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Abstract

The k-medoids problem is a combinatorial optimisation prob-
lem with multiples applications in Resource Allocation, Mo-
bile Computing, Sensor Networks and Telecommunications.
Real instances of this problem involve hundreds of thousands
of points and thousands of medoids. Despite the proliferation
of parallel architectures, this problem has been mostly tack-
led using sequential approaches. In this paper, we study the
impact of space-partitioning techniques on the performance
of parallel local search algorithms to tackle the k-medoids
clustering problem, and compare these results with the ones
obtained using sampling. Our experiments suggest that ap-
proaches relying on partitioning scale more while preserving
the quality of the solution.

1 Introduction
The k-medoids problem (i.e., the problem of selecting a sub-
set of k points (the medoids) such that the average distance
from any point to its closest medoid is minimized) is a com-
mon problem in several application domains. In Resource
Allocation, we find instances of this problem when a com-
pany is planning to open a set of branches and wants to lo-
cate those branches taking into account the proximity to their
clients(Mouratidis, Papadias, and Papadimitriou 2008). In
the context of mobile computing, it is a concern to save com-
munication cost when devices need to select super-nodes
among them, which collect, aggregate and forward to the
location server messages received from their vicinity taking
into account that the wireless medium is prone to errors thus
forcing the devices to be close to some super- node (Wang
et al. 2003). Medoid queries also arise in the field of sensor
networks. Typically, in order to prolong the battery life, only
a fraction of the sensors are kept awake, and used as repre-
sentatives for a particular region of the monitored area (Has-
sani Bijarbooneh et al. 2011). In the field of telecommuni-
cation, k-medoid queries are of primary importance in the
design of optical fiber deployment strategies. Telecommuni-
cation companies are concerned with the optimal position-
ing of their central offices such that the cable needed to con-
nect central offices to clients is minimized (Cambazard et al.
2012).

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The k-medoid problem is known to be NP-hard (Papadim-
itriou 1981; Megiddo and Supowit 1984). Complete ap-
proaches to solve this problem based on systematic search
have been suggested. However, these approaches do not
scale to the size of real-wold instances, which motivates
our consideration of local search approaches. In the lit-
erature we certainly find local search approaches to the
k-medoids problem (Michel and Van Hentenryck 2004;
Cambazard et al. 2012), but these approaches have been
mostly conceived to be run on single core architectures, thus
not taking advantage of current hardware architectures such
as grid based platforms and supercomputers with thousands
or tens of thousands of cores. This motivates the exploration
of parallel methods to tackle this problem. The most com-
mon approach to devise parallel local search algorithms con-
sists in exploring the search space in parallel, either indepen-
dently or cooperatively with some communication between
the solvers. The non-cooperative approach (so-called paral-
lel portfolio) executes different algorithms (or the same one
with different random seeds) independently with no coop-
eration and the global search is stopped when a solution is
observed or a given timeout is reached. The parallel portfo-
lio is usually equipped with a knowledge sharing in order
to allow the solvers in the portfolio to compete and cooper-
ate to solve a given instance. However, cooperation must be
limited due to an important communication overhead, which
might degrade the overall solving time. It is worth noticing
that parallel portfolio solvers have shown a great scalability
up to tens of hundreds of cores to solve classical CSP (Can-
iou et al. 2011) and SAT (Arbelaez and Codognet 2012)
benchmarks, and even up to 8000 cores for the Costas ar-
ray problem (Diaz et al. 2012). However, these solvers have
been mainly devoted to tackle decision problems and limited
attention have been given to optimization problems.

In this paper, we are interested in solving very large in-
stances of the k-medoids problem. We show that using par-
allel local search helps to improve the scalability of the se-
quential algorithm, which is measured in terms of the quality
of the solution within the same time (wall clock time) with
respect to the sequential algorithm.

