
From Feasibility Tests to Path Planners for Multi-Agent Pathfinding

Athanasios Krontiris
Rutgers University

Piscataway, NJ 08854 USA
tdk.krontir@gmail.com

Ryan Luna
Rice University

Houston, TX 77005 USA
rluna@rice.edu

Kostas E. Bekris ∗

Rutgers University
Piscataway, NJ 08854 USA

kostas.bekris@cs.rutgers.edu

Abstract

Multi-agent pathfinding is an important challenge that
relates to combinatorial search and has many appli-
cations, such as warehouse management, robotics and
computer games. Finding an optimal solution is NP-
hard and raises scalability issues for optimal solvers.
Interestingly, however, it takes linear time to check the
feasibility of an instance. These linear-time feasibility
tests can be extended to provide path planners but to the
best of the authors’ knowledge no such solver has been
provided for general graphs. This work first describes
a path planner that is inspired by a linear-time feasibil-
ity test for multi-agent pathfinding on general graphs.
Initial experiments indicated reasonable scalability but
worse path quality relative to existing suboptimal solu-
tions. This led to the development of an algorithm that
achieves both efficient running time and path quality
relative to the alternatives and which finds a solution on
available benchmarks. The paper outlines the relation
of the final method to the feasibility tests and existing
suboptimal planners. Experimental results evaluate the
different algorithms, including an optimal solver.

Introduction
Multi-agent pathfinding requires the computation of paths
for agents on a graph, where the agents move from ini-
tial to goal vertices while avoiding collisions. It has ap-
plications in warehouse management (Enright and Wur-
man 2011), space exploration (Luna, Oyama, and Bekris
2010), intelligent transportation (Dresner and Stone 2008),
and computer games (Silver 2005; Wang and Botea 2008;
Jansen and Sturtevant 2008).
Background: Providing an optimal solution for this prob-
lem is NP-hard. Optimality can be typically achieved by
coupled methods, which consider all agents as a single com-
posite system. These methods quickly become intractable as
the number of agents increases. Recent solutions improve
performance by searching in an iterative deepening man-
ner (Sharon et al. 2011) or modifying state expansion using

∗The work of A. Krontiris and K. Bekris is supported by NSF
CNS 0932423. The work of R. Luna is supported by NSF IIS
0713623. Any opinions expressed in this paper are those of the
authors and do not necessarily reflect the views of the sponsors.
Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

operator decomposition and segmenting instances into in-
dependent subproblems (Standley 2010; Standley and Korf
2011). Even these state-of-the-art optimal methods, how-
ever, can provide solutions only for up to tens of agents
(e.g., 50 agents). Decoupled techniques are computation-
ally efficient alternatives (Wang and Botea 2008; Jansen and
Sturtevant 2008; Silver 2005; Sturtevant and Buro 2006;
Masehian and Nejad 2010) that compute individual paths
and resolve collisions as they arise. While they solve prob-
lems much faster, they are not complete. This paper focuses
on algorithms that provide a solution if one exists and scale
to thousands of agents with a sacrifice in path quality.

An encouraging result in algorithmic theory is that an-
swering the feasibility question, i.e., whether a solution ex-
ists or not, can be answered efficiently. An early theoreti-
cal study (Kornhauser 1984), which refers to the challenge
as the “pebble motion on a graph” problem (PMG), pro-
vided a polynomial time solution to the feasibility question.
It built on top of earlier work, which dealt with the case of
biconnected graphs with one agent fewer than vertices (Wil-
son 1974). More recent progress, however, has shown that
the problem is solvable not just in polynomial but in lin-
ear time (Auletta et al. 1999; Goraly and Hassin 2010). In
particular, a linear-time feasibility test was first provided for
the “pebble motion on trees” problem (PMT) (Auletta et al.
1999). Recent work proved that the tree-based solution can
be utilized to also provide a linear-time answer for general
graphs with two more vertices than agents (Goraly and Has-
sin 2010). A recent report provides an equivalent approach
for general graphs (Yu 2013). The permutation invariant case
has also been addressed (Yu and LaValle 2012).

The results in algorithmic theory had not received much
attention in the combinatorial search community until re-
cently (Roger and Helmert 2012). Thus, researchers in this
community developed independently polynomial-time, sub-
optimal but complete solvers for multi-agent pathfinding.
Some of these combinatorial search methods focused on
specific graph topologies, such as trees (Peasgood, Clark,
and McPhee 2008), biconnected graphs with two more ver-
tices than agents (Surynek 2009) or “slideable” grid-based
problems (Wang and Botea 2011). Another method pro-
vides a polynomial-time solution for general graphs with
two empty vertices (Luna and Bekris 2011b). The linear-
time feasibility tests, however, can potentially form the foun-

