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Abstract

Despite its success, the delete relaxation has significant pit-
falls. In an attempt to overcome these pitfalls, recent work has
devised so-called red-black relaxed plan heuristics, where red
variables take the relaxed semantics (accumulating their val-
ues), while black variables take the regular semantics. These
heuristics were shown to significantly improve over standard
delete relaxation heuristics. However, the experiments also
brought to light a major weakness: Being based on repair-
ing fully delete-relaxed plans, the returned estimates depend
on arbitrary choices made in such plans. This can lead to
huge over-estimation in arbitrary subsets of states. Here we
devise a new red-black planning method not based on repair-
ing relaxed plans, getting rid of much of this variance. Our
experiments show a significant improvement over previous
red-black relaxed plan heuristics, and other related methods.

Introduction
The delete relaxation, that we will also refer to as the mono-
tonic relaxation here, has played a key role in advancing
planning systems over the last decade. It was particularly
successful in satisficing planning (not giving an optimality
guarantee), which we focus on here. In the monotonic re-
laxation, state variables accumulate their values, rather than
switching between them. The generation of (non-optimal)
plans in monotonic planning is polynomial-time (Bylan-
der 1994), allowing for the use of such plans for the gen-
eration of (non-admissible) heuristic functions. Such so-
called relaxed plan heuristics have been of paramount im-
portance for the success of satisficing planning during the
last decade, e. g., for the HSP, FF, and LAMA planning sys-
tems (Bonet and Geffner 2001; Hoffmann and Nebel 2001;
Richter and Westphal 2010).

This success notwithstanding, the delete relaxation has
significant pitfalls, e. g., in planning with non-replenishable
resources, whose consumption is completely ignored within
the relaxation. Recent years thus have seen active research
aiming at taking some deletes into account, e. g. (Fox and
Long 2001; Gerevini, Saetti, and Serina 2003; Helmert
2004; Helmert and Geffner 2008; Keyder and Geffner 2008;
Baier and Botea 2009; Cai, Hoffmann, and Helmert 2009;
Haslum 2012; Keyder, Hoffmann, and Haslum 2012; Katz,
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Hoffmann, and Domshlak 2013b). In particular, Katz et
al. (2013b) introduced red-black planning, in which a sub-
set of “red” state variables takes on the monotonic, value-
accumulating semantics, while the other “black” variables
retain the regular semantics.

Building on that theoretical work, Katz et al. (2013a)
devise red-black relaxed plan heuristics and demonstrate
their potential. Despite impressive empirical performance
in some domains, as Katz et al. point out, the technique’s
behavior is not reliable. In many domains, the effect of the
new heuristics on search exhibits a huge variance, decreas-
ing the search space by a factor of 100 in some instances,
and increasing it by a similar factor in others. Katz et al. con-
jecture that this is because their red-black planning methods
work by repairing relaxed plans, and are thus too dependent
on arbitrary choices made in such plans. This can lead to
huge over-estimation in some search states but not in others.
Greedy best-first search is bound to be brittle with respect to
such variance, which can explain said lack of reliability.

We introduce a new red-black planning algorithm not
based on repairing relaxed plans, getting rid of much of this
issue. Instead of following the relaxed plan’s actions and
action ordering, we merely follow the set of red facts the
relaxed plan uses: The preconditions and goals on red vari-
ables in the relaxed plan. We allow arbitrary action choices
to achieve these. Our experiments show that this typically
(sometimes dramatically) reduces over-estimation, and that
significant performance improvements are obtained over the
previous method (and over the baseline FF heuristic), in
most domains. Furthermore, the quality of red-black plan
heuristics depends also on the choice of black variables. We
devise improvements to the techniques suggested by Katz et
al., and we explore a method to interpolate between these.

Like Katz et al. (2013a), we rely on a tractable fragment
of red-black planning identified by an acylic black causal
graph (the projection of the causal graph onto the black vari-
ables), and by requiring all black variables to be invertible in
a particular sense (RSE-invertible). Also like Katz et al., in
our experiments we focus on a simpler fragment where the
black causal graph does not contain any arcs at all.

The paper is organized as follows. We start by giving
the background. We then summarize the previous red-black
planning method, and detail its over-estimation issues in
some examples. We present our new method, prove its cor-
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rectness, and discuss its effect in these same examples. We
present our experiments and conclude.

Background
A finite-domain representation (FDR) planning task is a
quadruple Π = 〈V,A, I,G〉. V is a set of state variables,
where each v ∈ V is associated with a finite domain D(v).
A complete assignment to V is called a state. I is the initial
state, and the goal G is a partial assignment to V . A is a
finite set of actions. Each action a is a pair 〈pre(a), eff(a)〉
of partial assignments to V called precondition and effect,
respectively. We sometimes refer to (partial) assignments as
sets of facts, i. e., variable-value pairs (v, d).

The semantics of FDR tasks is as follows. For a par-
tial assignment p, V(p) ⊆ V denotes the subset of state
variables instantiated by p. For V ′ ⊆ V(p), p[V ′] de-
notes the value of V ′ in p. Action a is applicable in state
s iff s[V(pre(a))] = pre(a), i. e., iff s[v] = pre(a)[v] for
all v ∈ V(pre(a)). Applying a in s changes the value of
v ∈ V(eff(a)) to eff(a)[v]; the resulting state is denoted by
sJaK. By sJ〈a1, . . . , ak〉K we denote the state obtained from
sequential application of a1, . . . , ak starting at s. An action
sequence is a plan if IJ〈a1, . . . , ak〉K[V(G)] = G.

Figure 1 (a) shows the illustrative example given by Katz
et al. (2013b), that we also adopt here. The example is
akin to the GRID benchmark, and is encoded in FDR us-
ing the following state variables: R, the robot position in
{1, . . . , 7}; A, the key A position in {R, 1, . . . , 7}; B, the
key B position in {R, 1, . . . , 7}; F in {0, 1} saying whether
the robot hand is free; O in {0, 1} saying whether the lock is
open. We can move the robot from i to i + 1, or vice versa,
if the lock is open or {i, i + 1} ∩ {4} = ∅. We can take a
key if the hand is free, drop a key we are holding, or open
the lock if the robot is at 3 or 5 and holds key A. The goal
requires key B to be at 1. An optimal plan moves to 2, takes
key A, moves to 3, opens the lock, moves to 7, drops key A
and takes key B, moves back to 1 and drops key B.