This paper is organized as follows: Section 2 presents the
general scheme of the local search algorithm used to tackle
the k-medoids problem; Section 3 depicts a set of search
space partitioning methods which will be used to devise a
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parallel local search algorithm; Section 4 reports extensive
experimental results of the parallel algorithms; and Section
5 presents general conclusions and perspectives of future
work.

2 Local search
The parallel approaches discussed in Section 3 builds on top
of the GEO approach (Cambazard et al. 2012). GEO is a lo-
cal search approach to the k-medoid problem, which is NP-
hard (Papadimitriou 1981; Megiddo and Supowit 1984).
Definition 1 In the k-medoid problem (also known as the
Euclidean p-median problem), we are given a set S =
{(x1, y1), (x2, y2), . . . (xm, ym)} of points in a plane and
we want to find a set W = {(z1, t1), (z2, t2), . . . , (zk, tk)}
of points, subset of S, so as to minimise:

m∑
i=1

min
1≤j≤k

√
(xi − zj)2 + (yi − tj)2

In GEO, the objective function is incrementality main-
tened by exploiting computational geometry through the
computation of Voronoi cells. The main observation in GEO
is that, in practice, very few points in S (the set of points) are
likely to have a new closest or second closest facility. The
left part of Figure 1 shows an example of opening a new fa-
cility pj . Facilities are indicated by plain circles and points
by crosses. The points for which pj is the new closest facility
are shown in squares whereas the points for which pj is the
new second closest facility are shown in circles. Only a very
small number of points of the m points of S are affected.
In (Cambazard et al. 2012) the authors focus on approaches
that do not maintain a priority queue of facilities per point.
The two closest facilities of each point are maintained by us-
ing computational geometry techniques since points affected
by the opening and closing of a facility can be characterised
through the notion of Voronoi cell. The right part of Figure 1
shows the Voronoi cell of point pj .

Algorithm 1 TABUSEARCH()
1. Initialize W randomly, C = S −W,
3. While (end condition not reached)
4. p∗j = −1, bestDelta =∞, cobj = obj
5. For each pj ∈W − T and as long as bestDelta > 0
6. CloseFacility(pj)

// updates obj and all ∆+
i

7. pibest = arg min{pi∈C−T}(∆
+
i )

8. If (∆+
ibest + (cobj − obj)) < bestDelta

9. p∗j = pj, bestDelta = ∆+
ibest + (cobj − obj)

10. OpenFacility(pj)
// updates obj and all ∆+

i

11. If (bestDelta > 0)
12. p∗j = a random point in W − T
13. CloseFacility(p∗j)
14. OpenFacility (arg min{pi∈C−T}(∆

+
i ))

15. update tabu list T

Algorithm 1 presents the general scheme of the tabu
search used in GEO. The initial p facilities are chosen ran-
domly. The tabu mechanism is very simple. It prevents a

point that was a facility in the last t iterations, where t is the
length of the tabu-list, from becoming a facility again. The
tabu-list is denoted T in this algorithm. The first improv-
ing move found is performed. If no improving move exists,
the facility to close is chosen randomly and the new best
location for this facility is opened. After a number of non-
improving iterations, the search is restarted from p random
facilities.

Algorithm 1 assumes that two methods are available for
opening and closing a facility (resp. OpenFacility and Close-
Facility) while incrementally maintaining the value of the
objective function (denoted obj) and ∆+. This algorithm
is very like the PAM algorithm (Kaufman and Rousseeuw
1990); the only difference being that PAM is selecting the
best move rather than the first improving one. However this
algorithm is enhanced with the incremental mechanisms,
and the tabu metaheuristic, introduced in warehouse loca-
tion for a similar neighborhood.

We summarize the time complexity of GEO in Table 1. As
explained in (Cambazard et al. 2012), the time complexity is
dominated by the time spent in the initialisation of the data
structures (which takes place each time the algorithm is re-
started) and the time spent in opening/closing a facility. The
time spent in opening/closing a facility is dominated by the
time spent in maintaining the two closest facilities to every
point. In Table 1, m is the number of nodes, p is the number
of facilities, k is the number of nodes that have pj as a closest
or second closest, and k

′
is an upper bound on k useful to

express the complexity (it is the number of points contained
in the enclosing rectangle of the extended Voronoi cell) as
we still have k

′ ≤ m. In (Cambazard et al. 2012) the authors
also show that the space complexity of GEO is O(m+ p).