Proceedings of the Sixth International Symposium on Combinatorial Search

114

dations for efficient path planning solutions. This was the
idea in related, recent work (Khorshid, Holte, and Sturte-
vant 2011), which proposed a path planner that corresponds
to the feasibility test for the PMT problem (Auletta et al.
1999), although it was developed independently to it and in-
spired by other recent work on the subject (Masehian and
Nejad 2009). To the best of the authors’ knowledge no path
planner corresponding to the linear-time feasibility test for
general graphs (Goraly and Hassin 2010) has been provided
before.
Contribution: This paper first outlines a path planner for
multi-agent pathfinding based on the approach to transform
a graph into a tree (Goraly and Hassin 2010) so as to utilize
a polynomial path planner for trees (Khorshid, Holte, and
Sturtevant 2011). The integration of the existing approaches
left many choices to be decided during the development of
the overall method so as to achieve an efficient implementa-
tion. Comparisons against optimal coupled planners (Stan-
dley and Korf 2011) and sub-optimal solutions (Luna and
Bekris 2011a; Sajid, Luna, and Bekris 2012) showed that
the resulting planner achieves scalability in terms of running
time but results in low quality solutions. The paper identi-
fies the reasons for the poor path quality and proposes a way
to address it by utilizing search primitives used in existing
sub-optimal solutions for graphs (Luna and Bekris 2011b).
The result is a new algorithm that shares features of both the
linear time feasibility tests and existing suboptimal solvers.
The paper describes the relationship of the new algorithm
with the existing search solutions and the operations of the
feasibility tests. The final algorithm achieves improved path
quality relative to the alternatives, as well as strong perfor-
mance in terms of running time. Experiments are included
that compare the different algorithms, including an optimal
planner, in terms of running time and path quality.

Setup
Consider an undirected graph G(V ,E) and a set of pebbles
P . The number of vertices is n = |V | and the number of
pebbles is k = |P|. An assignment A : P → V is a function
that places pebbles on vertices and is valid if it is injective,
i.e., if it assigns pebbles to unique vertices:

∀i, j ∈ P, i 6= j : A[i] ∈ V,A[i] 6= A[j].

Unoccupied vertices on G given A will be called holes
and will be denoted as the setH(G , A). The number of holes
in G given A will be denoted as: |H(G , A)|. A graph with
no holes given an assignment will be called a full graph.

A valid action α(Aa, Ab) is a transition between assign-
ments Aa and Ab so that only one pebble moves between
neighboring vertices, i.e., ∃ i ∈ P and ∀j ∈ P, j 6= i :

Aa[j] = Ab[j], Aa[i] 6= Ab[i], (Aa[i], Ab[i]) ∈ E .

A multi-pebble path Π = {A0, A1, . . . , A|Π|} is a sequence
of valid assignments where for any two consecutive assign-
ments Ai and Ai+1 in Π there is a valid action α(Ai, Ai+1).
Definition 1 (PMG path planning with 2 holes) Given a
graph G(V ,E), a set of pebbles P , where k ≤ n − 2, a
start valid assignment AS and a target valid assignment
AT , compute a multi-pebble path Π = {AS , . . . , AT }.

This work deals with the case k ≤ n − 2 addressed in
the linear-time feasibility test for graphs (Goraly and Hassin
2010) and in previous suboptimal solvers. The case of k =
n − 1 can also be addressed based on a different feasibility
test (Wilson 1974) but is not considered here.

A branch vertex w ∈ V is a vertex that has more than 2
neighbors on G (degree(w) > 2). The variables q and r are
used to denote neighbors of branch vertices. The notation
π(v, u) is used to describe the shortest path (sequence of
vertices) between v and u in V , while dist(v, u) denotes the
length of this path. Moreover, the visibility region v.seen of
a vertex v given A is defined as follows:

v.seen = {u ∈ V : ∀ x ∈ π(v, u)/u, x ∈ H(G , A)}
i.e., the subset of the graph that can be connected to v with
a path that is not blocked by any pebbles, including the ver-
tices occupied by pebbles “visible” by v.

Given a node v ∈ VT of a tree T (VT ,ET), the notation
T v will be used to represent the forest that arises by deleting
v and its incident edges from T . Moreover, T v

u denotes the
subtree in forest T v that contains vertex u. The operation
T v−T v

u returns the set of subtrees from the forest T v except
the one that contains u.

Existing Work on Trees
This section first describes existing work on how it is possi-
ble to reason in a linear-time whether a problem is solvable
on trees (Auletta et al. 1999) and a corresponding path plan-
ner (Khorshid, Holte, and Sturtevant 2011).
From PMT to PPT: The feasibility test (Auletta et al. 1999)
reasons by first reducing the PMT problem into a pebble per-
mutation on a tree (PPT) problem, where the pebbles have
been moved to occupy the same vertices as in the target as-
signment AT but not necessarily in the correct order. This
reduction can be achieved in linear time: starting from the
leaves of T , for each vertex that appears in the target as-
signment AT , the method moves the closest pebble on that
vertex. Define as ÂS , the permutation of the target assign-
ment that is reachable by the start assignment with this pro-
cess. For a connected T , this process will always succeed.
The PMT problem is solvable only if the corresponding PPT
problem is solvable.
Solving PPT instances: Given a PPT problem, it is possi-
ble to collect information in linear time that can be used to
detect whether the target assignment is reachable from the
start permutation. In particular, a procedure, referred to in
this work as FIND TREE INFO, collects the following infor-
mation for each vertex v that is occupied according toAT :
1. v.seen;
2. the number of holes for each subtree of the forest T v;
3. the closest branch vertex w on each sub-tree of T v;

This information is valid as long as the pebbles are assigned
to any permutation of the target assignment AT . Starting
again from the leaves of T the function propagates this in-
formation towards the interior of the tree and then outwards
again until all vertices have informed their neighbors about
these values. This information is useful to detect if two ver-
tices occupied by pebbles in the target permutation AT be-
long in the same “equivalence” class. Pebbles that occupy

115

vertices in the same equivalence class can be swapped. The
equivalence property between vertices is transitive in nature.
For the PPT problem to be solvable, it has to be that for ev-
ery p ∈ P : ÂS [p] ≡ AT [p], i.e., there is a way for pebble p
to swap with the pebble occupying its target vertex.