A monotonic finite-domain representation (MFDR)
planning task is a quadruple Π = 〈V,A, I,G〉 exactly as
for FDR tasks, but the semantics is different. An MFDR
state s is a function that assigns each v ∈ V a non-empty
subset s[v] ⊆ D(v) of its domain. An MFDR action a is ap-
plicable in state s iff pre(a)[v] ∈ s[v] for all v ∈ V(pre(a)),
and applying it in s changes the value of v ∈ V(eff(a)) to
s[v]∪{eff(a)[v]}. An action sequence 〈a1, . . . , ak〉 is a plan
if G[v] ∈ IJ〈a1, . . . , ak〉K[v] for all v ∈ V(G).

Plans for MFDR tasks can be generated in polynomial
time (this follows directly from Bylander’s (1994) results).
A key part of many planning systems is based on exploiting
this property for deriving heuristic estimates, via the notion
of monotonic, or delete, relaxation. The monotonic relax-
ation of an FDR task Π = 〈V,A, I,G〉 is the MFDR task
Π+ = Π. The optimal delete relaxation heuristic h+(Π)
is the length of a shortest possible plan for Π+. For arbitrary
states s, h+(s) is defined via the MFDR task 〈V,A, s,G〉. If
π+ is a plan for Π+, then π+ is a relaxed plan for Π.

A relaxed plan for the example takes key A, opens the
lock, moves to 7, takes key B (without first dropping key
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Figure 1: An example (a), and its causal graph (b).

A), and drops key B at 1 (without first moving back there).
We get h+(Π) = 10 whereas the real plan needs 17 steps.

We will use two standard structures to identify special
cases of planning. The causal graph CGΠ of a task Π
is a digraph with vertices V . An arc (v, v′) is in CGΠ

iff v 6= v′ and there exists an action a ∈ A such that
(v, v′) ∈ [V(eff(a))∪ V(pre(a))]×V(eff(a)). The domain
transition graph DTGΠ(v) of a variable v ∈ V is a labeled
digraph with vertices D(v). The graph has an arc (d, d′) in-
duced by action a iff eff(a)[v] = d′, and either pre(a)[v] = d
or v 6∈ V(pre(a)). The arc is labeled with its outside condi-
tion pre(a)[V \ {v}] and its outside effect eff(a)[V \ {v}].

Consider again the example. Figure 1 (b) shows the causal
graph: R is a prerequisite for changing every other variable.
Each key is interdependent with F because taking/dropping
them affects both. Key A influences O, which influences R.
DTGΠ(R) has arcs (i, i + 1) and (i + 1, i), all with empty
outside effect, and with empty outside condition except if
{i, i + 1} ∩ {4} 6= ∅ in which case the outside condition is
{(O, 1)}. DTGΠ(F ) has an arc (1, 0) for every take(x, y)
action where x ∈ {1, . . . , 7} and y ∈ {A,B}, with out-
side condition {(R, x), (y, x)} and outside effect {(y,R)},
as well as an arc (0, 1) for every drop(x, y) action, with out-
side condition {(R, x), (y,R)} and outside effect {(y, x)}.

Katz et al. (2013b) view FDR and MFDR as cases in
which all state variables adopt value-switching and value-
accumulating semantics, respectively. They interpolate be-
tween these extremes by what they call red-black planning.

A red-black (RB) planning task is a tuple Π =
〈V B, V R, A, I,G〉 where V B is a set of black state vari-
ables, V R is a set of red state variables, and everything else
is exactly as for FDR and MFDR tasks. A state s assigns
each v ∈ V B ∪ V R a non-empty subset s[v] ⊆ D(v), where
|s[v]| = 1 for all v ∈ V B. An RB action a is applicable
in state s iff pre(a)[v] ∈ s[v] for all v ∈ V(pre(a)). Ap-
plying a in s changes the value of v ∈ V(eff(a)) ∩ V B to
{eff(a)[v]}, and changes the value of v ∈ V(eff(a)) ∩ V R

to s[v] ∪ {eff(a)[v]}. An action sequence 〈a1, . . . , ak〉 is a
plan if G[v] ∈ IJ〈a1, . . . , ak〉K[v] for all v ∈ V(G).

In the example, if variables R,A,B,O are red and F is
black, then (in difference to the relaxed plan) the robot needs
to drop keyA before taking keyB. IfR is black as well, then
the robot needs to move back to 1 before dropping key B,
rendering the red-black plan a real plan.

RB obviously generalizes both FDR and MFDR. Given an
FDR planning task Π = 〈V,A, I,G〉 and a subset V R ⊆ V
of its variables, the red-black relaxation of Π relative to
V R is the RB task Π∗+V R = 〈V \V R, V R, A, I,G〉. A plan for
Π∗+V R is a red-black relaxed plan for Π, and the length of a
shortest possible red-black relaxed plan is denoted h∗+V R(Π).
For arbitrary states s, h∗+V R(s) is defined via the RB task
〈V \ V R, V R, A, s,G〉. It is easy to see that h∗+V R is consis-
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Algorithm : UNRELAX(Π, π+)
main
// Π = 〈V B, V R, A, I,G〉 and π+ = 〈a1, . . . , an〉
π ← 〈a1〉
for i = 2 to n

do

if pre(ai)[V
B] 6⊆ IJπK

then π ← π ◦ ACHIEVE(π, pre(ai)[V
B])

π ← π ◦ 〈ai〉
if G[V B] 6⊆ IJπK

then π ← π ◦ ACHIEVE(π,G[V B])

procedure ACHIEVE(π, g)
F ← I ∪

⋃
a∈π eff(a)

AB ← {aB | a ∈ A, aB = 〈pre(a)[V B], eff(a)[V B]〉,
pre(a) ⊆ F, eff(a)[V B] ⊆ F}

〈a′B1 , . . . , a′Bk 〉 ← an FDR plan for ΠB = 〈V B, AB, IJπK[V B], g〉
return 〈a′1, . . . , a′k〉
Figure 2: Algorithm presented by Katz et al. (2013a).

tent and dominates h+, and if V R = ∅ then h∗+V R is perfect.
Computing h∗+V R is hard, and Katz et al. propose to use upper-
approximation by satisficing red-black planning, in analogy
to the successful strategies for relaxed planning. For this to
be practical, satisficing red-black planning must be tractable.

The causal graph and domain transition graphs for an RB
task Π are defined exactly as for FDR. By the black causal
graph CGB

Π of Π, denote the sub-graph of CGΠ induced by
the black variables. Say that an arc (d, d′) is relaxed side
effects invertible, RSE-invertible for short, if there exists
an arc (d′, d) with outside condition φ′ ⊆ φ ∪ ψ where φ
and ψ are the outside condition respectively outside effect of
(d, d′). A variable v is RSE-invertible if all arcs in DTGΠ(v)
are RSE-invertible, and an RB task is RSE-invertible if all its
black variables are.