3 Parallel Algorithms
3.1 CLARA based approach
Clustering Large Applications (CLARA) (Kaufman and
Rousseeuw 1990) reduces the burden of computing the aver-
age distance by generating random samples from the set of
points and executing PAM on those. In (Zhang et al. 2004)
the authors use the parallel portfolio architecture to speedup
the search by executing multiple copies of CLARA with-
out cooperation. In this paper, we exploit the same principle
by executing multiple copies of Algorithm 1 on a random
sample of the points. The performance of the algorithm is
proportional to the sample size. The larger the sample the
better the quality of the solution. Finally, the process with
an overall best solution cost indicates the global solution.

3.2 Space partitioning
In this section we review two main space partitioning tech-
niques to divide the problem space into smaller indepen-
dent spaces; each core (or processor) is assigned a sub-
space of the problem space. A local search algorithm sub-
sequently explores its subspace until the stopping criteria
is met. In addition, the number of facilities is also divided
proportionally to the size of the sub-spaces. The space par-
titioning technique has been previously used in the litera-
ture (see (Crainic and Toulouse 2003) for a complete de-
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Figure 1: Example of opening a facility pj on left. Facilities are shown as plain circles, points as crosses and the points having
pj as their closest (resp. second closest) facility are shown in a square (resp. a circle). Example of the Voronoi cell of pj (V(pj))
on right. The boundary of the cell is indicated by the dashed nodes so B(pj) = {1, 4, 6, 7, 9} .

Table 1: Summary of time complexities of the different schemes
operation GEO

initialization O(pm+ p log(p) +m log(m))

open a facility pj O(plog(p) +
√
m+ k

′
)

close a facility pj expected : O(klog(p)), worst-case: O(kp)

scription) to improve the performance of local search al-
gorithms to solve optimization problems. However, unlike
the topologies mentioned in (Crainic and Toulouse 2003), in
which sub-processes have access to the entire search space,
in this work the search space is heuristically divided and
sub-processes have access to a limited portions of the search
space.

In this paper, we employ two space partitioning tech-
niques to divide the search space into sub-spaces. Thus, the
parallel algorithm works in three phases.

Phase 1 (Pre-processing phase) The master processor di-
vides the problem space into several partitions, one for each
processor;
Phase 2 (Solving phase) solve in parallel each sub-problem
until a given time cutoff is reached;
Phase 3 (Ending phase) aggregate partial solutions and com-
pute the global solution. This step requires computing the
closest facility for each node, the time complexity of this
phase is O(pm). However, it is important to notice that the
partial solution obtained in the previous phase can be ob-
served as an upper bound of the global solution.

Space-filling curves Space-filling curves (Sagan 1994)
are widely used to reduce dimensionality from a N-
dimensional space into a one-dimensional space. An im-
portant feature of space-filling curves is that they preserve
locality, that is, points that are close in the N-dimensional
space are also close in the one-dimensional space. Infor-
mally speaking, a space-filling curve can be obtained by
drawing an “imaginary” line that passes through every point

in the two dimensional space, starting in the initial point
and ending in the final point. Each point is then character-
ized by a unique index, which imposes a linear ordering
of the elements. Examples of space-filling curves include:
Hilbert (Butz 1971), Peano (Rosenkrantz and Fagin 1984),
and RBG (Faloutsos 1988) curves. In this paper, we focus
our attention in the dimension sort curve, which sorts the el-
ements according to a given axis and the Hilbert curve, one
of the most popular space-filling curves (Mokbel, Aref, and
Kamel 2002).