Figure 1: Criteria for the equivalence of vertices v and u: a,b)
the cases of the first criterion; c) for criterion 2: |H(Tu −
Tu
v , A

T)| ≥ dist(w, u) + 2; d) in criterion 3 one of the v, u
vertices is a branch vertex.
Equivalence detection: The following criteria are used to
decide the equivalence of two occupied vertices v and u:
- Vertices u and v are equivalent, if there is a branch vertex
w (degree(w) > 2) so that any of the following is true:
• Criterion 1) w ∈ π(v, u)/{u, v} and |H(Tw − Tw

v −
Tw
u), AT | ≥ 1. In this case, the pebbles on u and v can

swap on a branch vertex that lies between them but not on
u or v. See Fig. 1a) and 1b).
• Criterion 2) u ∈ π(v, w) and |H(Tu − Tu

v), AT | ≥
dist(w, u) + 2. This criterion checks for branch vertices
that are in other subtrees of u relative to v. Similarly for
v ∈ π(u,w). See Fig. 1 c).
• Criterion 3) w = v, |H(T v − T v

u , A
T)| > 2 and at least

two trees from the forest T v are not full. Similarly for
w = u. See Fig. 1 d).
Checking these criteria can be achieved in constant

time for each pair of neighboring pebbles according to
v.seen given the information collected from function
FIND TREE INFO.
Existing Tree Planner: A polynomial-time path planner
for solving multi-agent pathfinding problems on trees has
already been proposed (Khorshid, Holte, and Sturtevant
2011). The algorithm starts from the leaves of the tree and
works inward so as to find the first goal state that is not oc-
cupied by the correct agent. It moves this agent to its goal
by swapping it with any agents along the path to the goal.
This action will be repeated until all the agents will be on
their goal states. In order for the algorithm to recognize if
two agents can swap, similar criteria as in the feasibility test
described above have been used. After a successful swap is
completed, the algorithm restores the positions of all agents
except the two that swapped their positions. This approach
works on trees, as well as a class of problems on graphs
called slideable.

A Path Planner For Graphs
Graph Conversion to Tree: A way to answer the feasibil-
ity question for the pebble motion on a graph (PMG) prob-
lem is to first transform the graph G(V ,E) into a tree
T (VT ,ET) (Goraly and Hassin 2010), so that if the PMT
problem is solvable on T then the PMG problem is solv-
able on G. It works by converting each maximal nontriv-
ial 2-vertex-connected component S ⊂ G (M2CC for short)
into a star topology, which is a linear time procedure. This
is achieved by connecting all vertices of the M2CC with a

new virtual “trans-shipment” vertex s. In particular, the tree
T is initiated so that VT = V and ET = E. Then, for every
S ⊂ G , which is M2CC (S is non-trivial if it has more than
one vertex):
1. Add a transshipment vertex s: VT = VT ∪ {s};
2. Remove all edges of S : ∀ e ∈ E(S) : ET = Et/{e};
3. Add edges with s: ∀ u ∈ V (S) : ET = ET ∪ {(u, s)}.

Examples of such transformations are provided in Fig. 2. A
constraint for the resulting PMT problem is that pebbles are
not allowed to stop on trans-shipment vertices but only pass
through them. Moreover, the tree T has weights: all edges
connected with a trans-shipment vertex have a weight of 1

2 ,
while the remaining ones have a weight of 1.

Figure 2: Conversion of graphs to trees using trans-shipment
vertices. The graph from figure (a) will be transformed into
the tree in figure (b), while the graph from figure (c) into (d).
Path Planner: Given the above description, it is possible
to define a new path planning solution for general graphs
by first incorporating a procedure similar to the work by
(Goraly and Hassin 2010) and turn a PMG challenge into
a PMT one, which can be addressed by a procedure equiv-
alent to the existing solver for trees (Khorshid, Holte, and
Sturtevant 2011). The actual algorithm for solving the PMT
problem considered in this work follows closer the original
feasibility test for trees (Auletta et al. 1999). The overall so-
lution is described at a high-level in Algorithm 1.

Algorithm 1: PMG VIA PPT SOLVER(G ,P, AS , AT)

1 Convert G(V,E)→ T (VT ,ET);
2 ΠT ← ∅;
3 Â← REDUCE PMT TO PPT(T,AS , AT ,ΠT);
4 FIND TREE INFO(T,AT);
5 forall the pebbles p ∈ P ordered based on AT do
6 π ← COMPUTE PATH(Â[p], AT [p]);
7 forall the pebbles p′ ∈ P along π do
8 (w, case)← FIND BRANCH(T, Â[p], Â[p′]);
9 if w 6= NULL then

10 SWAP(w, case, p, p′, T,ΠT , Â);
11 else
12 return FAILURE;
13 ΠG ← CONVERT PATH(ΠT , G, T);
14 return ΠG;

The first four lines of the path planner directly correspond
to steps of the feasibility tests:
a) The graph G is converted into a tree T through the use
of trans-shipment vertices (line 1).

b) The PMT problem is reduced to a PPT problem by mov-
ing the pebbles from AS to a permutation Â of the target
AT . The path planner stores the actions that move the peb-
bles fromAS to Â in the multi-pebble path ΠT (lines 2-3).

c) The necessary info is collected by FIND TREE INFO and
stored on the tree T (line 4).

116

Figure 3: Illustration of the swap operations. Top: The
branch vertex is between the two pebbles. Bottom: Both peb-
bles are on the same side of the branch vertex.

The algorithm considers the pebbles in an order defined by
AT : pebbles with targets closer to leaves of T have priority
over those at the interior of T (line 5). Given this ordering
and the PPT problem, after a pebble has reached its target,
it will not have to participate in a swap again.