Katz et al. (2013a) prove that plan generation for RSE-
invertible RB tasks whose black causal graphs are acyclic is
tractable. Specifically, plan existence in this setting is shown
to be equivalent to relaxed plan existence, and Katz et al.’s
algorithm is based on repairing a relaxed plan for Π.

Repairing Relaxed Plans
The algorithm UNRELAX(Π, π+) for RSE-invertible RB
tasks with acyclic black causal graphs, presented by Katz et
al. (2013a) is depicted in Figure 2. It takes a relaxed plan π+,
which serves as a skeleton for incrementally constructing the
red-black plan π. This is done by going over the actions of
π+ and inserting sequences of actions achieving black pre-
conditions (where needed). The sequences are found by the
ACHIEVE procedure, which constructs and solves (in poly-
nomial time) an FDR planning task ΠB, whose initial state
consists of the current black values, and whose goal is to
achieve the black preconditions in question.

A major weakness of the UNRELAX algorithm is over-
estimation, incurred by following the decisions of a relaxed
plan. Consider our example in Figure 1, and let V B = {R}.
Say the relaxed plan π+ starts with move(1, 2), move(2, 3),
take(2, A), open(3, 4, A). Then a call to ACHIEVE(π, g)
before take(2, A) will insert move(3, 2), and another call
before open(3, 4, A) will insert move(2, 3). As Katz et al.

(2013a) point out, similar phenomena occur massively in
standard IPC benchmarks.

In Elevators, a relaxed plan tends to use actions of the
form move(c,X) where c is the current lift position and
X are the floors that need to be visited. Given this input,
whenever the lift needs to go from X to Y , a red-black plan
usesmove(X, c),move(c, Y ) instead ofmove(X,Y ). This
becomes much worse still in Visitall. If, for example, in
the current state we’re located in the right bottom corner of
a grid, then the relaxed plan is likely to visit the grid in a
breadth-first fashion, going outwards in all directions from
that corner. Given this, during red-black planning, as we
reach for example the top right corner, instead of just mov-
ing one step to the left to the next grid cell, we move all the
way back to the bottom before moving out from there again.

Going back to Elevators, if board/leave actions are not
up front, the red-black plan uselessly move elevators back
and forth without taking care of any passengers. Also, since
the relaxed plan is free to choose any board/leave actions, it
may decide to make all boards with the same capacity pre-
condition (the initially true one for that lift). This forces the
red-black plan to achieve the desired capacity by applying
useless instances of board/leave.

To illustrate another extreme, related to resource-usage,
consider a Logistics example with a star-shaped map over
nodes m (middle) and o1, . . . , oN (outside nodes), with N
trucks and N packages, all initially located at m, with the
goal of getting each package pi to its individual goal oi. An
optimal relaxed plan can use a single truck. Starting from
this, the red-black plan uses a single truck as well, not mak-
ing use of the much cheaper option to employ all N trucks.

Red-Black Planning
To tackle these issues, we escape the limitation of restricting
ourselves to the actions from the relaxed plan. It turns out
we can make do with a much weaker restriction, namely that
to the red facts used by the relaxed plan.

Algorithm
Pseudo-code for our algorithm is shown in Figure 3.1

Theorem 1 Let Π = 〈V B, V R, A, I,G〉 be an RSE-
invertible RB planning task with acyclic black causal graph,
let π+ be a relaxed plan for Π, and let R+ = G[V R] ∪⋃
a∈π+ pre(a)[V R]. Then the action sequence π returned by

REDBLACKPLANNING(Π, R+) is a plan for Π.

The algorithm maintains two monotonically increasing
sets of variable values: R is the set of all currently achieved
red variable values; B is the set of all black variable values
currently reachable under R. Both R and B are maintained
by the UPDATE procedure. For v ∈ V B, DTGΠ(v)|R∪B is
obtained as follows. Let G be the subgraph of DTGΠ(v)
obtained by removing all arcs whose outside condition is
not contained in R ∪ B. The graph DTGΠ(v)|R∪B is ob-
tained from G by removing all vertices (and incident arcs)
that are not reachable from I[v]. Abusing notation, we will

1Note that different relaxed plans could use different sets of red
facts R+, i. e., our approach is unrelated to landmarks.
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Algorithm : REDBLACKPLANNING(Π, R+)
main
// Π = 〈V B, V R, A, I,G〉
global R, B ← ∅, π ← 〈〉
UPDATE()
while R 6⊇ R+

do



A′ = {a ∈ A | pre(a) ⊆ B ∪R, eff(a) ∩ (R+ \R) 6= ∅}
Select a ∈ A′

if pre(a)[V B] 6⊆ IJπK
then π ← π ◦ ACHIEVE(pre(a)[V B])

π ← π ◦ 〈a〉
UPDATE()

if G[V B] 6⊆ IJπK
then π ← π ◦ ACHIEVE(G[V B])

return π
procedure UPDATE()
R← IJπK[V R]
B ← B ∪ IJπK[V B]
for v ∈ V B, ordered topologically by the black causal graph

do B ← B ∪ DTGΠ(v)|R∪B

procedure ACHIEVE(g)
IB ← IJπK[V B]
GB ← g
AB ← {aB | a ∈ A, aB = 〈pre(a)[V B], eff(a)[V B]〉,

pre(a) ⊆ R ∪B, eff(a)[V B] ⊆ B}
〈a′B1 , . . . , a′Bk 〉 ← an FDR plan for ΠB = 〈V B, AB, IB, GB〉
return 〈a′1, . . . , a′k〉

Figure 3: Our red-black planning algorithm. R+ = G[V R]∪⋃
a∈π+ pre(a)[V R] where π+ is a relaxed plan for Π.

use DTGΠ(v)|R∪B to denote both the DTG sub-graph and
the set of vertices (variable values) of that graph.

