
Multi-Agent Path Finding for Self Interested Agents
Zahy Bnaya

Information Systems Engineering
Ben-Gurion University

Beer-Sheva, Israel
zahy@bgu.ac.il

Roni Stern
SEAS

Harvard University
Cambridge MA, USA
roni.stern@gmail.com

Ariel Felner
Information Systems

Engineering
Ben-Gurion University

Beer-Sheva, Israel
felner@bgu.ac.il

Roie Zivan and Steven Okamoto
Industrial Engineering

and Management
Ben-Gurion University

Beer-Sheva, Israel
{zivanr,okamotos}@bgu.ac.il

Abstract

Multi-agent pathfinding (MAPF) deals with planning paths
for individual agents such that a global cost function (e.g., the
sum of costs) is minimized while avoiding collisions between
agents. Previous work proposed centralized or fully coopera-
tive decentralized algorithms assuming that agents will follow
paths assigned to them. When agents are self-interested, how-
ever, they are expected to follow a path only if they consider
that path to be their most beneficial option. In this paper we
propose the use of a taxation scheme to implicitly coordinate
self-interested agents in MAPF. We propose several taxation
schemes and compare them experimentally. We show that in-
telligent taxation schemes can result in a lower total cost than
the non coordinated scheme even if we take into considera-
tion both travel cost and the taxes paid by agents.

1 Introduction
In a multi-agent path finding (MAPF) setting, agents situated
in a graph must move to their goal vertices without colliding
with each other. This setting exists in robotics, digital enter-
tainment, and other fields. Most previous work on MAPF
focused on algorithms that compute paths for individual
agents (in a centralized or decentralized manner) in order
to minimize a global cost function (e.g., time or fuel ex-
penditure) while avoiding collisions between agents (Sharon
et al. 2011; Standley 2010; Ryan 2008; 2010; Silver 2005;
Dresner and Stone 2008; Sharon et al. 2012).

These studies make the fundamental assumption that
agents are fully cooperative and share a global cost func-
tion. Cooperative agents will follow paths that are planned
for them or obey constraints on their movements if do-
ing so leads to lower global cost (Wang and Botea 2009;
Jansen and Sturtevant 2008). In particular, agents may be
willing to take longer paths to their goals in order to avoid
colliding with other agents.

By contrast, in this work we assume that agents are self-
interested, seeking only to minimize their individual costs.

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

As a motivating example, consider human drivers. Each
driver tries to reach his destination as quickly as possible,
regardless of the effect on other drivers. The suboptimal re-
sult is a traffic jam, where drivers must make local decisions
(slowing down and waiting for other drivers to move) in or-
der to avoid collisions. In this paper we address the problem
of incentivizing self-interested navigating agents to act in a
way that minimizes a global cost function.

We propose a taxation mechanism for coordinating self-
interested navigating agents in which additional taxes are
imposed on agents that pass through specified locations (ver-
tices or edges). These taxes provide implicit coordination by
incentivizing agents to avoid locations where a traffic jam
would otherwise occur, thus resulting in better navigation.

In this work we are interested in maximizing the total so-
cial welfare of the agents, defined as the negative combina-
tion of the travel cost and the taxation costs incurred by the
agents for traversing their paths.

The combinatorial search challenge is in determining
where, when and how much taxes should be imposed in or-
der to maximize the total social welfare for all agents. To
this end we introduce a general taxation framework called
the Iterative Taxing Framework (ITF). ITF assigns taxes in
an iterative manner. First, it predicts the selfish path selec-
tions made by agents and imposes taxes where agents would
collide. ITF then predicts the impact of the newly-imposed
taxes on agents’ path selection and identifies new conflicts
that may arise, imposing additional taxes to mitigate them.
This process continues until a conflict-free set of paths is
found for the self-interested agents or the process is halted
externally.

Two implementations of ITF are proposed: Exhaustive It-
erative Taxing Algorithm (EITA) and Monte-Carlo Iterative
Taxing Algorithm (MC-ITA). EITA computes all possible
paths that self-interested agents may consider while MC-
ITA randomly chooses a single path per agent but repeats
the process multiple times.

We evaluated EITA and MC-ITA on several domains. Our
results show that both implementations lead to higher so-

Proceedings of the Sixth International Symposium on Combinatorial Search

38

cial welfare when compared to self-interested agents with-
out taxation.

2 Problem Definition
In this work, we address the problem of MAPF with
self-interested agents which is fundamentally different than
the standard MAPF (also called cooperative MAPF).