For each pebble p, the shortest path is computed that takes
it from its current vertex Â[p] to its target AT [p] (line 6). To
solve the problem, all the pebbles p′ along the path have to
incrementally swap vertices with pebble p (line 7). For each
pair p and p′, the function FIND BRANCH returns a branch
w, which the pebbles can use to swap (line 8). It performs
the same operation as the “equivalence detection” process
of the tree feasibility algorithm and returns the criterion that
corresponds tow (variable case), i.e., 1)w lies between Â[p]

and Â[p′]; 2) w is the first branch along a subtree of Â[p]

not including Â[p′] - similarly for the symmetric case; 3)
w is either Â[p] or Â[p′]. FIND BRANCH utilizes the data
computed by FIND TREE INFO. If the problem is solvable, a
branch w exists and a swap will take place (lines 9-12).
Swap Operations: Depending on the case of w, SWAP cre-
ates different actions to achieve the switch between p and p′
and stores them on ΠT . Only the first case is outlined below
due to space limitations, which is indicative, however, of the
other two cases.

In particular, when w lies between between vertices u and
v occupied by p and p′ the following steps are executed. It is
first necessary to check if there is a subtree of w with a hole.
If it exists, its root is cleared by finding the first empty vertex
ve on Tw and moving all the pebbles along the path π(r, ve)
to free vertex r. Then the steps shown in Fig. 3 (top row) are
executed. In the case that there is no tree of w with holes, a
pebble from a full subtree Tw

q will have to move in one of the
Tw
v or Tw

u subtrees so as to empty its root q. In this case, both
pebbles are in the same sub-tree of Tw and the steps shown
in Fig. 3 (bottom row) need to be performed. During SWAP,
pebbles p and p′ can tentatively move other pebbles away
from the targets. At the end of the SWAP function there is a
call to a REVERT function, which guarantees that all pebbles

Figure 4: Cyclical rotations during path conversion so that
pebble 1 will reach its goal u (w is a trans-shipment vertex).

will return to the same vertices they occupied before SWAP,
with the exception of p and p′, which have now swapped ver-
tices. Upon completion, the current assignment Â is again a
permutation of AT as required in a PPT problem.
Converting the Path: Up to line 12 algorithm
PMG VIA PPT SOLVER, has computed a path ΠT on
T , which contains actions along trans-shipment vertices.
The function CONVERT PATH replaces such actions with
alternatives that go through G (line 13). When a pebble
moves from v to u via a trans-shipment vertex s, the
function first checks if there is a pebble-free path be-
tween v and u on G. If there is, this movement can be
achieved. Otherwise, a more complex process is implied
by the feasibility algorithm for graphs (Goraly and Hassin
2010). Each trans-shipment vertex corresponds to an M2CC
subgraph S ⊂ G . Such a subgraph must contain a cycle
C ⊂ S connected to an external edge. Every action that
goes from v to u via s can be replaced by a sequence of
rotations on a cycle C ⊂ S that contains v and u (Goraly
and Hassin 2010). Fig. 4 provides an illustration of the type
of rotational actions that arise when a solution goes through
a trans-shipment vertex and needs to be converted to a path
that goes through edges of the graph.

Figure 5: Computing a cycle on a maximally 2-edge-
connected connected in order for pebble 1 to reach vertex
u. (left) the case where the shortest path between u and v
splits the component in two parts (right) the resulting cycle
that can arise by the procedure outlined below.

The feasibility algorithm, however, did not require com-
puting the cycle C, which can have a significant impact on
solution quality and running time. CONVERT PATH imple-
ments the following: First the shortest path π is computed
between v and u. Then, an attempt is made to find a second
path π′ that connects v and u and doesn’t go through any in-
termediate vertex of π. If such a path is found, then the cycle
[π(u, v)|π′(v, u)] is returned. If not, the removal of the ver-
tices along π has separated S into two disconnected compo-
nents, as illustrated in Fig. 5. Then, the algorithm identifies
the vertices along π reachable with an alternative path from
v: reach(v) and from u: reach(u). Given that a cycle must
exist, it has to be that there is a pair of vertices u′ and v′
along π so that: a) u′ ∈ reach(u), v′ ∈ reach(v) and b)
dist(u, u′) > dist(u, v′). Then it is possible to return the
cycle: [π′(u, u′)|π(u′, v)|π′(v, v′)|π(v′, u)]. Overall, this is
a linear time procedure.

Path quality is also affected by choices made when a
trans-shipment vertex is a branch vertex for a swap. Fig. 6
shows the issue: pebble 1 on v wants to swap with pebble 2
on u. The algorithm finds the trans-shipment vertex w as a
branch vertex. In Fig. 6a-c), the top left corner is selected as

117

Figure 6: Choosing an intermediate node r during a swap
around a trans-shipment vertex w impacts solution quality.

the intermediate stop r to be used during the swap resulting
in a relatively high number of steps when that path is trans-
lated from T to G. A better choice for r is to find the closest
vertex to v and u on S so that r /∈ π(v, u). Fig. 6d-f) show
the steps if such a vertex was chosen. A similar situation
arises when both pebbles are in the same sub-tree of Tw and
two vertices must be found on S. They should be the closest
ones to the subtree that contains the pebbles.
Limitations: Initial experiments indicated that the above
planner scales reasonably well but that the path quality
achieved is not satisfactory. This can be attributed to the fol-
lowing:
• Maintaining the problem in PPT form requires the peb-

bles to backtrack and acquire the position of a target.
• Solving the problem first on T and then converting it
on G often creates large rotations involving multiple peb-
bles along cycles C of maximal 2-vertex-connected com-
ponents of G just to move a pebble between two vertices.