Figure 2 illustrates the Hilbert-curve with orders 1 (Figure
2(a)), 2 (Figure 2(b)) and 3 (Figure 2(c)). In general, the n-
th order Hilbert curve consists of four concatenated copies
of the Hilbert curve of the previous (n-1) order located in
the upper left quadrant, upper right quadrant, bottom left
quadrant (rotated 90 degrees counter-clockwise), and bot-
tom right quadrant (rotated 90 degrees anti-clockwise). This
way, the n-th order Hilbert curve contains a grid of 22n cells.
Each cell features the so-called Hilbert-value, starting in the
position (0,0) and ending in the position (n,n). In practice,
several libraries provide efficient implementations to obtain
the Hilbert value of a given point, see (den Bercken, Dittrich,
and Seeger 2000; Mehlhorn and Näher 1999) just to name a
few.

Figure 2(d) depicts a set S = {A, B, C, D, E, F , G} of
points of interest. In this example, the ordering imposed by
the dimension sort curve (w.r.t x-axis) is A, B, C, D, E,
F , and G, and the ordering imposed by the Hilbert-curve
is A, D, C, B, F , E, and G. As it can be observed in the
example, the Hilbert-curve preservers locality better than the
dimension sort one. For instance, the dimension sort-curve
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Figure 2: Space-filling curves

locates B three positions away of E, nearest neighbor in the
original space, while B and E are only two positions away
with ordering given by the Hilbert-curve.

The pre-processing phase of the algorithm involves sort-
ing the elements according to the Hilbert-value (resp. X or
Y coordinates) and assigning equal partitions (data) to the
processors. The number of facilities is also equally divided
among the processors.

k-Means k-Means is one of the most popular and best un-
derstood clustering algorithms (Berkhin 2006). Unlike Al-
gorithm 1, which associates each point to the closest facil-
ity, the k-Means algorithm associates each point to the center
(or centroid) of the cluster. Broadly speaking, the algorithm
works as follows:

1. Select uniformly k initial centroids;

2. Assign each node to the initial centroid;

3. Recompute the centroid of each cluster;

4. Repeat steps 2 and 3 until a given stoping criteria is met.

Typical stopping criteria are a fixed number of iterations
or convergence has been reached.

The pre-processing phase of the algorithm involves the
execution of the k-Means algorithm using k = number of
processors. And the number of facilities for each process is
proportional to the number of nodes in the partition.

3.3 Complexity of the initialisation phase
Let us now focus our attention on the complexity of the ini-
tialisation phase in the different parallel approaches. In the

CLARA based approach, for each sample, we have to tra-
verse the set of points to decide which points are in the sam-
ple and which points are not. Therefore, the complexity is
linear per partition. In the space space filling curve based
approaches, we have to generate the curve and then parti-
tion the problem. The generation of the curve costs noth-
ing for the case of the dimension curves. When it comes to
the Hilbert curve, computing the Hilbert value for a point
is O((log η)2) where η is the number of cells (in one di-
mension) in the grid of points. As there are m points, the
cost of generating the Hilbert values for all the points is
O(m ∗ (log η)2). Once the curve has been created, the
points need to be sorted according to their curve value
(O(m ∗ log m) and partitioned (O(m)). Thus, the overall
complexity for the case of the Hilbert curve based approach
isO(p∗(log η)2+m∗log m+m), andO(m∗log m+m) for
the other cases. For the case of k-Means we pay O(p ∗ k ∗ l)
for the creation of the cluster, where l is the number of iter-
ations.

4 Experiments
4.1 Experimental setup
In this section, we present the experimental scenarios used
for tests. In particular, we use the following five data sets
from four different problem distributions; see (Seeger and
Kriegel 1990) for a complete presentation of the problem
distributions.

• diagonal distribution (DS1): this distribution consists of
points generated, uniformly at random, in a diagonal line
as shown in Figure 3(a);

• x distribution (DS2): this distribution consists of points
generated, uniformly at random, in two diagonal lines as
shown in Figure 3(b);

• m distribution (DS3): this distribution consists of points
generated, uniformly at random, in four diagonal lines as
shown in Figure 3(c);

• cluster distribution: this distribution consists of points
generated in m clusters normally distributed around the
center with a given standard deviation (std) for each clus-
ter. We generate two set of instances: DS-4 where clusters
overlap each other and DS-5 where there is a clear sepa-
ration among the clusters.

