
Evolving Instance Specific Algorithm Configuration

Yuri Malitsky and Deepak Mehta and Barry O’Sullivan
Cork Constraint Computation Centre, University College Cork, Ireland

{y.malitsky | d.mehta | b.osullivan}@4c.ucc.ie

Abstract

Combinatorial problems are ubiquitous in artificial intelli-
gence and related areas. While there has been a significant
amount of research into the design and implementation of
solvers for combinatorial problems, it is well-known that
there is still no single solver that performs best across a broad
set of problem types and domains. This has motivated the de-
velopment of portfolios of solvers. A portfolio typically com-
prises either many different solvers, instances of the same
solver tuned in different ways, or some combination of these.
However, current approaches to portfolio design take a static
view of the process. Specifically, the design of the portfolio is
determined offline, and then deployed in some setting. In this
paper we propose an approach to evolving the portfolio over
time based on the problems instances that it encounters. We
study several challenges raised by such a dynamic approach,
such as how to re-tune the portfolio over time. Our empirical
results demonstrate that our evolving portfolio approach sig-
nificantly out-performed the standard static approach in the
case when the type of instances observed change over time.

Introduction

Combinatorial problems arise in many real world domains
like scheduling, planning, formal verification, etc. These
problems can be formulated as Constraint Satisfaction Prob-
lems (Rossi, van Beek, and Walsh 2006) (CSP), Satisfiability
problems (Biere et al. 2009) (SAT) or Mixed Integer Pro-
gramming (MIP). Regardless of the formulation, many real-
world problems are very large, often requiring thousands
of variables with hundreds of thousands of constraints. The
challenge is to find a satisfying and/or an optimal solution
in this potentially large space of possibilities, a task that is
known to be NP-Complete.

Due to the prevalence of combinatorial problems and their
ability to represent numerous real world scenarios, solving
these problems is an active field of research. Many effi-
cient solvers have been developed like GECODE (Schulte,
Lagerkvist, and Tack 2006) and CHOCO (CHOCO 2010) as
CSP solvers, GLUCOSE (Audemard and Simon 2009) and
MINISAT (Een and Sörensson 2005) as SAT solvers, and
CPLEX (CPLEX 2003) and GUROBI (Optimization) as MIP

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

solvers. Although these solvers are highly successful and
competitive in their respective domains, it has been shown
numerous times that even within a single domain, no sin-
gle solver has the best performance over all instances. In
other words, different solvers perform best on different prob-
lems.

This discovery has inspired a new line of research into port-
folio algorithms which given a new problem instance try to
predict which is the best solver to utilize on it. This is the
driving idea behind approaches like SATZILLA (Xu et al.
2008), CP-HYDRA (O’Mahony et al. 2008), ISAC (Kadio-
glu et al. 2010) and 3S (Kadioglu et al. 2011). There are a
number of ways that portfolio generation can be approached.
One, is to run all the solvers in a portfolio on a benchmark
set of training instances. Then using a collection of features
that describe the structure of each instance, learn to predict
the expected time of a solver on each instance. Therefore
when a new instance needs to be solved, the solver with the
lowest predicted time is chosen. This was the idea behind
SATZILLA prior to 2009. Alternatively, instead of relying on
a single decision, approaches like CP-HYDRA and 3S pro-
pose a schedule of solvers to run that maximize the proba-
bility that an instance would be solved. In 2012, SATZILLA
changed its approach to using trees to compare every pair of
solvers in its portfolio for a given instance. The solver that
was usually predicted to be better was then run on the in-
stance. Finally, approaches like ISAC use the instance feature
vectors to cluster the training data into homogeneous groups
and then select the best solver for each cluster.

All of the above mentioned portfolio approaches have dom-
inated competitions in their respective categories at some
point showing that it is not a good idea to rely on any sin-
gle solver. The drawback to these approaches however is that
once trained the learned portfolios remain static. We call this
the one-shot learning approach, as the construction of a port-
folio optimizing a given objective function (such as mean
runtime, percent of instances solved) is done only once on
a chosen set of training instances. The real world however
is dynamic and constantly changing. It is possible that over
time, the types of problems that a portfolio is expected to
solve changes. This might not be a problem if the portfolio
has been trained on a large dataset of problems that span the
entire problem space. In this case, having seen representa-

Proceedings of the Sixth International Symposium on Combinatorial Search

132

tive instances of anything that might come up, the portfo-
lio will be able to make the appropriate decisions. Unfortu-
nately, such a large and all encompassing training set does
not always exist. Furthermore, there is no reason why a port-
folio approach should not iteratively improve its own perfor-
mance as new instances become available. Consequently, it
may be desirable to have a portfolio approach that evolves
based on the set of instances that are solved in the online-
phase.