These aspects are direct results of the insights, which are
critical in allowing a linear time feasibility test. Reasoning
over a tree and bringing the pebbles back to targets means
it is possible to use the data collected by FIND TREE INFO
to quickly identify the branch w in FIND BRANCH where p
and p′ can swap. It is interesting, however, to investigate if
it is possible to achieve improved path quality, while still
achieving competitive running time. Given the issues identi-
fied above, it is interesting to look into solutions that can
identify if two pebbles can swap while they occupy gen-
eral vertices on graphs, i.e., without a transformation into
a tree and without requiring the pebbles to occupy specific
vertices, for which precomputed data are available.

Search-based Solution with Improved Quality
Push and Swap approach: An approach that has been pro-
posed to address similar challenges directly on graphs is the
“Push and Swap” (PaS) algorithm (Luna and Bekris 2011b),
which can be seen as a generalization of the existing path
planner on trees (Khorshid, Holte, and Sturtevant 2011) for
general graphs with two holes. Given the knowledge of the
linear-time feasibility tests and the corresponding solver de-
scribed in the previous section it is possible to define a new
approach that does not suffer from the limitations of existing
solutions. In particular, PaS considered all possible vertices
of degree ≥ 2 as a potential branch where two pebbles can
swap, which is unnecessary. The equivalence detection pro-

cedure shows it is sufficient to consider only branches in a
local neighborhood around the pebbles. Furthermore, PaS
imposed the following three requirements, which are similar
in nature to the properties of PMG VIA PPT SOLVER:
• Upon the completion of a swap, every pebble returns to

its previous position and the two swapped pebbles return
to their previous locations but they have switched vertices.
• Pebbles that have reached their targets cannot be moved

by other pebbles unless a swap needs to use their vertex.
• Two pebbles can swap only after they occupy neighbor-

ing vertices. The feasibility algorithms show that a swap
can be detected as soon as two pebbles are in the visibility
region of one another.

The new PMG SOLVER does not impose any of these re-
quirements, which results in an approach that is simpler and
achieves improved performance compared against PaS as
illustrated in the section providing the experimental results.

Algorithm 2: SEARCH SWAP(G , p, p′,Π, A)

1 v ← A[p], u← A[p′];
2 W ← GET BRANCHES(v, u);
3 forall the w ∈W in order of distance from u do
4 Πw ← ∅; Πc ← ∅;
5 if !TEST MOVE(G ,Πw, v, w) then
6 break;
7 neigh : neighbor of w closer to A[p′];
8 Πw ← Πw + MOVE(A[p′], neigh);
9 N ← GET NEIGHBORS(w)− neigh;

10 Blocked← {w, neigh};
11 forall the n ∈ N do
12 if TEST CLEAR(G ,Πc, n,Blocked) then
13 Blocked← Blocked+ {n};
14 if there is no empty neighbor for w then
15 break;
16 else
17 r : an empty neighbor of w;
18 if there is only 1 empty neighbor for w then
19 if !TEST MOVE(G ,Πc, w, neigh) then
20 break;
21 q ← random(N − r);
22 Πc ← Πc + MOVE(q, r) +

MOVE(A[p], w) + MOVE(A[p′], neigh);
23 if !TEST CLEAR(G ,Πc, r, Blocked) then
24 break;
25 else
26 q : another empty neighbor of w;
27 Π+ = Πw + Πc + SWAP OPS2(w, neigh, r, q);
28 return TRUE;
29 return FALSE;

A New Search-based Swap Primitive: This work proposes
a new primitive for simultaneously detecting the feasibil-
ity and performing a swap of two pebbles p and p′ that are
within their visibility region on a general graph with two
holes. In other words, a method that does the job of both
FIND BRANCH and SWAP directly on a graph. The method
does not try to bring the pebbles back to their previous ver-
tices after the completion of swap but only to remove peb-
ble p′ from the shortest path of pebble p. This means it is

118

Figure 7: (a) Consider pebbles 1 and 2 that need to swap. (b) 1 moves to w and 2 occupies neigh; vertices r and q are the
empty neighbors of w that help the swap. The arrows show SWAP OPS2’ steps. (c) In this case, pebble 3 blocks q and needs to
be evacuated through r. (d) After 3 moves, pebbles 1 and 2 can perform the swap. (e) If 1 and 2 have considered the branches
along their path and the swap cannot take place there, they check the closest branches outside their path.

no longer possible to utilize the information computed by
FIND TREE INFO to detect if a specific branch can be used
for the swap. This information needs to be computed by
searching the graph given the latest pebble assignment.

Algorithm 2 describes the proposed SEARCH SWAP prim-
itive, which starts by considering the candidate branches W
between and around vertices v and u, occupied by pebbles p
and p′ correspondingly (lines 1-2). The setW is the same set
as the one identified by the equivalence detection procedure
and includes all three cases. As an optimization, the vertices
in W can be sorted based on the distance from pebble p′, as
the assumption is that p′ lies along the shortest path of p and
p needs to move towards this direction (line 3). The algo-
rithm first tries to bring pebble p on the branch w and pebble
p′ on the adjacent vertex neigh of w (lines 4-8), as shown
in Fig. 7a-b). The only exception to this rule is if the vertex
w is located further away from u relative to v, in which case
p′ is moved to w and p is moved to neigh (not shown in the
algorithmic, corresponds to Fig. 7e). If the attempt to move
the pebbles to the branch w fails (the call to TEST MOVE
returns false), then a different branch vertex is considered.
This may happen only in case 2, i.e., when the branch vertex
is outside the path π(u, v).