In the experiments we consider a collection of 125
(5 × 5 × 5) instances. 5 instances for each problem dis-
tribution and gradually increasing the size of the problem
(N1=100000, N2=120000, N3=150000, N4=200000) and an
extreme case with a million points (N5=1000000). For DS-4
we use 〈m=10, std=1000000〉 and for DS-5 we use 〈m=10,
std=100000〉. For all the experiments, we set the number of
facilities to 1000. In addition, we executed each algorithm
5 times for each instance (using different random seeds) us-
ing a time cutoff of 300 seconds (parallel algorithms) and
1800 seconds (GEO). In order to evaluate the quality of the
solutions we report the Mean Relative Error (MRE), which
computes the distance between the solution of a given al-
gorithm to solve a given problem instance against the best
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(a) diagonal dist. (DS-1)

 

(b) x dist. (DS-2)
 

(c) m dist. (DS-3)

 

(d) cluster dist. (DS-4)
 

(e) cluster dist. (DS-5)

Figure 3: Problem distributions

known solution obtained in the experimentation of this pa-
per.

MRE(a) =
1

|R| |I|
∑
r∈R

∑
i∈I

c(a, i, r)− c∗(i)
c∗(i)

where I represents the set of instances; R represents the
set of independents runs (using different random seeds);
c(a, i, r) is the solution obtained by algorithm a to solve a
given instance i with a random seed r; and c∗(i) is the best
known solution obtained to solve i. The MRE has been used
before to assess the performance of local search algorithms
in (Carchrae and Beck 2005; 2009)

All the experiments were performed on the Grid’5000
platform (www.grid5000.fr), the French national grid for
research. In particular, we used two clusters: one with 44
nodes and another with 40 nodes. Both clusters feature 24
cores (2 AMD Opteron 6164 HE processors at 1.7 Ghz) and
44 GB of RAM per node, all nodes being interconnected on
a 1 Gb network.

We build our parallel algorithm on top of GEO (Cam-
bazard et al. 2012). We use the XXL library (den Bercken,
Dittrich, and Seeger 2000) to compute the Hilbert value for a
given point in a two dimensional space. We also use WEKA
(Hall et al. 2009), a machine learning library that provides
an efficient implementation of the k-means algorithm.

Algorithm Cores N1 N2 N3 N4 N5
GEO 1 371 453 578 796 –

CLARA 12 38 38 38 38 42
24 41 42 42 42 49

CLARA’ 12 212 212 213 213 207
24 245 259 257 247 244

Hilbert 12 9 13 15 19 163
24 9 12 13 16 114

D-Sort X 12 11 15 18 23 239
24 10 13 15 18 162

D-Sort Y 12 10 14 16 20 208
24 9 12 14 17 138

k-Means 12 11 14 18 25 229
24 8 10 14 18 136

Table 2: Mean initialization time (seconds) for each algo-
rithm

4.2 Experimental results
We start our analysis with Table 2, which depicts the initial-
ization time for the algorithms (see Section 2). GEO repre-
sents the performance of Algorithm 1; CLARA and CLARA’
represent the performance of the CLARA-based algorithm
using a sample size of 10000 and 50000; Hilbert reports
the performance by partitioning the problem space using the
Hilbert-curve; D-Sort X (resp. Y) reports the results w.r.t.
X (resp. Y) axis coordinate; and k-Means reports the re-
sults using the k-Means algorithms to create the initial par-
titions. All the experiments (except GEO which uses 1 core)
were performed using 12 and 24 cores. (–) is reported if a
timeout was obtained in the experiments.