We start by showing that, for R 6⊇ R+, we always have
A′ 6= ∅. This is done with the help of the relaxed plan π+.
Let ai ∈ π+ be the action with the minimal index i such that
eff(ai) ∩ (R+ \R) 6= ∅. Thus, for 1 ≤ j ≤ i− 1, eff(aj) ∩
(R+ \ R) = ∅. Assume to the contrary that there exists
v ∈ V(pre(ai)) ∩ V R such that pre(ai)[v] 6∈ R. But then
pre(ai)[v] 6= I[v] and thus there exists 1 ≤ j ≤ i − 1 such
that eff(aj)[v] = pre(ai)[v] ∈ R+, giving us eff(aj)∩(R+\
R) 6= ∅. Therefore we have pre(ai)[V

R] ⊆ R. To see that
pre(ai)[V

B] ⊆ B, note that a1·. . .·ai−1 correspond to a path
in DTGΠ(v) for each black variable v ∈ V(pre(ai)) ∩ V B

that passes the value pre(ai)[v] and uses only actions with
outside conditions in R ∪ B. Therefore pre(ai) ⊆ R ∪ B
and we have the desired ai ∈ A′.

We continue with the while loop. Consider an iteration
of the loop. Any red preconditions of the selected action
a ∈ A′ are true in the current state IJπK by the definition of
A′. For the unsatisfied black preconditions g = pre(a)[V B]
we have g ⊆ B and thus they are tackled by ACHIEVE(g),
solving an FDR task ΠB with goal g. Assume for the mo-
ment that this works correctly, i. e., the returned action se-
quence πB is red-black applicable in the current state IJπK
of our RB task Π. ΠB ignores the red variables, but effects
on these cannot hurt anyway, so a is applicable in IJπ ◦πBK.
Since eff(a)∩ (R+ \R) 6= ∅, |R+ \R| decreases by at least
1 at each iteration, so the while loop terminates. Upon ter-
mination, we have (i) R+ ⊆ IJπK[V R] = R, and thus (ii)

G[V B] ⊆ B. Then, calling ACHIEVE(G[V B]) (if needed)
will turn π into a plan for our RB task Π.

We now conclude the proof of Theorem 1 by showing
that: (i) ΠB is well-defined; (ii) ΠB is solvable and a plan
can be generated in polynomial time; and (iii) any plan πB

for ΠB is, in our RB task Π, applicable in IJπK.
For (i), we show that all variable values occuring in ΠB

are indeed members of the respective variable domains. This
is obvious for IB and AB. It holds for GB = pre(a)[V B] as
a ∈ A′. For GB = G[V B], once we have R ⊇ R+, π+

corresponds to a path in DTGΠ(v) for each black variable
v ∈ V B ∩ V(G) through G[v], and thus G[V B] ⊆ B.

For (iii), we have pre(a) ⊆ R ∪ B for all actions where
aB ∈ AB. This implies that the red preconditions of all these
a are true in the current state IJπK. So applicability of πB in
IJπK, in Π, depends on the black variables only, all of which
are contained in ΠB.

To show (ii), we define a new planning task by restrict-
ing the set of actions. We show that this new planning
task is solvable, and a plan can be generated in polyno-
mial time; the same then obviously follows for ΠB. Let
ΠB
π = 〈V B, AB

π, I
B, GB〉 be the planning task obtained from

ΠB by (1) setting the actions to AB
π = {aB | a ∈ A, aB =

〈pre(a)[V B], eff(a)[V B]〉, pre(a)∪eff(a) ⊆ IJπ+K}; and (2)
by restricting the variable domains to the values in IJπ+K. It
is easy to see that ΠB

π is well-defined. As IJπ+K ⊆ R ∪ B,
we obviously have AB

π ⊆ AB as advertized.
We next show that the domain transition graphs are

strongly connected. Observe that all values in DTGΠB
π
(v)

are, by construction, reached from I[v] by a sequence of arcs
(d, d′) induced by actions in π. So it suffices to prove that
every such arc has a corresponding arc (d′, d) in DTGΠB

π
(v).

Say v ∈ V B, and (d, d′) is an arc in DTGΠB
π
(v) induced by

aB where a ∈ π. Since (d, d′) is RSE-invertible in Π, there
exists an action a′ ∈ A inducing an arc (d′, d) in DTGΠ(v)
whose outside condition is contained in pre(a) ∪ eff(a).
Since, obviously, pre(a)∪eff(a) ⊆ IJπ+K, we get pre(a′) ⊆
IJπ+K. Now, a′ can have only one black effect (other-
wise, there would be a cycle in the black causal graph) so
eff(a′)[V B] = {(v, d)} which is contained in IJπ+K. Thus
a′B ∈ AB

π , and (d′, d) is an arc in DTGΠB
π
(v) as desired.

This suffices because plan generation for FDR with
acyclic causal graphs and strongly connected DTGs is
tractable: Precisely, every such task is solvable, and a plan
in a succinct plan representation can be generated in poly-
nomial time. This is a direct consequence of Theorem 23
of Chen and Gimenez (2008) and Observation 7 of Helmert
(2006). (The succinct representation consists of recursive
macro actions for pairs of values with each variable’s DTG;
it is required as plans may be exponentially long.) This con-
cludes the proof of Theorem 1.

Over-Estimation
Going back to the issues outlined in the previous section, let
π+ be a relaxed plan and R+ be the set of facts obtained
from π+ as in Theorem 1. In Elevators, when setting the lift
locations to be black variables and the rest to be red,R+ will
consist of passenger initial, intermediate (in some lifts) and
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goal locations, as well as of lift capacities required along π+.
The actions achieving these facts are board/leave; these are
the actions selected by the main loop. All move actions are
added by theACHIEV E(g) procedure, so the lifts will not
move back and forth without a purpose. This covers the first
two issues of the Elevators domain. For the third issue, as-
sume that all board actions in π+ are preconditioned by the
initially true capacity of that lift (cl). Then all leave actions
in π+ will be preconditioned by the cl − 1 capacity, and cl
and cl − 1 are the only capacity-related facts in R+. As cl
is true in the initial state, and cl − 1 is achieved by the first
board action into the respective lift, after that action there
are no more capacity-related facts in R+ \ R. Thus action
selection in the main loop will be based exclusively on fol-
lowing red facts related to the passenger locations, solving
the third issue.

In Visitall, painting the robot black and the locations red
will cause the main loop to select some achieving action for
every unvisited locations. In our implementation, these ac-
tions are selected in a way minimizing the cost of achieving
their preconditions, solving this issue as well.

The star-shaped Logistics example remains a problematic
case. Painting the trucks black and the packages red will
cause the main loop to follow the positions of the pack-
ages. Assume now that the relaxed plan π+ uses only the
truck t. R+ will then include the initial and goal positions
of each package, as well as the fact in(p, t) for each pack-
age p. Thus, as before, the red-black plan will use only the
same single truck t. It remains an open question how to
resolve this; perhaps low-conflict relaxed plans (Baier and
Botea 2009) could deliver input better suited to this purpose.