Once the pebbles reach the vicinity of w, the algorithm
checks if it is possible to create two empty neighbors of w
for the swap (lines 9-26). An attempt is made to clear neigh-
bors not occupied by pebbles p, p′ (lines 9-13). If no neigh-
bor ofw is emptied, it is not possible to swap onw and a dif-
ferent branch has to be found (lines 14-15). If two or more
empty neighbors are created, then the swap is possible (lines
25-27), as in Fig. 7b). If only one empty neighbor r exists,
then it may be possible to also clear a second one q through
r (lines 17-24), as in Fig. 7c). This requires backtracking
the pebbles away from w if possible (lines 19-20), moving
the pebble from q to r, bringing the p, p′ pebbles back to w
(line 22) and pushing the pebble at r further away from w if
possible (line 23-24), as in Fig. 7c-d). If these actions work,
then two empty neighbors of w have been created and it is
possible to execute function SWAP OPS2 as in Fig. 3.
High-level Solver: Given this new way to perform the swap,
it is possible to define a new solver in Algorithm 3, which
does not have to reduce the PMG challenge into a PPT one.
The function tries to continuously move pebbles along their
shortest paths to their targets and repeats its main loop until
all pebbles have reached them (line 3). The main loop con-
siders the pebbles in an order that is again defined by the tar-
get assignment as in the previous solver (line 4). This time,

however, it is necessary to first consider a spanning tree of
G and give priority to pebbles that are closer to the leaves of
the spanning tree. For each pebble p the method first com-
putes the path to its target π (line 6) and then considers the
first pebble p′ that blocks this path. At this point the method
detects if a swap is necessary between p and p′. This can
be achieved with function NEED SWAP, which returns true
if one of the following holds:
• AT [p′] ∈ π(A[p], AT [p]) (the target of p′ is along the

path of p) or
• A[p] ∈ π(A[p′], AT [p′]) (the current vertex of p is along

the path of p′).

Algorithm 3: PMG SOLVER(G ,P, AS , AT)

1 Π← ∅;
2 A← AS ;
3 while (A 6= AT) do
4 forall the pebbles p ∈ P ordered based on AT do
5 while A[p] 6= AT [p] do
6 π ← COMPUTE PATH(A[p], AT [p]);
7 while ∃ pebbles between A[p] and AT [p] do
8 p′ ← first pebble along π blocking p;
9 if NEED SWAP(p, p′) or

!TEST CLEAR(G ,Π, A[p′], π) then
10 if SEARCH SWAP(G , p, p′,Π, A)

then
11 break;
12 return FAILURE;
13 return Π;

These are sufficient conditions for a swap to be executed
between p and p′ and imply that the two pebbles need to
move on opposite directions. If the pebbles do not need to
move in conflicting directions, the algorithm tries to clear
the path of p by moving p′ out of its way with a call to
TEST CLEAR, which tries to move p′ towards the closest
empty vertex in G while not ending up on any vertex of path
π. If the call to TEST CLEAR fails and it is not possible to
evacuate p′ from π in this manner, then again a swap op-
eration is needed. If the swap fails, while p and p′ need to
switch positions so as to make progress, then the problem is
not solvable.

Experiments
This section evaluates the proposed algorithms, and com-
pares them against:

119

ODA*+ID PaS PMG VIA PPT SOLVER PMG SOLVER
Problem Time (ms) Path length Time(ms) Path length Time(ms) Path length Time(ms) Path length
Corners 17.65 32 1.94 66(50) 1.49 66(44) 0.52 48(48)

Doubleloop 3.46 25 1.07 31(31) 1.96 143(43) 0.62 39(31)
Small Graph 16.22 25 5.83 145(91) 2.93 127(81) 0.85 100(90)

Stack ∞ n/a 17.82 308(262) 16.91 510(338) 2.20 278(234)
String 1.19 20 0.59 40(32) 0.96 52(44) 0.37 24(24)
Tree 2.3 12 0.9 38(20) 0.79 14(14) 0.47 14(14)

Tunnel 211.74 49 2.03 129(49) 1.39 117(69) 0.95 79(65)
n-2 ∞ n/a 37.86 764(560) 1.96 1404(796) 3.385 542(494)

Table 1: Running time (in milliseconds) and solution length for the small benchmarks where∞ represents a failure to find a
solution within 300 seconds. The solution length after smoothing is shown inside the parentheses.

• A coupled algorithm, called ODA* with independence
detection (ODA*+ID) (Standley and Korf 2011). It is a
practical, admissible algorithm for solving multi-agent
pathfinding problems and can achieve optimality as well
as an anytime behavior. This approach modifies state ex-
pansion using operator decomposition.
• Push and Swap (PaS) (Luna and Bekris 2011b) is a com-
plete but suboptimal, sequential multi-agent path-finding
algorithm. The push primitive evacuates agents along a
path of an agent if possible, and the swap primitive ex-
changes the positions of two adjacent agents while leav-
ing all other agents in place.
To evaluate the proposed approach, a series of challeng-

ing instances of multi-robot path planning were considered
that have appeared before in the literature. These problems
include a set of small benchmarks that are highly coupled
so that decoupled planner typically fail on them, as well as
larger instances, including maps from an online repository
of grid-worlds (Sturtevant 2012). All experiments are per-
formed on an Intel Core i3 3.1GHz machine with 8GB of
memory. Results are provided in terms of solution quality
and running time.

Figure 8: The set of the small benchmarks.