In this table it can be observed that the initialization time
for CLARA increases with the sample size, about 5.8 times
when increasing the sample size (sample size = 10000 and
sample size = 50000) when using 24 cores. Furthermore,
(as expected) the mean initialization time for CLARA re-
mains nearly the same regardless the problem size, however,
a small overhead is observed when doubling the number
of cores (from 12 to 24). This slowdown is caused by in-
creased cache and bus contingency when more processing
cores are used at the same time. On the other hand, for the re-
maining parallel strategies the average initialization time for
each problem distribution increases with the problem size.
However, from a global perspective, partitioning the prob-
lem space reduces the initialization time. Indeed, GEO (se-
quential algorithm) requires more than 300 seconds to ini-
tialize the the data structures for N1, N2, N3, and N4, and
for the extreme case, N5, (–) is reported since the algorithm
requires more than 2 hours for initialization.

Hence, the bottleneck of the algorithms is the computa-
tion of the pre-processing phase. Figure 4 depicts the aver-
age time of executing k-Means in the k-Means based par-
titioning algorithm (note the log-scale) using k=12 (Figure
4(a)) and k=24 (Figure 4(b)). In general, the 12-core sce-
nario usually requires less time. This is due to the reduced
k, but as a results of this, the initialization time is larger than
the 24-core scenario (see Table 2).

As it can be observed in the figure, the pre-processing
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Figure 4: Mean pre-processing time for k-Means

time varies from instance to instance, but it is important to
notice that k-Means is able to quickly identify the clusters in
DS-5 up to N4. Therefore, the pre-processing time reported
for this problem distribution is shorter than in the other prob-
lem distributions. However, for the extreme case (N5), the
runtime goes from 1046 seconds (DS-5) to 2565 seconds
(DS-1) for k=24. A similar picture is observed for k=12,
where the runtime goes from 512 seconds (DS-5) to 1632
seconds (DS-1). In both cases the pre-processing time for k-
Means by far exceeds the time limit for the experiments. On
the other hand, the pre-processing time for the Hilbert and
dimension sort methods is negligible compared to the time
limit. For instance, for N4 (200000 points) the time of the
Hilbert-curve based method is about 2 seconds and about 5
seconds for the extreme case (1000000 points). Moreover,
we recall that the CLARA-based method does not require a
pre-preprocessing phase.

Let us switch our attention to Table 3, which presents the
MRE for each algorithm. First, we would like to point out
that GEO, a sequential algorithm, is included in the table as
a baseline for comparison and it reports the overall best so-
lution quality for N1,N2, N3, and N4. However, it employs a
larger time limit, 6 times more than the parallel algorithms.
We recall that GEO requires more than 300 seconds for ini-
tialization (see Table 2).

We would like to highlight that (as expected) the perfor-
mance of CLARA increases with the sample size. In gen-
eral, the experimental results indicate that the k-means based
algorithm outperforms the other ones in terms of solution
quality. However, due to the cost of the pre-processing phase
this algorithm is limited to small-size instances. Indeed, the
algorithm (with 24 cores) reports a timeout for 11 out of 15
instances for sizes N3, N4 and N5. In this case, Space-filling
curves are an interesting alternative as the time for the pre-
processing phase is negligible. In this context, the Hilbert-
curve outperforms the dimension sort-curve for problem dis-
tributions DS-4 and DS-5 (N1, N2, N3, and N4), while the
dimension sort is better on the remaining three problem dis-
tributions. Interestingly, although the average pre-processing
plus initialization time is about 150 seconds for DS-5 on
N4 (k-Means method), the algorithm reports a timeout. This
phenomenon is explained by the fact that the pre-processing
phase generates unbalanced partitions; therefore the initial-
ization time for some partitions is higher than the global
timeout.