Definition: A self-interested agent in MAPF always
chooses to follow the path with the best individual social
welfare (minimum sum of tax and travel costs).

First, we describe a standard cooperative MAPF setting
and then define our problem of selfish navigation in that
MAPF setting.

Cooperative MAPF: Our MAPF setting consists of k
agents a1, a2, . . . , ak situated on vertices in an undirected
graph G = (V,E) with non-negative edge costs. Each ai
begins at a start vertex starti and wishes to travel to a goal
vertex goali. Time is discretized into steps, and during each
time step each agent either moves to an adjacent vertex along
an edge or remains at its current vertex. A path Pi for ai is a
sequence of vertices starti = v0, . . . , vt = goali with con-
secutive vertices connected by an edge. The cost of travers-
ing path Pi is denoted by c(Pi) and defined as the sum of
the costs of the edges in Pi.

The key constraints in MAPF are that each vertex can be
occupied by at most one agent at each time step, and two
agents cannot traverse the same edge in the same time step.
A common objective in cooperative MAPF is to find a path
P1, .., Pk, one for each agent, that does not violate these key
constraints and minimizes

∑k
i=1 c(Pi).

MAPF with Self-Interested Navigating Agents:
In our model, agents are self-interested and do not co-

ordinate with one another. We assume that self-interested
agents compute and follow a lowest-cost path to their desti-
nation, minimizing their individual cost without considering
the paths planned by other agents. A self-interested agent
might follow a path that causes other agents to delay or even
to not be able to reach their destinations. None of the al-
gorithms for cooperative MAPF can be used under this as-
sumption, as they usually require some level of coordination.
Therefore, a new solution scheme is needed.

In self-interested MAPF, multiple agents may plan to oc-
cupy a vertex v at the same time t; we call such a pair (v, t) a
conflict. The same constraints defined in cooperative MAPF
still hold. Therefore, if a conflict exists, the paths planned
by the agents involved in the conflict cannot be executed.

Inspired by real-life situation, we assume that conflicts
are detected locally and resolved by the conflicting agents as
follows. One of the conflicting agents is promoted to be the
master of the conflict and uses a conflict-dependent reserva-
tion table for reserving its n next steps. This is reminiscent
of the global reservation table used by Cooperative A* and
its many variants (Silver 2005) to solve MAPF. The other
agents involved in the conflict must replan while obeying
the reservation table. Unable to communicate, conflicts may
occur, causing the agents to replan and resulting in increased

cost.
In practice, the decision of which agent gets to be the mas-

ter of the conflict is both subtle and complex. It can be based
on personality, body language, or sense of urgency. In our
work, we select the master for each conflict randomly. Other
models of how self-interested navigating agents behave are
possible, and most of the work presented in this paper is ap-
plicable to other models of behavior as well.

Assuming the above model of how self-interested navi-
gating agents behave, the problem addressed in this paper
is to minimize the total cost, given self-interested navigat-
ing agents. We do this by proposing the following taxation
scheme.

3 Taxation Schemes for Manipulating
Navigating Agents

To motivate the agents to avoid collisions and improve the
total cost, we assume the possibility of a taxation scheme
in which agents traveling through an edge or a vertex at a
specific time may have an additional cost to pay. We use the
term “penalty” to refer to these additional costs. Such time-
dependent penalties exists in the real world in advanced toll
roads.

Importantly, we assume that a penalty can be directly
translated to the travel cost from the agent’s perspective.
Thus, a self-interested agent would consider to avoid us-
ing a penalized path, potentially causing less conflicts. We
demonstrate experimentally that our mechanism is able to
do so and results in a total cost that is substantially lower
than without using this mechanism.

In detail, the proposed taxation mechanism works as fol-
lows. A penalty can be assigned to any vertex v at any time
step t. We label this by p(v, t). An agent located at v at
time t must pay p(v, t). Similarly, a penalty can also be as-
signed to an edge, using the notation p(e, t). The values of
all penalties are stored in a penalty table denoted by T and
assumed to be known by all agents.

For a given path Pi, we define the penalized cost of Pi,
denoted by cT (Pi), as the sum of the penalties stored in T
incurred by ai traversing Pi. To differentiate from the penal-
ized cost, we use the term travel cost of Pi to refer to the cost
of following Pi with no penalties (this was denoted above as
c(Pi)). The cost of traversing a path Pi is the sum of the
travel cost and penalized cost of Pi. This sum is referred to
as penalized travel cost, denoted by

ĉT (Pi) = c(Pi) + cT (Pi)

Every self-interested agent is assumed to consider only
lowest-cost paths, in terms of the penalized travel cost.