Implementation
We adopt from Katz et al. (2013a) a simple optimization
that tests, in every call to the heuristic, whether the red-
black plan generated is actually a real plan, and if so, stop
the search. We denote this technique with S for “stop” and
omit the “S” when not using it. Also, we need a technique to
choose the red variables. Similarly to Katz et al. (2013a), we
start by painting red all variables that are not RSE-invertible.
Further, we paint red all causal graph leaves because that
does not affect the heuristic. From the remaining variable
set, we then iteratively pick a variable v to be painted red
next, until there are no more arcs between black variables.
Our techniques differ in how they choose v:
• A: Select v with the maximal number A(v) of incident

arcs to black variables; break ties by smaller domain size.
• C: Select v with the minimal number C(v) of conflicts,

i. e., relaxed plan actions with a precondition on v that will
be violated when executing the relaxed plan with black v.
• C[N]: Extends C by sampling N random states, then se-

lect v with the minimal average number of conflicts.
• CA[p]: Interpolation between C (with p = 0) and A

(with p = 1). Select v with the maximal value P (v) :=

p∗Â(v)+(1−p)∗(1−Ĉ(v)), where Â(v) and Ĉ(v) repre-
sent the number of incident edges and number of conflicts,
respectively.

• L: Select v with highest level in the causal graph heuris-
tic (Helmert 2004).

The first two techniques were introduced by Katz et al.
(2013a). The intuition behind A is to minimize the num-
ber (and the domain sizes) of red variables. The intuition
behind C is for the least important variables to be red. How-
ever, C depends on a particular relaxed plan, and in cases
when the relaxed plan chose not to exploit the available re-
sources, these will have no conflicts. In an attempt to make
the red variable selection more stable, we propose the tech-
nique C[N], which samples N random states and finds a re-
laxed plan for each state in the sample. The choice of the
next variable v is then made based on the average number of
conflicts of v. The idea behind CA[p] is to interpolate be-
tween C and A, aiming at getting the best of both worlds. A
variable v maximizing P (v) := p∗Â(v)+(1−p)∗(1−Ĉ(v))

is chosen to be red. Note that Â(v) is the number of incident
edges of v divided by the maximal number of incident edges
among all invertible variables, and Ĉ(v) is the number of
conflicts of v divided by the maximal number of conflicts
of all variables. Naturally, for p = 1 we obtain the method
A, while for p = 0 we get C. However, A and C of Katz
et al. have different tie breaking. Our implementation of
CA[p] adopts the tie breaking of A. The last technique is
causal graph based. L aims at painting the “servant” vari-
ables, those that change their value in order to support other
variables, black.

Experiments
The experiments were run on Intel(R) Xeon(R) CPU X5690
machines, with time (memory) limits of 30 minutes (2 GB).
We ran all STRIPS benchmarks from the IPC. Since the
2008 domains were run also in 2011, we omit those to avoid
a bias on these domains. For the sake of simplicity we con-
sider uniform costs throughout (i. e., we ignore action costs
where specified). Furthermore, since our techniques do not
do anything if there are no RSE-invertible variables, we omit
instances in which that is the case (and domains where it
is the case for all instances, specifically Airport, Freecell,
Parking, Pathways-noneg, and Openstacks domains).

Our main objective in this work is to improve on the re-
laxed plan heuristic, so we compare performance against
that heuristic. Precisely, we compare against this heuris-
tic’s implementation in Fast Downward. We run a configu-
ration of Fast Downward commonly used with inadmissible
heuristics, namely greedy best-first search with lazy evalua-
tion and a second open list for states resulting from preferred
operators (Helmert 2006). To enhance comparability, we did
not modify the preferred operators, i. e., all our red-black re-
laxed plan heuristics simply take these from the relaxed plan.
We also run an experiment with a single open list, not using
preferred operators.

We compare to the best performing configuration (F) of
the red-black plan heuristic proposed by Katz et al. (2013a),
that we aim to improve in the current work. We denote our
techniqe of red facts following by R. A comparison to the
approach of Keyder et al. (2012) was performed as well.
Precisely, we use two variants of this heuristic, that we refer
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Figure 4: Initial state heuristic values and best plan found.

to as Keyd’12 and Keyd’13. Keyd’12 is the overall best-
performing configuration from the experiments as published
at ICAPS’12. Keyd’13 is the overall best-performing con-
figuration from a more recent experiment run by Keyder et
al. (unpublished; private communication).

We ran 20 variants of our own heuristic, switching S
on/off, and running one of A, C, C[N] for N ∈ {5, 25, 100},
CA[p] for p ∈ {0, 0.25, 0.5, 0.75}, or L. We measured: cov-
erage (number of instances solved); total runtime; search
space size as measured by the number of calls to the heuris-
tic function; initial state accuracy as measured by the differ-
ence between the heuristic value for I and the length of the
best plan found by any planner in the experiment; as well as
heuristic runtime as measured by search time divided by the
number of calls to the heuristic function. Table 1 provides
an overview pointing out the main observations. As our ob-

jective here is to find better red-black plans, Figure 4 shows
the initial state heuristic values for selected domains.

Consider first the coverage data in Table 1. Not using pre-
ferred operators illuminates the advantages of our new tech-
niques quite drastically: Whereas the previous heuristic F
decreases coverage over the FF heuristic, our new technique
R increases it. The margins are substantial in particular for
the best performing configurations AR vs. AF.

Consider now the coverage data when using preferred op-
erators. Focussing on significant differences in specific do-
mains reveals that the best performing configuration ARS
improves over the best performing configuration AFS of
Katz et al. (2013a), solving 2 more tasks in Floortile and
8 more tasks in Nomystery. Comparing CRS to CFS shows
improvement of 12 tasks in Elevators, 2 in Floortile, 8 in
Nomystery and 4 tasks in Transport. On the other hand,
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Coverage Time FF/OWN (med) H-time OWN/FF
No Pref. Ops. Keyd AS CS C[N]RS CA[p]RS LS AS CS AF AR CF CR