Benchmark Problems: The set of small, benchmark prob-
lems are depicted in Fig. 8. Because of the small size of the
problems, almost all of the algorithms could return a solu-
tion well within a 5 minute time limit. A comparison of the
methods can be found in Table 1.

Table 1 shows the running time and the path quality of
the corresponding solution. Times of more than 5 minutes
are deemed a failure. ODA*+ID computes high quality so-
lutions for small problems, but fails as the complexity of the
problem increases. For instance, the algorithm failed for the

benchmark Stack with 16 agents. PMG SOLVER exhibits the
best computation time across all benchmarks, while it also
performs very well in terms of path quality. It always re-
turns a better solution than PMG VIA PPT SOLVER, while it
returns a better solution than PaS in most benchmarks, with
the exception of Tunnel after smoothing. Note that for a vari-
ation of the small graph benchmark, which it did not have a
solution PMG SOLVER detects that two orders of magnitude
faster than PaS.
Large Scale Problems: A second set of experiments with
a random grid (500 vertices) and two maps from computer
games (2,534 and 10,890 vertices) test scalability. The ran-
dom grid is populated with 20% random obstacles. Sets of
10 up to 100 pebbles for the grid were tested, while sets
of 1 up to 1000 pebbles for the two game maps are placed
at random, in mutually exclusive start and target vertices.
Average statistics for 20 runs for each setup is depicted in
Fig. 9. The top line shows path length, while the bottom line
shows the time needed for the algorithms to compute a solu-
tion. Dashed lines on the graphs connect points that would
otherwise appear significantly higher along the y-axes.

Figure 10: (Left) A randomly generated grid with 500 ver-
tices. (Middle) “Den204d” from Dragon Age: Origins. 2534
total vertices. (Right) “AR0205SR” from Baldur’s Gate II.
10890 total vertices (Sturtevant 2012).

ODA*+ID did not manage to find solutions for more than
30 agents in the grid and for more than 20 agents in the two
big maps. PMG VIA PPT SOLVER manages to solve all the
problems on time, but not as fast as the other two meth-
ods as it has to pay an initial cost of reducing the PMG
problem into a PPT one. While this is a linear operation,
it directly relates to the number of vertices in the graph
and has to be paid regardless of the number of agents. As
the number of agents increases, the scalability advantages
of the PMG VIA PPT SOLVER materialize and it becomes
faster than the PaS solution. In terms of path quality the

120

Figure 9: Comparisons between the methods for the length of the solution in the three big environments.

PMG VIA PPT SOLVER gives worse results because of the
rotations (as in Fig. 4) that the pebbles will have to follow to
move through an M2CC subset of the graph. These big maps
correspond to a large M2CC.

On the other hand, the PMG SOLVER returns a solution
to problems typically faster that the alternatives, with the
exception of small agent problems in large maps. In most
cases, the path length for PMG SOLVER and PaS is com-
petitive but as the number of agents increases a separation
in quality arises in favor of the PMG SOLVER. For instance,
the path length of PMG SOLVER stays lower than PaS on
the “Den204d” map with 2534 vertices as the density of the
problem increases and the number of agents reaches 1000.
At the same time, PMG SOLVER returns solutions faster than
PaSand manages to maintain the running time within a few
milliseconds for the majority of the experiments, with the
exception of the denser problems on “Den204d”. For these
problems the running time for PaS was too big to show on
the graph as it needed on average 132 seconds, while the
PMG SOLVER required less than 12.

Discussion
This paper studies how linear-time feasibility algorithms for
multi-agent pathfinding can assist in providing better path
planners on general graphs. A direct translation of the fea-
sibility algorithms, called PMG VIA PPT SOLVER, provides
paths of low quality relative to existing suboptimal planners.
At the same time, however, it provided insights on how to
improve upon existing solutions and led to the development
of a new suboptimal solver, the PMG SOLVER, which out-
performs alternatives in terms of path quality and running
time and scales to problems involving thousands of agents,
while providing solutions to standard benchmarks where in-
complete, decoupled methods fail.

A study on how the PMG SOLVER framework can pro-
vide completeness corresponds to future work. A possible
direction for such an analysis corresponds to a sequence
of equivalences between algorithms. The completeness of
PMG VIA PPT SOLVER is rather straightforward and arises

from the feasibility algorithms. Moreover, it is easy to show
the equivalence of SEARCH SWAP with the combination of
the FIND BRANCH and SWAP primitives. More involved is
to show that the reduction to a PPT challenge is not needed
and that the operation can be performed directly on the graph
without any oscillations arising between pairs of agents.

Another issue relates to the asymptotic running time of the
algorithms. The work on the feasibility algorithm for trees
argues that a solution plan consists of O(k2(n− k)) moves,
which in the worst case corresponds to O(n3) (Auletta et
al. 1999). This is also a bound for the running time of
the best path planner in the worst case. The running time
of PMG VIA PPT SOLVER is dominated by the potentially
quadratic number of calls to SWAP, which has a linear worst
case cost, as it makes calls to search processes for finding
the closest empty vertex so as to push pebbles towards them.
Since every other operation of PMG VIA PPT SOLVER is
linear time (the FIND BRANCH function in an aggregate
sense), the cost of PMG VIA PPT SOLVER matches that of
O(n3). Showing the equivalence between the two described
algorithms will also assist in drawing a running time bound
for the PMG SOLVER algorithm.

The provided results made use only of uninformed search
primitives. In many of the problems considered in the exper-
iments, such as grid environments, it is easy to define heuris-
tic values between vertices and use informed search, which
will significantly speed up the solution time, especially for
the search-based swap primitive of PMG SOLVER.

