) for LA∗ and
RLA∗ to that of A∗ using each of the heuristics individu-
ally, as well as to their max-based combination, and their
combination using selective max (Selmax) (Domshlak et al.
2012). Selmax is an online learning scheme which chooses
one heuristic to compute at each state. The leftmost part

Expanded Generated
hLA 183,320,267 1,184,443,684
lmcut 23,797,219 114,315,382
A∗

MAX 22,774,804 108,132,460
selmax 54,557,689 193,980,693
LA∗ 22,790,804 108,201,244
RLA∗ 25,742,262 110,935,698

Table 2: Total Number of Expanded and Generated States

of the table shows the number of solved problems in each
domain. As the table demonstrates, RLA∗ solves the most
problems, and LA∗ solves the same number of problems as
selective max. Thus, both LA∗ and RLA∗ are state-of-the-
art in cost-optimal planning.

The middle part of the Table 1 shows the geometric mean
of planning time in each domain, over the commonly solved
problems (i.e., those that were solved by all 6 methods).
RLA∗ is the fastest overall, with LA∗ second. Of partic-
ular interest is the miconic domain. Here, hLA is very in-
formative and thus the variant that only computed hLA is
the best choice (but a bad choice overall). Observe that both
LA∗ and RLA∗ saved 86% of hLMCUT computations, and
were very close to the best algorithm in this extreme case.
This demonstrates their robustness.

The rightmost part of Table 1 shows the average frac-
tion of nodes for which LA∗ and RLA∗ did not evaluate
the more expensive heuristic, hLMCUT , over the problems
solved by both these methods. This is shown in the good
columns. We can see that in domains where there is a differ-
ence in this number between LA∗ and RLA∗, RLA∗ usu-
ally performs better in terms of time. This indicates that
when RLA∗ decides to skip the computation of the expen-
sive heuristic, it is usually the right decision.

Finally, Table 2 shows the total number of expanded and
generated states over all commonly solved problems. LA∗ is
indeed as informative as A∗

MAX (the small difference is
caused by tie-breaking), while RLA∗ is a little less informed
and expands slightly more nodes. However, RLA∗ is much
more informative than its “intelligent” competitor - selective
max, as these are the only two algorithms in our set which
selectively omit some heuristic computations. RLA∗ gen-
erated almost half of the nodes compared to selective max,
suggesting that its decisions are better.

References
Carmel Domshlak, Erez Karpas, and Shaul Markovitch. Online
speedup learning for optimal planning. JAIR, 44:709–755, 2012.
A. Felner, M. Goldenberg, G. Sharon, R. Stern, T. Beja, N. R.
Sturtevant, J. Schaeffer, and Holte R. Partial-expansion A* with
selective node generation. In AAAI, pages 471–477, 2012.
Malte Helmert and Carmel Domshlak. Landmarks, critical paths
and abstractions: What’s the difference anyway? In ICAPS, pages
162–169, 2009.
Erez Karpas and Carmel Domshlak. Cost-optimal planning with
landmarks. In IJCAI, pages 1728–1733, 2009.
Stuart Russell and Eric Wefald. Principles of metereasoning. Arti-
ficial Intelligence, 49:361–395, 1991.
D. Tolpin, Tal Beja, S. E. Shimony, A. Felner, and E. Karpas. To-
wards rational deployment of multiple heuristics in A*. In IJCAI,
2013.
Lei Zhang and Fahiem Bacchus. Maxsat heuristics for cost optimal
planning. In AAAI, 2012.

221




