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The following pages present an extended abstract of a pre-
vious publication at the 11th International Symposium on
Experimental Algorithms (Luxen and Schieferdecker 2012).

Introduction and Related Work
Routing services have evolved over the past years. Providing
only a shortest path is no longer enough. Users expect to be
presented with a set of reasonable alternatives.

We show how to engineer previous algorithms to provide
reasonable alternative paths with better efficiency. Build-
ing on these results, we introduce the concept of candidate
via nodes to further speed up the computation by an order
of magnitude. We show how to perform preprocessing and
query variants efficiently. Finally, we provide an extensive
experimental evaluation of our method.

The shortest path problem can be solved by Dijkstra’s
seminal algorithm (Dijkstra 1959). Heuristics to prune the
search space provide goal direction and help with scaling.
An early goal-directed technique with substantial speedups
is arc flags (Lauther 1997; Möhring et al. 2007). The road
network is partitioned into regions and each edge stores a
flag to indicate if there is a shortest path into a region over
the edge. Techniques exploiting the hierarchy inherent to
a road network assume that sufficiently long routes enter
the arterial network at some point, e.g. a national road or
highway. Contraction Hierarchies (CH) (Geisberger et al.
2012) is probably the most prominent of these techniques.
The road network is augmentend by carefully chosen short-
cut edges while all unnecessary edges are removed. Road
networks of continental size can be preprocessed within
minutes and (bidirectional Djkstra) queries run in the order
of one hundred microseconds. Reconstructing the complete
shortest path requires roughly the same time. The fastest CH
variant is CHASE (Bauer et al. 2010) that combines CH with
arc flags. Its queries run in the order of ten microseconds.
(Abraham et al. 2010; 2011a) give analyses of the theoret-
ical performance of speedup techniques to Dijkstra’s algo-
rithm and present an efficient implementation (Abraham et
al. 2011b) with query times below one microsecond.
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Alternative paths that combine two shortest paths over a
via node are used by Choice Routing (Cambridge Vehicle
Information Tech. Ltd ), also referred to as plateau method.
Even though not entirely published, this method yields good
alternatives in practice. The road network is modelled as a
graph G = (V,E). Queries grow shortest path trees from
origin s and destination t. Plateaus 〈u, . . . , v〉 on these trees
yield candidates for alternative paths, i.e. follow the forward
tree from s to u, the plateau from u to v, and finally the
reverse tree from v to t. Formally, a plateau is a maximal
path on both trees and unambiguously described by any of its
nodes – called via node. The identified candidate paths feel
natural as each sufficiently small sub-path of the described
routes remains a shortest path. Actual alternatives are chosen
from them according to an unspecified heuristic.

This general approach received further discussion by
(Abraham et al. 2013). The authors formally define good al-
ternatives –called admissible– and report on how to compute
them efficiently for the first time. Stretch to the shortest path,
overlap to previously chosen paths and local optimality are
introduced as quality criteria. Meeting nodes of both shortest
path trees are considered as via nodes and define candidate
alternative paths. These paths are ranked with respect to the
quality criteria and a best one is chosen.

Algorithmic Approach
We build upon the approach of (Abraham et al. 2013) and
show how to find admissible alternatives even faster and
with an improved success rate. Their algorithms X-BDV
and X-CHV are based on bidirected Dijkstra and CH, re-
spectively. Simple engineering allows to roughly half query
times compared to X-CHV while retaining all other quality
measures: We exchange CH by CHASE and store shortcuts
pre-unpacked. The resulting algorithm, X-CHASEV, is used
as our baseline henceforth.

The analyses in (Abraham et al. 2010) show that speedup
techniques to Dijkstra’s algorithm work well for graphs in
which all shortest paths leaving a region are covered by a
small node set. This leads to the following assumption:
Assumption 1 (small number of alternatives) If the num-
ber of shortest paths between two sufficiently far away re-
gions of a road network is small, so is the number of plateaus
for Choice Routing. Likewise, the number of admissible al-
ternatives is small and they can be covered by a few nodes.
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Table 1: Query performance for the 1st and 2nd alternative.
p=1 p=2

time success time success
algorithm [ms] rate[%] [ms] rate[%]

X-BDV 11.5 s 94.51 12.3 s 80.60
X-CHV 3.488 88.59 1.771 64.75
X-CHASEV 2.756 88.59 0.797 64.75

single-level 0.254 90.05 0.438 70.22
multi-level 0.188 90.06 0.386 70.40

We make use of this assumption by partitioning the road
networks and computing a set of via node candidates for
each pair of regions. During a query we identify the re-
spective regions of origin and destination and look up the
pre-computed candidates of this region pair. Then, we only
need to check whether any of them yields an admissible
alternative which is much cheaper than having to discover
them first. Via node candiate sets of neighboring regions or
within one region are usually too large to check efficiently.
Thus, we either apply the baseline algorithm for such queries
(single-level approach) or apply a second, fine-grained level
of partitioning (multi-level approach). For neighboring re-
gions or within one region of the fine partitioning we still
default to the baseline algorithm. This only occurs for very
local –and thus cheap– queries.

Precomputation of via node candidate sets is done by
bootstrapping, i.e. the query (or fallback) algorithm is run
between boundary nodes of region pairs to discover candi-
date nodes. We refer to the full paper for a more detailed
explanation of efficient and parallel prepocessing.

Experimental Results
The algorithms are implemented in C++ and compiled with
g++ 4.5 using full optimizations. Queries are performed on
one core of an Intel Core i7-920 at 2.66 GHz with 12 GiB
main memory. Parallel preprocessing is done on 4 AMD
Opteron 6168 CPUs at 1.90 Ghz with 256 GiB memory.

Preprocessing of single-level via node candidates requires
2.38 h and produces 1.74 MiB additional data. Multi-level
via node candidates take additonal 1.96 h to compute and
add 7.17 MiB overhead. We identify 6.74 and 10.26 candi-
dates for each region pair for the first and second alterna-
tive, respectively. Multi-level region pairs require 12.20 and
15.09 candidates on average.

Query results in Table 1 report on the average of 10 000
runs with origin and destination chosen at random. Testing
about 2 candidates is sufficient on average for finding a first
alternative while 4 have to be checked for the second alter-
native, for both single-level and multi-level approach. Note
that query times of the “gold standard” X-BDV are given in
seconds and not milliseconds. Figure 1 depicts two exem-
plary results of our algorithm.

One result, we take from our experimental evaluation is
the low number of via node candidates. We regard this as
an indication that Assumption 1 holds. For more extensive
results and for further applications of our approach we again
refer to the full paper (Luxen and Schieferdecker 2012).

Figure 1: Alternative paths generated by our method. The
shortest path is depicted by a bold line and alternative paths
by thin lines. Via nodes are marked by light dots, boundary
nodes of the origin and destination region by dark dots.
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