Figure 1 demonstrates the potential benefit of the pro-
posed taxation mechanism. S1, S2, and S3 are the start lo-
cations and G1, G2, and G3 are the goals of a1, a2, and a3,
respectively. The travel cost of traversing every edge is one.
Assume that the agents operate in the self-interested man-
ner described in Section 2. Since the lowest-cost paths of all
agents pass through C, they will all plan a path via C. As
a result, they will conflict, and the conflict will be resolved
by one of them waiting one time step and another waiting

39

G1 G3

C

S1 S3

G2

S2

+3 +3

Figure 1: Example of the taxation mechanism

two time steps. This results in a total cost of 8+1+2=11.
By contrast, assume that a taxation mechanism is used, and
a penalty of 3 is added for using the edges marked in red in
Figure 1 at time step 1. If a1 and a2 are aware of this penalty,
each of them will choose the alternative path of reaching the
goal by going around and as a result the total cost for all
agents is 10.

4 Related work
The problem of optimizing routing traffic was widely dis-
cussed before in the context of flow-networks (Pigou 1952;
Roughgarden and Tardos 2002). A flow-network includes
traffic rates (or flows) between the nodes and a latency-
function. The flows model large quantities of individual el-
ements (cars, data packets, etc.) that are divided between
alternate paths. The latency-function is a continuous func-
tion of the amount of flow on a given edge, that represent a
”delay” incurred by traversing an edge.

Unlike the problem discussed in this paper, in flow-
networks all agents that traverse a flow-edge incurs the same
cost. In this way delay costs are a soft constraint. The la-
tency in flow networks is a similar idea to when an agent
remains in a given vertex until its next vertex is free in our
setting.

Selfish routing in flow networks is known to be non-
optimal (Roughgarden and Tardos 2002). Several works also
suggest the use of toll mechanisms, similar to the one sug-
gested in our work (Ferrari 2002; Cole, Dodis, and Rough-
garden 2006; Dial 1999). A taxation mechanism was also
introduced in the context of Boolean games (Endriss et al.
2011) and it is also related to congestion games (Rosenthal
1973).

Our model differs from flow networks in several impor-
tant aspects. First, we consider discrete environments as
opposed to the continuous quantities modeled in flow net-
works. Our model directly models the discrete elements
(agents) and also the way in which they have to deal with
the hard capacity constraints (only a single agent can be po-
sitioned in a give location).

Our model for latency is fundamentally different from the
one used by flow networks. Agents who want to use a ”con-
gested” edge do not all receive the same cost. One agent
gets to go through immediately (with no delay cost), the

next agent suffers a delay of 1, the next agent a delay of
2, etc. The latency in our model also has a ”cascading ef-
fect”. Agents that encounter a congested edge, necessarily
add constraints since they need to spend time in other loca-
tions or choose a different path. Thus, causing other conges-
tions.

Another difference is the assumed observability of the
agents. Works on Flow-networks assume that agents self-
ishly plan their paths based on the travel costs considering
also traffic-based delays.

In contrast, we make the assumption that agents plan their
paths while completely ignoring the effects (or even the ex-
istence) of other agents. The only thing that matters to the
agents is the distance traveled and the tax at each time.

Usually in optimization of traffic networks, the task is to
minimize latency and ignore the taxation. We believe that
this is not reasonable. (Cole, Dodis, and Roughgarden 2006)
discusses the problem of minimising the combined sum of
travel and tax for selfish routing in flow networks. They
showed that linear latency networks cannot be improved by
using taxation and that in any case it is less beneficial than
just removing an edge. However, in non linear latency net-
works, taxation can dramatically improve total latency.

We are not aware of any other attempt to address this
problem with hard constraints for self-interested agents. We
believe that using our model has its merits and demonstrates
interesting observations.

The challenge we address next is how to construct a
penalty table T , such that the sum of the penalized travel
cost incurred by all agents is minimized. This is expected
to maximize he social welfare of the group of agents. Next,
we describe a general framework for constructing efficient
penalty tables for a given MAPF instance.

5 The Iterative Taxation Framework (ITF)
Next, we describe a high-level algorithmic framework for
generating a penalty table. This framework, which we call
the Iterative Taxation Framework (ITF), is composed of the
following components.

• Path planning (PLAN). Generates for every agent a set
of paths with lowest ĉT .

• Conflict detection (DETECT). Detects a set of conflicts
between the plans of the agents.

• Conflict resolution (RESOLVE). Attempts to resolve
these conflicts by adding penalties to T .