It is also interesting to investigate how to potentially uti-
lize the linear-time feasibility tests in order to define op-
timal solutions by pruning part of the search space during
the operation of a coupled planner. Similarly, providing so-
lutions with similar performance to the one achieved by
PMG SOLVER for variations of the basic problem can be use-
ful. This includes situations where the pebbles can move in
parallel, or variations which are closer to applications, such
as warehouse management, where the targets of the agents
change dynamically.

121

References
Auletta, V.; Monti, A.; Persiano, P.; Parente, M.; and Parente, M.
1999. A Linear Time Algorithm for the Feasibility of Pebble Mo-
tion on Trees. Algorithmica 23(3):223–245.
Dresner, K., and Stone, P. 2008. A multiagent approach to au-
tonomous intersection management. Journal of Artificial Intelli-
gence Research 31:591–656.
Enright, J. J., and Wurman, P. R. 2011. Optimization and coordi-
nated autonomy in mobile fulfillment systems. In Workshops at the
Twenty-Fifth AAAI Conference on Artificial Intelligence.
Goraly, G., and Hassin, R. 2010. Multi-color Pebble Motion on
Graphs. Algorithmica 58(3):610–636.
Jansen, M. R., and Sturtevant, N. R. 2008. Direction maps for
cooperative pathfinding. In The Fourth Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE’08).
Khorshid, M. M.; Holte, R. C.; and Sturtevant, N. R. 2011. A
polynomial-time algorithm for non-optimal multi-agent pathfind-
ing. In The Fourth Annual Symposium on Combinatorial Search
(SoCS’11), 76–83.
Kornhauser, D. M. 1984. Coordinating pebble motion on graphs,
the diameter of permutation groups, and applications. Master’s the-
sis, Massachusetts Institute of Technology.
Luna, R., and Bekris, K. E. 2011a. Efficient and complete central-
ized multi-robot path planning. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS-11).
Luna, R., and Bekris, K. E. 2011b. Push and Swap: Fast cooper-
ative path-finding with completeness guarantees. In International
Joint Conferences in Artificial Intelligence (IJCAI-11), 294–300.
Luna, R.; Oyama, A.; and Bekris, K. E. 2010. Network-
guided multi-robot path planning for resource-constrained plane-
tary rovers. In 10th International Symposium on Artificial Intelli-
gence, Robotics and Automation in Space.
Masehian, E., and Nejad, A. H. 2009. Solvability of multi robot
motion planning problems on trees. In The IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS’09), 5936–
5941.
Masehian, E., and Nejad, A. H. 2010. A hierarchical decoupled
approach for multi robot motion planning on trees. In The IEEE
International Conference on Robotics and Automation (ICRA’10),
3604 – 3609.
Peasgood, M.; Clark, C.; and McPhee, J. 2008. A complete and
scalable strategy for coordinating multiple robots within roadmaps.
IEEE Transactions on Robotics 24(2):282–292.
Roger, G., and Helmert, M. 2012. Non-optimal multi-agent
pathfinding is solved. In Symposium on Combinatorial Search
(SOCS).
Sajid, Q.; Luna, R.; and Bekris, K. E. 2012. Multi-Agent Path
Finding with Simultaneous Execution of Single-Agent Primitives.
In Fifth Symposium on Combinatorial Search.
Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2011. The
increasing cost tree search for optimal multi-agent pathnding. In
The International Joint Conference on Artificial Intelligence (IJ-
CAI’11), 662–667.
Silver, D. 2005. Cooperative pathfinding. In The 1st Conference
on Artificial Intelligence and Interactive Digital Entertainment (AI-
IDE’05), 23–28.
Standley, T., and Korf, R. 2011. Complete algorithms for cooper-
ative pathfinding problems. In Proceedings of the Twenty-Second
international joint conference on Artificial Intelligence - Volume
Volume One, IJCAI’11, 668–673. AAAI Press.

Standley, T. 2010. Finding optimal solutions to cooperative
pathfinding problems. In The Twenty-Fourth AAAI Conference on
Artificial Intelligence (AAAI’10), 173–178.
Sturtevant, N., and Buro, M. 2006. Improving collaborative
pathfinding using map abstraction. In The Second Artificial In-
telligence for Interactive Digital Entertainment Conference (AI-
IDE’06), 80–85.
Sturtevant, N. 2012. Benchmarks for grid-based pathfinding.
Transactions on Computational Intelligence and AI in Games
4(2):144–148.
Surynek, P. 2009. A novel approach to path planning for multiple
robots in bi-connected graphs. In The IEEE International Confer-
ence on Robotics and Automation (ICRA’09), 3613–3619.
Wang, K.-H. C., and Botea, A. 2008. Fast and Memory-Efficient
Multi-Agent Pathfinding. In The International Conference on Au-
tomated Planning and Scheduling (ICAPS’08), 380–387.
Wang, K.-H. C., and Botea, A. 2011. MAPP: A scalable multi-
agent path planning algorithm with tractability and completeness
guarantees. Journal of Artificial Intelligence Research 42:55–90.
Wilson, R. M. 1974. Graph puzzles, homotopy, and the alternating
group. Journal of Combinatorial Theory, Series B 16:86–96.
Yu, J., and LaValle, S. M. 2012. Multi-agent path planning and net-
work flow. In The Tenth International Workshop on the Algorithmic
Foundations of Robotics (WAFR).
Yu, J. 2013. A linear time algorithm for the feasibility of pebble
motion on graphs. Technical report, http://arxiv.org/abs/1301.2342.

122