# FF AF AR CF CR ’12 ’13 FF F R F R 5 100 0 0.25 0.75 F R F R F R med max med max med max med max

barman 20/20 15 16 16 17 2 4 18 19 20 19 20 5 6 6 13 9 19 20 19 7,96 22,0 138 1,21 1,24 1,56 1,00 1,48 1,01 1,21 1,11 1,67
blocks 35/35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 1,00 1,00 1,00 1,00 0,93 2,74 0,84 3,44 0,99 4,82 0,93 4,84
depot 22/22 15 14 15 14 15 21 21 18 19 19 19 19 19 19 19 19 19 19 19 1,00 1,00 1,00 1,00 1,06 3,73 1,27 4,15 1,11 3,73 1,15 4,15
driverlog 20/20 18 16 18 17 18 20 20 20 20 20 20 20 20 20 20 20 20 20 20 1,00 1,00 1,00 1,00 1,08 2,96 1,05 1,46 1,00 9,85 1,01 1,66
elevators 20/20 17 14 13 2 11 19 18 20 20 20 8 20 20 20 20 20 20 14 19 0,92 0,50 0,08 1,34 1,09 1,39 1,82 2,23 1,27 1,73 1,47 1,67
floortile 20/20 4 6 3 6 3 20 20 5 5 7 5 7 7 7 7 7 7 5 7 0,60 0,20 0,54 0,20 1,83 7,10 2,34 2,46 2,00 7,10 2,27 2,34
grid 5/5 4 3 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 0,93 0,94 0,83 0,85 1,21 1,71 1,41 1,82 1,24 1,71 1,37 2,08
gripper 20/20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 1,00 1,00 1,00 1,00 4,17 6,90 3,91 6,95 4,17 6,90 3,91 6,95
logistics00 28/28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 1,00 1,00 1,00 1,00 0,96 1,30 1,15 1,61 0,96 1,30 1,15 1,61
logistics98 35/35 22 5 35 5 35 35 35 34 35 35 35 35 35 35 35 35 35 35 35 1,29 1,32 1,20 1,23 1,19 1,79 1,40 4,05 1,19 2,11 1,48 4,05
miconic 150/150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 1,00 1,00 1,00 1,00 1,05 1,44 2,00 4,47 1,04 1,44 2,00 4,47
mprime 35/35 30 31 30 29 30 35 35 35 35 35 34 35 35 35 35 35 35 35 35 0,79 0,80 0,80 0,79 1,00 3,11 1,00 10,2 1,02 4,36 1,04 9,03
mystery 28/30 17 17 17 17 17 19 19 16 17 16 16 16 16 16 16 16 16 16 16 0,97 0,93 0,95 0,93 1,00 2,50 1,00 12,0 1,12 2,77 1,01 3,13
nomystery 20/20 8 7 14 7 14 6 6 10 6 14 6 14 14 14 14 14 14 6 14 0,88 1,20 0,88 1,15 1,03 1,62 1,87 26,2 1,23 1,68 1,87 26,2
parcprinter 13/20 4 6 4 6 4 3 1 13 13 13 13 13 13 13 13 13 13 13 13 1,00 1,00 1,00 1,00 1,01 12,8 1,03 14,4 1,01 12,8 1,03 14,4
pegsol 20/20 20 20 20 20 20 19 20 20 20 20 20 20 20 20 20 20 20 20 20 1,00 1,00 1,00 1,00 1,00 3,22 1,57 34,3 1,00 3,22 1,55 16,1
Pipes-notank 40/50 20 18 18 18 18 33 33 33 33 32 33 32 32 32 32 32 32 33 32 0,85 1,00 0,93 1,00 1,08 3,36 1,09 14,67 1,20 15,6 1,22 24,1
Pipes-tank 40/50 14 16 12 16 13 29 29 29 29 30 29 30 29 30 29 30 30 29 30 0,92 0,97 0,70 0,95 1,33 2,71 1,40 2,53 1,07 2,04 1,34 3,01
Psr-small 50/50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 1,00 1,00 1,00 1,00 1,00 5,20 1,00 6,10 1,00 4,20 1,00 4,90
rovers 40/40 23 16 25 17 25 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1,00 0,92 1,00 0,95 1,15 2,08 1,64 4,79 1,29 2,66 1,70 5,00
satellite 36/36 23 22 28 22 28 34 34 36 36 36 36 35 35 35 35 35 35 36 36 1,00 1,23 1,00 1,20 1,25 2,01 1,57 4,39 1,18 1,77 1,56 3,32
scanalyzer 14/20 10 12 14 10 10 14 14 14 14 14 14 14 14 14 14 14 14 14 14 0,84 1,13 0,98 1,01 1,12 2,39 2,03 4,21 1,11 2,48 1,00 2,05
sokoban 20/20 19 19 19 18 19 17 16 19 19 19 18 19 19 19 19 19 19 19 19 0,55 0,41 0,26 0,38 1,92 5,28 1,98 3,17 4,15 5,96 2,33 3,74
tidybot 20/20 15 14 13 16 13 15 12 15 13 12 17 13 14 15 14 15 12 14 10 0,83 0,59 1,08 0,68 1,66 2,44 1,79 3,30 1,61 2,60 1,67 2,83
tpp 30/30 20 15 20 15 20 30 30 30 29 30 29 30 30 30 30 30 30 29 30 1,00 0,98 1,00 0,95 1,04 1,93 1,19 2,32 1,07 1,32 1,13 1,76
transport 20/20 0 0 0 1 0 11 11 10 10 10 8 12 11 12 13 14 10 7 11 0,99 0,54 1,38 0,79 1,12 1,91 1,85 2,33 0,36 1,30 1,24 1,59
trucks 30/30 16 15 16 16 14 14 14 18 20 20 19 18 18 18 18 18 18 17 18 1,00 1,00 0,53 0,76 1,13 6,43 1,29 10,43 1,18 3,67 1,25 3,11
visitall 20/20 5 3 17 3 17 20 20 3 20 20 20 20 20 20 20 20 20 20 20 17,5 17,5 17,5 17,5 2,79 3,12 17,9 23,4 2,57 3,19 19,1 23,7
woodworking 20/20 2 2 3 2 3 20 20 20 20 20 20 20 20 20 20 20 20 20 20 0,65 0,82 0,66 0,71 0,92 1,00 0,82 1,00 0,76 1,00 1,07 1,31
zenotravel 20/20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 1,00 1,00 1,00 1,00 1,14 1,63 1,36 2,08 1,14 1,63 1,34 1,76∑

891/926 644 610 677 601 656 786 794 785 801 809 787 795 795 798 804 803 806 789 805