Algorithm 1 describes the roles of PLAN, DETECT and
RESOLVE in ITF in generating a penalty table. First, an
empty penalty table T0 is constructed (line 2). Then, for
every agent, PLAN finds a set of paths having minimal pe-
nalized travel cost with respect to T0 (line 4). The DE-
TECT component analyzes these paths and outputs a set
of conflicts (line 5). If DETECT does not return any con-
flict, the algorithm halts and returns the current penalty ta-
ble (line 7). Otherwise, some conflicts were detected and
RESOLVE generates a new penalty table Ti+1 in an effort
to resolve these conflicts (line 8). This sequence of PLAN,
DETECT and RESOLVE is called an ITF iteration. ITF

40

Algorithm 1: ITF

1 i← 0
2 Ti ← ∅
3 while True do
4 P ← PLAN(Ti)
5 Conflicts← DETECT (P, Ti)
6 if Conflicts is empty then
7 return Ti
8 Ti+1=RESOLVE(Conflicts, P ,Ti)
9 i← i+ 1

runs these ITF iterations until DETECT does not find any
conflict. Note that in every ITF iteration PLAN may return
a different set of paths, since it considers the penalty table
that was generated by RESOLVE in the previous ITF itera-
tion. As a result DETECT and RESOLVE may also detect
different conflicts and add new penalties to the penalty table.

One can also implement ITF with other stopping condi-
tions, e.g., halting after a predefined number of iterations or
according to a timeout. The penalty table generated by the
last ITF iteration is returned.

The properties and performance of ITF greatly depend on
the implementation of the PLAN, DETECT and RESOLVE
components. There are many possible ways to implement
these components, and we describe two types of implemen-
tations that performed best in our experimental evaluation.
The first ITF implementaiton, which is described next, is
based on enumerating all the paths that a self-interested
agent would consider. The second ITF implementation de-
scribed in this paper is more tractable, and is based on sam-
pling the paths that each self-interested agent might choose.

5.1 Exhaustive ITA
The first ITF implementation we present is called the Ex-
haustive Iterative Taxing Algorithm (EITA). The high-level
concept of EITA is to consider all the possible paths that
each agent may consider. Then, detect all possible con-
flicts between these paths and attempt to add the minimum
amount of penalties such that the agents involved in each
conflict will consider alternative paths that will allow the
conflict to be resolved. Next, we describe the PLAN, DE-
TECT and RESOLVE components of EITA.

PLAN The purpose of the PLAN component in EITA
is to find for each agent all the path that it might consider.
Following our model of how self-interested agents behave
(describe earlier in this paper), each agent considers to use
only paths that have the lowest penalized cost.

Let PLANT (ai) denote these set of paths for agent ai
considering penalty table T . Let besti,ĉT be the penalized
cost of these paths. PLAN in EITA returns for every agent
ai the paths in PLANT (ai).

As a running example consider the scenario in Figure 1
and assume that T contains no penalties. In that case,
PLANT (a1) contains a single path passing from S1 to G1

via C, and best1,ĉT = 3.
DETECT The purpose of the DETECT component

in EITA is to find all possible conflicts that exist between
plans that the agents may considered. This is done by going
over the cross product of PLANT (aj) and PLANT (ai) for
every i 6= j. A conflict is found when pi ∈ PLANT (ai)
and pj ∈ PLANT (aj) contain the same time-location pair.
EITA exhausitively reutrns all such conflicts.

We use a 4-tuple (T, L, ai, aj) to denote a conflict occur-
ing in time T at location L between agents ai and aj . In our
running example, DETECT in EITA will return the conflicts:
(2, C, a1, a2),(2, C, a1, a3), and (2, C, a2, a3).

RESOLVE The RESOLVE component in EITA at-
tempts to add minimum penalties to the penalty table such
that agents involved in a conflict (as detected by the DE-
TECT component) are motivated to consider additional
paths. The motivation behind this is that these additional
path will cause the selfish agents to avoid conflicts. Next,
we describe how we implemented this approach.

We define PLANT (ai) to be the set of paths from
the start location of agent ai to its goal that are not in
PLANt(ai). Let ∆i to be the difference between besti,ĉT
and the penalized cost of the path with the lowest penalized
cost in PLANT (ai):

∆i = besti,ĉT −min{ĉT (P)|P ∈ PLANT (ai)}

Clearly, adding penalties smaller than ∆i to the paths in
PLANT (ai) will not trigger ai to consider more paths than
those in PLANT (ai). On the other hand, adding penalties
larger than ∆i to the paths in PLANT (ai) excludes these
paths from the next PLAN call. Thus, DETECT might find
conflicts and add penalties when a conflict-free combination
exists. These paths will be excluded from the next DETECT
procedure. Therefore, RESOLVE in EITA attempts to assign
a penalty of exactly ∆i to each of the paths in PLAN(ai).