It is also worth noticing that for instances N1, N2, N3,
and N4 algorithms with 12 cores outperform its counterpart
with 24 cores. For these instances, the time gained for initial-
ization is not enough to improve the quality of the solution.
However, for the extreme case (N5) the computational ben-
efit gained by increasing the number of cores is observed in
both initialization time and quality of the solution within the
time limit. Interestingly, in this case the best performance is
obtained by using 24 cores and the Hilbert-curve for parti-
tioning the problem space. On the other hand, CLARA’ re-
ports the best results using 12 cores, we recall that the size
of the partitions for CLARA’ are smaller (N5) than the ones
obtained by the space-filling curve methods, and as results
of this, these methods require more time per iteration than
CLARA’. In addition, reducing the search space also help to
reduce the time required to perform an iteration of the local
search algorithm.

Finally, as pointed out in (Cambazard et al. 2012) (and
confirmed in this paper) the quality of the solution tend to
converge rapidly. Figure 5 (note log-scale for the x-axis)
shows the evolution of the quality of the solution for the par-
allel algorithms, GEO is omitted because the initialization
time exceeded the time limit of 300 seconds. Here, it can be
observed an important reduction in the initialization time by
partitioning the problem space. In addition, this figure also
confirms that for small instances k-Means reports the best
solution quality, followed by the Hilbert-curve, Dimension
sort-curves, and finally CLARA’ and CLARA.

5 Conclusions and Perspectives
This paper has studied the application of space-partitioning
techniques to design a parallel local search algorithm to
tackle large instances of the k-medoids clustering problem.
The parallel algorithm divides the problem space into sev-
eral sub-spaces and explores them in parallel until a given
stopping criteria is met (e.g. timeout). Two main techniques
has been deeply studied to divide the problem space: space-
filling curves (Hilbert-curve and Dimension sort-curve) and
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Size Distribution GEO Cores CLARA CLARA’ Hilbert D-Sort X D-Sort Y k-Means

N1

DS-1 0.000533 12 0.077973 0.018530 0.008389 0.005019 0.004730 0.003449
24 0.077158 0.019579 0.011465 0.009631 0.009341 0.005417

DS-2 0.000708 12 0.082622 0.022615 0.015072 0.016113 0.018062 0.006009
24 0.082139 0.023419 0.023478 0.030928 0.034245 0.010718

DS-3 0.000778 12 0.084987 0.020326 0.009417 0.007953 0.006752 0.001548
24 0.084258 0.021419 0.018065 0.018312 0.016847 0.005064

DS-4 0.000716 12 0.079125 0.019735 0.008629 0.009041 0.008709 0.003424
24 0.078821 0.020234 0.012410 0.016985 0.016031 0.005780

DS-5 0.000846 12 0.079079 0.019050 0.010046 0.024319 0.006511 0.007398
24 0.078091 0.021145 0.014585 0.038247 0.012459 0.010801

N2

DS-1 0.000539 12 0.078163 0.021337 0.008760 0.005835 0.005751 0.004010
24 0.077510 0.024727 0.012612 0.010403 0.010141 0.009048

DS-2 0.000652 12 0.082261 0.023346 0.013144 0.014645 0.013950 0.004839
24 0.081627 0.028042 0.020670 0.028223 0.026937 0.008786

DS-3 0.000830 12 0.084316 0.023326 0.009883 0.006699 0.006235 0.001462
24 0.083743 0.025239 0.018498 0.016191 0.015875 0.004467

DS-4 0.000678 12 0.078946 0.021474 0.008842 0.008717 0.008828 0.003677
24 0.078342 0.024055 0.012881 0.015785 0.015836 0.006141

DS-5 0.000894 12 0.079162 0.022109 0.011417 0.024473 0.007062 0.008175
24 0.078217 0.025907 0.015895 0.037437 0.012806 0.011288

N3

DS-1 0.000921 12 0.077415 0.024061 0.009178 0.005508 0.005795 0.004111
24 0.076400 0.026014 0.012358 0.009666 0.009522 –

DS-2 0.000626 12 0.082389 0.026064 0.014640 0.016290 0.017003 0.006125
24 0.081726 0.029143 0.023500 0.030322 0.031805 0.010352