Evaluations FF/OWN Init |OWN-P|/|FF-P|
Keyd’12 Keyd’13 AFS ARS CFS CRS AS (med) CS (med)

min med max min med max min med max min med max min med max min med max F R F R

barman 0.01 1.11 16.1 0.09 1.84 1349 0.80 8.40 433 0.88 34.0 484 1.44 135 514 0.00 1.16 347 0.99 0.99 0.96 1.02
blocks 0.79 2.84 38.0 0.83 3.00 39.9 0.46 0.92 2.77 0.11 0.97 7.00 0.40 0.99 4.83 0.31 1.10 7.00 1.00 1.00 0.52 0.73
depot 0.59 5.95 4551 0.00 7.38 8916 0.15 1.03 46.5 0.12 1.75 7.31 0.15 1.03 46.5 0.12 1.75 7.31 0.86 0.92 0.86 0.92
driverlog 0.11 1.61 91.1 0.02 1.26 60.2 0.04 0.96 15.5 0.01 1.00 17.0 0.04 1.00 10.5 0.03 1.00 17.0 0.54 0.77 0.54 0.64
elevators 0.22 1.34 37.2 0.22 1.05 37.2 0.54 1.00 5.84 0.49 1.03 7.49 0.02 0.11 0.67 0.37 2.09 14.8 0.94 1.00 1.40 0.92
floortile 986 13852 24221 761 14117 18486 0.54 0.89 237 0.30 0.41 3.91 0.54 0.89 237 0.30 0.41 3.91 0.06 0.88 0.06 0.88
grid 0.32 1.80 4.29 0.65 1.59 2.19 0.93 1.00 1.07 0.98 1.00 1.65 0.16 1.00 1.15 0.98 1.00 1.00 1.00 1.00 0.92 1.00
gripper 0.50 0.65 1.00 0.45 0.94 1.00 1.38 4.29 7.02 1.50 4.00 7.07 1.38 4.29 7.02 1.50 4.00 7.07 1.17 1.00 1.17 1.00
logistics00 1.05 1.56 2.22 0.97 1.52 2.06 10.0 137 516 10.0 137 516 10.0 137 516 10.0 137 516 1.83 0.00 1.83 0.00
logistics98 0.08 2.69 59.5 0.05 2.48 58.6 24.0 448 36919 24.0 448 36919 24.0 448 36919 24.0 448 36919 2.71 0.00 2.71 0.00
miconic 0.60 1.68 2.69 0.60 1.33 2.36 3.00 253 925 3.00 253 925 3.00 253 925 3.00 253 925 5.67 0.00 5.67 0.00
mprime 0.03 1.86 24.8 0.50 1.83 24.8 1.00 1.00 1.02 0.88 1.00 2.47 0.02 1.00 4.80 0.37 1.00 2.47 1.00 1.00 0.67 1.00
mystery 0.00 1.23 1.6E+7 0.00 1.08 1.6E+7 0.83 1.00 1.00 1.00 1.00 3.45 0.15 1.00 3.00 0.38 1.00 3.45 1.00 1.00 1.00 1.00
nomystery 0.44 1.23 4.09 1.25 1.98 45.8 0.01 0.66 2.19 0.45 2.99 75.0 0.01 0.66 2.19 0.45 2.99 75.0 2.88 0.25 2.88 0.25
parcprinter 0.00 0.01 0.30 0.51 0.51 0.51 0.01 1.04 1708 0.01 1.07 1913 0.01 1.04 1708 0.01 1.07 1913 1.00 1.00 1.00 1.00
pegsol 0.03 1.18 26.2 0.05 1.30 103 0.14 1.02 7.35 0.09 1.29 481 0.10 1.00 21.8 0.09 1.37 21.4 1.00 1.07 1.00 1.07
Pipes-notank 0.02 1.01 80.2 0.04 0.69 73.9 0.78 1.00 4.74 0.20 3.08 73.8 0.69 1.02 17.0 0.35 3.61 73.8 1.00 1.10 1.00 1.08
Pipes-tank 0.01 0.85 453 0.02 0.84 1601 0.14 1.00 70.8 0.17 1.11 4.13 0.12 1.00 70.8 0.19 1.15 5.00 1.00 1.06 1.00 1.05
Psr-small 0.19 1.00 11.2 0.18 0.96 6.38 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
rovers 0.55 1.04 2.50 0.56 1.02 2.33 0.44 1.15 6.33 0.26 1.18 6.00 0.58 1.20 6.33 0.69 1.22 6.00 0.45 0.50 0.46 0.50
satellite 0.54 1.23 90.3 0.63 1.11 90.3 0.61 1.12 3404 3.21 55.5 32862 0.61 1.18 3404 3.21 51.0 32862 8.00 1.40 8.00 1.50
scanalyzer 0.89 3.53 137 0.31 2.91 11.80 0.33 1.04 2.08 1.20 2.46 171 0.06 1.15 10.1 0.78 1.24 51.6 0.45 0.67 0.36 1.00
sokoban 0.01 1.05 3.31 0.02 1.47 65.6 0.10 1.00 109 0.11 0.91 5.67 0.01 1.05 109 0.01 0.86 5.67 1.00 0.94 0.39 0.90
tidybot 0.21 0.83 2.96 0.00 1.01 2.92 0.96 1.05 1.73 0.48 1.08 7.76 0.19 1.05 2.49 0.19 0.99 2.07 1.00 1.00 1.00 0.99
tpp 0.41 0.92 1.62 0.35 0.81 1.62 0.05 0.76 22.0 0.20 1.13 22.0 0.05 0.76 22.00 0.20 1.13 22.0 0.57 0.83 0.57 0.83
transport 0.34 1.59 5.79 0.59 1.69 3.58 0.36 1.18 2.74 0.98 1.41 3.41 0.21 0.64 2.80 0.58 1.03 12.35 0.99 1.00 1.34 0.57
trucks 0.03 1.17 760 0.04 0.95 4.61 0.02 1.01 38.6 0.14 1.22 28.1 0.02 0.61 92.5 0.01 0.86 32.0 0.53 1.00 0.25 0.73
visitall 4.19 6.18 67.3 4.98 5.70 71.4 15508 18790 409512 15508 18790 409512 15508 18790 409512 15508 18790 409512 26.4 0.00 26.4 0.00
woodworking 0.83 227 452 0.83 225 452 0.92 1.00 5.00 0.90 1.13 2.50 0.92 1.00 5.00 0.90 1.13 2.50 1.00 0.70 1.00 0.40
zenotravel 0.50 1.19 4.28 0.50 0.90 5.86 0.53 1.08 6.08 0.92 1.38 2.88 0.53 1.08 6.08 0.92 1.38 2.88 1.00 0.40 1.00 0.40

Table 1: Selected results on IPC STRIPS benchmarks with at least one RSE-invertible variable, omitting IPC 2008 to avoid
domain duplication, and ignoring action costs. # is the number of such instances per domain/overall per domain. Keyd’12 and
Keyd’13 are heuristics by Keyder et al. (2012), FF is Fast Downward’s relaxed plan heuristic, and A, C, C[N], CA[p], L, F,
R, and S refer to our implementation options. Time is total runtime, Evaluations is the number of calls to the heuristic, and
H-time is the average runtime taken by such a call. Init is the heuristic value for the initial state and P is the length of the best
plan found. Data for these measures are shown for F and R configs in terms of per-task ratios against FF as indicated. For the
purpose of measuring H-time the S option was switched off. We show features (median, min, max) of that ratio’s per-domain
distribution on the instances solved by both planners involved.