RESOLVE in EITA requires agents to consider new paths
by having their ∆i added as a penalty to all paths in
PLANt(ai) otherwise the next call to DETECT will be
identical. However, it is not necessary for all agents to in-
clude additional paths. Actually, having at least one of the
agents include new paths is a sufficient condition without
getting a weaker solution.

EITA prefers minimal penalization, therefore for every set
of conflicts on any of the paths, EITA penalizes according to
the agent that has the minimal ∆i. Although this can make
one of the agents to produce the same path set on the next
PLAN call, it avoids over penalization.

Choosing how to resolve all the detected conflicts while
adding a minimal amount of penalty can be formulated as a
linear program.

First, we define the set of variables X = {x1, x2...xn}
that represents the penalties to be added to each of the con-
flicts returned on current iteration.

We also add slack variables Si = {s1, s2, ...sk} for each
agent. The role of these variables is to allow EITA to solve
the linear equations such that penalization is done according
to the agents with the minimal ∆.

We add constraints to the system as follows. For every
path p in PLAN(ai) and q in PLAN(ai) and for every
agent i we add the following constraint:

41

∑
xi∈X

I(p, xi)xi + si =
∑
xi∈X

I(q, xi)xi + ∆i

Where I(p, x) is an indication of whether conflict x exists
in path p:

I(p, c) =

{
1 c ∈ p
0 otherwise

Since we also want the penalization to be always positive,
we add the following condition to the system of equations:

∀xi ∈ X : xi ≥ 0

We then minimize the following function:∑
xi∈X

xi −
∑
s∈S

si

EITA continuously adds penalties to the penalty-table un-
til there is a combination of paths, one for each agent, such
that none of the agents are colliding. Since EITA consid-
ers all paths on each iteration, none of the agents has a path
with a smaller ĉT than the found combination. On most
cases, this path combination also has the minimal sum of
travel costs (c(pi)).

Computational Complexity While appealing, the
most major shortcoming of EITA is its computational com-
plexity. PLAN can be performed in time that is polynomial
in the size of the graph and linear in the number of agents,
by simply performing an A* search from every agent. DE-
TECT requires matching all the paths found by PLAN for
every agent. This operation is exponential in the number
of agents, requiring O(

∏
a∈A |PLAN(a)|). RESOLVE in-

volves solving a set of linear equations, which can be done
in polynomial time in the number of equations. However,
the number of such equations is linear in the number of con-
flicts, which can theoretically be as large as the cross product
of all paths returned by PLAN for each agent.

One approach to handle the complexity of EITA is to limit
the number of lowest-cost paths returned by PLAN for ev-
ery agent. This approximation version of EITA is denoted
by EITA(k), where k is the maximum number of paths re-
turned by PLAN for every agent. If an agent has more than
k lowest-cost paths, k of them are selected randomly. Next,
we propose an alternative approach that is based on Monte-
Carlo simulations.

6 Simulation-based Taxation
Consider the behavior of EITA(1). The PLAN component
returns a single lowest-cost path for every agent. Then, DE-
TECT matches these paths, which can be done trivially by
comparing the location of every agent in every step along
its path. Finally, RESOLVE adds the minimum amount of
penalties to resolve each of the conflicts along these paths.

Naturally, the complexity of EITA(1) is substantially
smaller than EITA. However, the number of lowest-cost
paths that exist for a given agent might be larger than 1,
which are all equally preferable by the agent. EITA(1) con-
siders only a single path for every agent, thus, detecting and

resolving conflicts that are relevant only for the case where
that agent chose that specific path. However, if an agent
chooses one of the other lowest-cost paths, other conflicts
may occur, which are not resolved. Following, we propose
the Monte-Carlo Iterative Taxing Algorithm (MC-ITA) that
performs a large set of quick EITA(1)-like iterations in an
effort to cover a wider range of conflicts and resolve them.
Then, the RESOLVE component of MC-ITA uses multi-
ple quick simulations to decide how to distribute penalties
among the detected conflicts. Next, we describe the details
of MC-ITA.