DS-3 0.000868 12 0.083658 0.025877 0.009403 0.007450 0.006754 0.001666
24 0.083017 0.028274 0.017820 0.017392 0.017467 0.005099

DS-4 0.000764 12 0.078130 0.023782 0.009492 0.009188 0.008919 0.004121
24 0.077801 0.026156 0.013900 0.016366 0.015669 –

DS-5 0.000817 12 0.077921 0.024074 0.009912 0.022630 0.006877 0.007376
24 0.076941 0.027768 0.015019 0.035378 0.012566 0.010867

N4

DS-1 0.000642 12 0.074875 0.025378 0.008113 0.004956 0.005503 –
24 0.074229 0.026180 0.011092 0.008453 0.009304 –

DS-2 0.000507 12 0.081133 0.027302 0.011004 0.011571 0.012723 0.003094
24 0.080017 0.029649 0.018875 0.023846 0.025677 0.009367

DS-3 0.000838 12 0.082087 0.027561 0.007994 0.006103 0.005978 0.001900
24 0.081173 0.028409 0.016135 0.015186 0.015556 –

DS-4 0.000651 12 0.076665 0.025771 0.007658 0.009113 0.008769 0.003876
24 0.075941 0.027206 0.011837 0.015462 0.015048 –

DS-5 0.000683 12 0.076202 0.025789 0.009674 0.022286 0.006339 0.007565
24 0.075399 0.027356 0.013562 0.033997 0.011764 –

N5

DS-1 – 12 0.051067 0.009835 0.131000 0.139430 0.169400 –
24 0.050642 0.010090 0.001324 0.028146 0.007697 –

DS-2 – 12 0.047676 0.003650 0.123940 – 0.132030 –
24 0.047236 0.004639 0.001125 0.027820 0.010263 –

DS-3 – 12 0.048846 0.004606 0.044754 0.133960 0.077337 –
24 0.047864 0.004727 0.001196 0.022438 0.010011 –

DS-4 – 12 0.051386 0.009259 0.123610 0.126540 0.128760 –
24 0.050879 0.009603 0.001009 0.048409 0.011728 –

DS-5 – 12 0.049396 0.007449 0.125420 – 0.174040 –
24 0.048757 0.008088 0.001109 0.109270 0.008052 –

Table 3: The mean relative error (MRE) for each algorithm. Each reports the performance of GEO (sequential algorithm) with
a time limit of 1800 seconds (wallclock time) and the Parallel methods with a time limit of 300 seconds (wallclock time) using
12 cores (top) and 24 cores (bottom).
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Figure 5: Evolution of the quality of the solution to solve
one instance in DS-4 (size: N2)

the k-Means algorithm. Extensive experimental results sug-
gest that the k-Means-based method usually outperforms the
other ones on a subset of instances. However, for very large
instances, the Hilbert-curve provides good quality solutions
within a given time framework.

Currently, our approach to allocate facilities to partitions
is based on the number of points within each partition. More
precisely, the number of facilities allocated to a partition is
directly proportional to the number of points in the parti-
tion. Certainly, the assumption here is that the partitions are
homogeneous with respect to the density of points. In the
future, we want to explore the option of taking the density
into account when allocating the number of facilities to a
partition. For instance, the number of facilities allocated to a
partition could depend on the area of the minimum bounding
rectangle of the partition.

We will also investigate the addition of cooperation be-
tween independent processors. To this end, we plan to divide
the space into several sub-spaces with overlapping elements
so that neighbour sub-spaces share facilities in order to al-
low the possibility of increasing or decreasing the number of
facilities assigned to each sub-space.

Finally, we plan to study the application of the Hilbert-
curve to reduce the complexity of opening and closing facil-
ities in Algorithm 1. Another area of future work consists in
executing the main components of the pre-processing phase
in parallel, e.g. studying the impact of parallel versions of
the k-Means algorithm (Kantabutra and Couch 2000). Alter-
natively, one could think of parallelising the basic operations
in opening and closing facilities (e.g., parallelising the com-
putation of voronoi cells).
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