CRS loses 15 in Barman and 4 in Tidybot. Switching to C[100]RS seems to help a bit, gaining back 1 task in Bar-
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man and 2 in Tidybot. CA[p]RS does not seem to pay off
overall, but it does have an interesting effect in Transport,
solving more than the best of ARS and CRS. Another inter-
esting observation is that CA[0]RS seems to perform better
than CRS, solving 8 more tasks in Barman, 9 more tasks
overall. For L the picture is similar to C, except for the Bar-
man domain, where LRS loses only 1 task. Keyd seem to
perform well, with the most significant result in Floortile do-
main, where it solves all 20 tasks, an impressive result that is
negatively balanced by the bad performance in Parcprinter.

The runtime data reveals several interesting observations.
First, the runtime for R typically improves over the previous
method F. The advantage is still more often on FF’s side, yet
not as often as for F. Focusing on A, observe that, despite the
much better runtime in Barman, the number of solved tasks
for ARS is smaller than that for AFS. The opposite happens
in Floortile, where despite the worse runtime, 2 more tasks
are solved by ARS. For C, it’s similar in Floortile and Trans-
port, the latter having 4 more tasks solved, while the median
runtime decreases considerably.

The heuristic runtime data in Table 1 shows that the slow-
down of our approach is typically small.

Moving to median performance for search space size
(Evaluations in Table 1) and comparing R to F, we note for
AS a decrease in only 3 domains (with the largest one in
Floortile), same performance in 8, and an increase in 19 do-
mains, with the most considerable increase in Satellite, No-
mystery, Barman, and Pipes-notank. For CS the picture is
similar, with a decrease in only 5 domains (the largest in Bar-
man and Floortile), same performance in 9, and an increase
in 16 domains, with the most considerable increase in Satel-
lite and Elevators. It turned out that RS allows for solving
several additional instances of Satellite without search. As
a result, the median search space reduction in 6 domains for
ARS and 4 domains for AFS, and in 5 domains for CRS and
CFS, is by 1–4 orders of magnitude. Taking a look beyond
the median, the results for maximum show a reduction by
1–5 orders of magnitude in 14 domains for ARS and AFS,
in 16 domains for CRS and 17 domains for CFS. For Keyd,
the median search space reduction of more than one order
of magnitude is only in two domains, namely Floortile and
Woodworking. However, the results for maximum show a
reduction of 1–7 orders of magnitude in 18 domains.

Finally, the last four columns in the lower part of Table 1
show the median of the absolute difference between the ini-
tial value and the length of the shortest plan found (P), rel-
ative to the absolute difference for the FF heuristic. The
value is 0 when FF is inaccurate and the measured heuristic
is exactly the length P. The value 1 means that both the mea-
sured heuristic and FF are equally (in)accurate, while values
lower than 1 stand for the measured heuristic being more ac-
curate than FF. We can see that for AFS the median estimate
is worse than FF’s in 7 domains, the same in 13, and bet-
ter in 10 domains. For ARS it is worse in 4 domains, the
same in 11, and better in 15 domains. For CFS the median
estimate is worse in 9 domains, the same in 9, and better
in 12 domains, and for CRS it is worse in 5 domains, the
same in 7, and better in 18 domains. Comparing R to F,
we see that, at least for median, the over-estimation is typ-

ically reduced, especially in Elevators, Logistics domains,
Miconic, Nomystery, Satellite, Trucks, Visitall, Woodwork-
ing, and Zenotravel. Interestingly, the estimate in Floortile,
despite being better than FF’s, is much worse than F’s. Fig-
ure 4 takes a closer look into some of these domains, show-
ing the heuristic values of F, AFS, and ARS, as well as the
length of the best plan found. It shows the reduction in over-
estimation and explains the increased performance in these
domains. To some extent, it might explain what happens
in Floortile as well: The shape of the ARS curve is more
similar to the one that describes the length of the best plan
found. So ARS, although less accurate than AFS (at least
for median), may serve as better heuristic guidance.

Discussion

We devised a new way to compute red-black plan heuris-
tics, improving over the previous method by relying less on
relaxed plans. Our experiments confirm impressively (cf.
the data when not using preferred operators) that this yields
a far better heuristic than the previous red-black planning
method, and that it substantially improves over a standard
delete-relaxation heuristic. In the competitive setting with
preferred operators, our new heuristic shows improvements
in both the search space size, measured by the number of
evaluations, and in the number of tasks solved.

It is not clear which message to take from our experiments
with different methods for selecting red variables. As of
now, the performance differences, though dramatic in indi-
vidual domains, are not systematic. There is no good match
to what we would have expected, based on our intuitions of
the conceptual differences between these variable selection
methods. It appears that, in the culprit domains, selecting
one or another subset of variables makes a lot of difference
for idiosyncratic reasons, and that one or another variable se-
lection method just happens to select the right respectively
wrong subset. This remains to be explored in more detail; it
seems doubtful whether alternate methods will perform sub-
stantially better than the ones we already have.

Floortile points to what probably is a fundamental weak-
ness of the red-black planning framework as it stands, espe-
cially in comparison to Keyder et al. (2012). The main issue
in Floortile are dead-ends that go unrecognized by the re-
laxed plan heuristic (painting yourself “into a corner”). The
red-black plan heuristics we have as off now are unable to
help with this, at least to help to a dramatic extent, simply
because relaxed plan existence implies red-black plan ex-
istence. That is very much not so for Keyder et al. At the
heart of this is the RSE-invertibility assumption we currently
make. It may be worthwhile to look into ways of getting rid
of that restriction, while preserving tractability.

In conclusion, the red-black relaxed plan heuristics we de-
vised do yield a significant improvement over the previous
ones. Much remains to be done to fully exploit the potential
of the red-black planning framework.
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