6.1 PLAN and DETECT in MC-ITA
The PLAN and DETECT components in MC-ITA are the
same as these components in EITA(1). For every agent ai,
PLAN returns a single lowest-cost path that is randomly
chosen from all the lowest-cost pathS of ai. Then, the DE-
TECT component finds conflicts by simulating the move-
ment of every agent along the path found for it by PLAN,
detecting a conflict when two agents collide.

6.2 RESOLVE in MC-ITA
In every ITF iteration of MC-ITA, the PLAN component
may choose a different lowest-cost path potentially finding
new conflicts. To take advance of this, the RESOLVE in
MC-ITA considers all the conflicts returned by DETECT,
including conflicts found in previous ITF iterations. This is
done to allow information passing between iterations.

One might consider the same linear programming ap-
proach described above for the RESOLVE component of
EITA. However, although solving a linear program is poly-
nomial, using it in MC-ITA would incur a significant com-
putational overhead, since MC-ITA is designed to run many
quick ITF iterations, calling the RESOLVE component
many times. Thus, we propose two simpler alternative im-
plementations for RESOLVE in MC-ITA. One may consider
using these implementations for EITA as well.

Penalty Location and Time
The two main questions in a RESOVLE component are,

first, where and when to add penalties and second, what
penalties to add to resolve the detected conflicts. An intu-
itive answer to the first question, where to add a penalty to
resolve a conflict in time t at location l, is to add a penalty
exactly in time t at location l. As a result, agents that have
alternative paths with lower cost than their currently given
path after the added penalty, will use those paths in the next
call to PLAN, and thus, this conflict will be avoided in the
next iteration. However, if one of the agents gets to use lo-
cation l at time t, it must pay the assigned penalty. We call
this method for selecting where and when to add the penalty
the winner-penalization (WP) method.

An alternative method for selecting where and when to
add a penalty to attempt to resolve a conflict (at l, t) is to
add a penalty to one of the edges leading to l at time t− 1 in
one of the conflicting paths. The agent that planned to use
that edge on its way to arrive at the conflicting location will
choose an alternative path by PLAN, if such an alternative
path exists and has a lower cost than the cost of the con-

42

0

1000

2000

3000

4000

5000

6000

7000

2 3 4 5

A
vg

. T
o

ta
l P

e
n

al
iz

e
d

 C
o

st

#Agents

Selfish

EITA1

EITA10

EITA

MC-ITA (WP)

MC-ITA (LP)

Lowerbound

(a) Avg. total cost for 3x3 grid

0

1000

2000

3000

4000

5000

6000

2 3 4 5

A
vg

.
To

ta
l T

ra
ve

l

#Agents

Selfish

EITA1

EITA10

EITA

MC-ITA (WP)

MC-ITA (LP)

Lowerbound

(b) Avg. total travel cost for 3x3 grid

Figure 2: Results on the 3X3 grids.

G1 G2

C

S1 S2

Winner
penalization

Loser penalization

3

Figure 3: WP vs. LP methods.

flicting path plus the added penalty. Choosing which edge
that leads to the conflict will be penalized is done randomly.
We call this method for selecting where and when to add a
penalty the loser-penalization (LP) method.

To demonstrate the difference between WP and LP, con-
sider the simple conflict in Figure 3. S1, S2, G1 and G2 are
the start vertices of agents 1 and 2, and the goal vertices of
agents 1 and 2, respectively. Assume that all the edges have
unit cost, except for the edge between S2 and G2 whose cost
is 3. Clearly, (C,2) is a conflict between agent 1 and agent
2. WP would add a penalty to (C,2) while LP may add a
penalty to either the edge from S2 to C or to the edge from
S1 to C. This demonstrates both the benefit and the draw-
back of the LP over WP. If the conflict point is important to
one of the agents, in WP it will have to pay the penalty for
using that conflict point, while in LP this can be avoided (for
example, if the edge between S2 and C is penalized). On the
other hand, the conflict might not be resolved at all with LP,
requiring more iterations of MC-ITA.

Once the time-location pair to which the penalty should be
assigned has been selected, using either WP or LP, we add it
to the set of conflicts found so far and proceed to the task of

determining the magnitude of the penalty. This is done by
creating multiple penalty tables, as candidates for becoming
the next penalty table. In our implementation, this was done
by generating a random real-valued number in the range of
[0,1] for each of the conflicts. The motivation behind this ap-
proach is that it is both simple and quick. Each penalty table
is then evaluated by simulating the behavior of the different
agents with this penalty table, where each agents behaves ac-
cording to our model for self-interested agents (Section 2).
This random assignment of penalties and evaluation by sim-
ulation is repeated a predefined set of times, and the assign-
ment with the highest overall utility is used. The number
of simulations performed is a parameter of the algorithms,
which was set to be 50 in our experimental results. Param-
eter tuning mechanisms may be implemented to choose this
number more efficiently.

7 Experimental Results
We compare the performance of EITA, MC-ITA with WP
and MC-ITA with LP on a number of pathfinding settings.
In every experiment, each of the algorithms was used to gen-
erate a penalty table. The performance of a penalty table was
measured by simulating the behavior of the agents given that
penalty table, following the self-interested navigation model
described in Section 2. As a baseline approach, we also eval-
uated the performance on an “empty” table, where no penal-
ties are given. This is denoted as “Selfish”.

The first set of experiments were performed on a small
3x3 grid. Figure 2(a) and 2(b) depicts the total cost (ĉT (·))
and the travel cost (c(·)) of each of the algorithms on a 3x3
four-connected grid with no obstacles. The x-axis is the
number of agents, and the y-axis is the total penalized travel
cost and total travel cost, respectively. We used 50 instances
and randomized the source and target of each of the agents.
Figure 2(a) shows the total travel costs of the same problem
set, as function of the number of agents.

As can be seen, all algorithm except EITA(1) are always

43

(a) 50x50 grid with 20% for 20 agents (b) Dragon age’s den520 for 10 agents (c) Dragon age’s den520

Figure 4: Results on large grids.

MC-ITA
Agents EITA EITA(1) EITA(10) WP LP

2 11.6 9.8 2 8 0
3 41.6 20.5 16 82 4.7
4 75.8 45 37 145.8 10.4
5 100.2 1345.9 107.6 90.9 53.6

Table 1: Sum of penalties in 3x3 grids.

able to find a solution of lower total cost than the “Selfish”
case. Furthermore, we added a “Lower bound” line to these
results, which are the optimal solution to this MAPF prob-
lem when agents are coordinated. Naturally, no penalty table
can achieve a better total cost. As can be seen, the total cost
obtained by both MC-ITA variants (LP and WP) and EITA
obtains superior results over EITA(1), EITA(10) and Selfish,
and perform very close to the lower bound. The sum of all
the penalties in the penalty table are shown in Table 1. No-
tably, the WP method in MC-ITA adds substantially more
penalty than the LP method. This supports the intuition be-
hind LP, that penalizing adjacent edges instead of the con-
flict itself can lead agents to avoid some penalties.

The second set of experiments were performed for 20
agents on a four-connected 50x50 grid with 20% randomly
selected blocked cells. The sources and destinations of
the agents were set by generating multiple random points
and selecting only the points that are positioned in narrow
places and in the proximity of the source or destination of
other agents. This is done to prefer challenging cases where
agents collide and need to replan frequently. Running EITA
and computing the lower bound was impractical even for
this relatively small grid and thus we only experimented with
EITA(1), EITA(10), MC-ITA (LP and WP), and Selfish. The
MC-ITA algorithms were run for 1000 iterations, which still
faster than EITA(10).

Figure 4(a) shows the total cost achieved by each of the
algorithms, averaged over 50 instances. The y-axis is the to-
tal cost (ĉT), where and the black portion of every bar shows
the travel cost and the blue portion shows the penalized cost
(cT). These results demonstrate the great benefit of using a
penalty table, as all of the proposed algorithms were able to
generate a penalty table that considerably improves the per-
formance of not having a penalty table, shown by the Selfish
results. The most notable results are obtained by using the

MC-ITA algorithms, EITA(10) and EITA. Between the two
variants of MC-ITA, the one using LP and the one using
WP, the results clearly show that the LP method achieves a
more efficient total utility. A deeper observation reveals that
WP caused the agents to travel through locations with penal-
ties than LP. This is reasonable, since in WP the penalty is
added on the conflict point, thus if any agent decides to pass
through the conflict point, it will have to pay the penalty of
the conflict. By contrast, in LP the penalty is assigned only
on one of the agents’ path, and thus there is less chance that
the penalty will be actually incurred. Interestingly, the WP
method resulted in solutions with smaller travel cost.

The third set of experiments were performed on the
den520d map (shown in Figure 4(c)) of the game Dragon
Age:Origins, made publicly available by Stutervant (2012).
Figure 4(b) shows the average total penalized travel cost for
10 agents. Similar trends are observed. All algorithms are
more efficient than Selfish, again demonstrating the effec-
tiveness of using a penalty table to motivate self-interested
agents to avoid conflicts. In this large map, MC-ITA is sub-
stantially better than EITA(1) and EITA(10), and the LP
method of MC-ITA is slightly better than the WP method.
Very interestingly, while the performance of the algorithms
is substantially better than Selfish, the actual penalties paid
by the agents were very small (these are the blue portions
of each of the bars in Figure 4(b)). Thus, adding penal-
ties to certain time-location pairs caused the agents to plan
to traverse other paths, that were not penalized but also not
congested, resulting in lower travel cost as well as lower to-
tal penalized travel cost. Note that the penalty paid by the
agents is smaller than the sum of penalties in the penalty
table, i.e., the penalty table may contain penalties set for
certain time-location pairs that were not used by the agent.

We display the trends achieved by our MC-ITA algo-
rithms in Figure 5. The y-axis shows the total costs (ĉT)
and the x-axis shows the number of agents. Our two dif-
ferent MC-ITA penalization schemes are shown in Figure 6.
The red lines display the total penalization assigned to T .
The blue lines show the total penalty incurred by the agents.
While MC-ITA(LP) assigns more penalties on the table, the
actual penalty incurred by the agents is still very small.

44

(a) Penalization MC-ITA(LP) (b) Penalization MC-ITA(WP)

Figure 6: MC-ITA penalization schemes for 50x50 with 20% obstacles

Figure 5: 50x50 with 20% obstacles

8 Conclusion
In this paper we addressed the scenario of multiple self-
interested agents navigating in a graph. We proposed a taxa-
tion scheme for coordinating these agents implicitly, apply-
ing additional costs (penalties) to agents that pass through
specified locations at specific times. The Iterative Tax-
ing Framework (ITF) was presented for determining where,
when and how much penalty should be given. Two spe-
cific implementations of ITF are described. EITA, which
detects conflicts from all possible paths that the agents might
choose, and MC-ITA, which samples the set of possible
paths. Experimental results show that the taxation schemes
produced by both of these algorithms are able to improve the
total cost of the agents substantially, even when adding the
cost penalties costs to the traveling costs.

There are many exciting future research directions. The
possible implementations of the ITF components should

be studied deeply; identifying how much effort should be
invested in detecting conflicts and studying the most fit-
ting way to resolve these conflicts. Another interesting fu-
ture work is to incorporate more complex behavior of the
self-interested agents, going beyond the model described in
Section 2 and including direct communication between the
agents.

9 Acknowledgements
This research was supported by the Israeli Science Founda-
tion (ISF) under grant #305/09 to Ariel Felner.

References
Cole, R.; Dodis, Y.; and Roughgarden, T. 2006. How much
can taxes help selfish routing? Journal of Computer and
System Sciences 72(3):444–467.
Dial, R. B. 1999. Network-optimized road pricing: Part ii:
Algorithms and examples. Operations Research 47(2):327–
336.
Dresner, K., and Stone, P. 2008. A multiagent approach to
autonomous intersection management. JAIR 31:591–656.
Endriss, U.; Kraus, S.; Lang, J.; and Wooldridge, M. 2011.
Incentive engineering for boolean games. In IJCAI, 2602–
2607.
Ferrari, P. 2002. Road network toll pricing and social
welfare. Transportation Research Part B: Methodological
36(5):471–483.
Jansen, M., and Sturtevant, N. 2008. Direction maps for
cooperative pathfinding. In AIIDE.
Pigou, A. C. 1952. The economics of welfare. Transaction
Pub.
Rosenthal, R. W. 1973. A class of games possessing pure-
strategy nash equilibria. International Journal of Game The-
ory 2:65 – 67.

Roughgarden, T., and Tardos, É. 2002. How bad is selfish
routing? Journal of the ACM (JACM) 49(2):236–259.

45

Ryan, M. 2008. Exploiting subgraph structure in multi-robot
path planning. JAIR 31:497–542.
Ryan, M. 2010. Constraint-based multi-robot path planning.
In ICRA, 922–928.
Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A.
2011. The increasing cost tree search for optimal multi-
agent pathfinding. In IJCAI, 662–667.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2012.
Conflict-based search for optimal multi-agent path finding.
In AAAI.
Silver, D. 2005. Cooperative pathfinding. In AIIDE, 117–
122.
Standley, T. 2010. Finding optimal solutions to cooperative
pathfinding problems. In AAAI, 173–178.
Sturtevant, N. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and AI in
Games 4(2):144 – 148.
Wang, K.-H. C., and Botea, A. 2009. Tractable multi-agent
path planning on grid maps. In IJCAI, 1870–1875.

46