The current state-of-the-art portfolio approaches do not pro-
vide any mechanism to evaluate the initial portfolio over
time as more and more instances are solved in the on-
line phase. Consequently, no steps are taken to further im-
prove the performance of the initial portfolio based on the
instances that are made available after the initial training
phase. One possible direct solution to this is periodically re-
launching the training approach. However, this can be very
computationally expensive, raising the question of when
is the best time to retrain. We therefore augment an ex-
isting portfolio approach, ISAC, to one that evaluates the
current portfolio and provides ways to continuously im-
prove it by taking advantage of growing set of available
instances, enriched feature set and more up to-date set of
available solvers. To the best of our knowledge this paper
is the first work regarding the evolving aspect of the portfo-
lio approaches for solving combinatorial optimization prob-
lems.

Instance Specific Algorithm Configuration

Instance-Specific Algorithm Configuration (ISAC), is a non-
model-based portfolio approach that has been demonstrated
to be highly effective in practice (Malitsky et al. 2011).
Unlike similar approaches, such as Hydra (Xu, Hoos, and
Leyton-Brown 2010) and ArgoSmart (Nikolić, Marić, and
Janičić 2009), ISAC does not use regression-based analysis.
Instead, it computes a representative feature vector in order
to identify clusters of similar instances. The data is therefore
clustered into non-overlapping groups and a single solver is
selected for each group based on some performance char-
acteristic. Given a new instance, its features are computed
and it is assigned to the nearest cluster. The instance is then
evaluated with the solver assigned to that cluster.

One of the advantages of ISAC over some of its competitor
approaches is that it provides a way to both select a solver
from a portfolio and in the absence of a portfolio to dynami-
cally generate one from a single highly parameterized solver.
To demonstrate how this is the case, for the remainder of
this section, we will refer to a portfolio of solvers as a sin-
gle solver with a single parameter. The setting of this sin-
gle parameter determines which of the portfolio solvers to
run.

ISAC works as follows (see Algorithm 1). In the learning
phase, ISAC is provided with a parameterized solver A, a
list of training instances I , their corresponding feature vec-
tors F , and the minimum cluster size c. First, the gathered
features are normalized so that every feature ranges from

Algorithm 1 Instance-Specific Algorithm Configuration
1: ISAC-Learn(A, I, F, c)
2: (F̄ , s, t)← Normalize(F)
3: (k, C, S)← Cluster (I, F̄ , c)
4: for all i = 1, . . . , k do
5: Pi ← GGA(A,Si)
6: return (k, P,C, s, t)

1: ISAC-Run(A, x, k, P, C, d, s, t)
2: f ← Features(x)
3: f̄i ← 2(fi/si)− ti ∀ i
4: i← mini(||f̄ − Ci||)
5: return A(x, Pi)

[−1, 1], and the scaling and translation values for each fea-
ture (s, t) is memorized. This normalization helps keep all
the features at the same order of magnitude, and thereby
keeps the larger values from being given more weight than
the lower values. Then, the instances are clustered based on
the normalized feature vectors. Clustering is advantageous
for several reasons. First, training parameters on a collection
of instances generally provides more robust parameters than
one could obtain when tuning on individual instances. That
is, tuning on a collection of instances helps prevent over-
tuning and allows parameters to generalize to similar in-
stances. Secondly, the found parameters are “pre-stabilized,”
meaning they are shown to work well together.

To avoid specifying the desired number of clusters before-
hand, the g-means (Hamerly and Elkan 2003) algorithm is
used. Robust parameter sets are obtained by not allowing
clusters to contain fewer than a manually chosen threshold,
a value which depends on the size of the data set. In our
case, we restrict clusters to have at least 50 instances. Begin-
ning with the smallest cluster, the corresponding instances
are redistributed to the nearest clusters, where proximity is
measured by the Euclidean distance of each instance to the
cluster’s center. The final result of the clustering is a num-
ber of k clusters Si, and a list of cluster centers Ci. Then,
for each cluster of instances Si, favorable parameters Pi

are computed using the instance-oblivious tuning algorithm
GGA (Ansótegui, Sellmann, and Tierney 2009).

When running algorithmA on an input instance x, ISAC first
computes the features of the input and normalize them using
the previously stored scaling and translation values for each
feature. Then, the instance is assigned to the nearest clus-
ter. Finally, ISAC runs A on x using the parameters for this
cluster.

Evolving ISAC

Like other existing portfolio approaches, ISAC is based on
one-shot learning. Once the training data has been clustered
and a solver is selected for each cluster, no new learning is
performed. This means that even as the learned portfolio in-
teracts and is repeatedly used to solve new instances, that
influx of new information is ultimately ignored. This also

133

initial set of in-
stances and features

initial set
of solvers

compute
clusters

determine one or more
solvers for each cluster

Figure 1: Initial phase of EISAC which is performed offline.

means that if the structure of the problems changes over
time, the solvers that have been trained may no longer be
suitable. Moreover, as time progresses, new features may be
discovered which can have a dramatic impact on the quality
of the clustering methods. Furthermore, the set of available
solvers can change over time, which can also have a drastic
impact on the current portfolio. To the best of our knowledge
we are not aware of any portfolio approach for solving com-
binatorial optimization problems that takes these changes
into account and provide solution to recompute the portfo-
lio.

Of course, one solution is to re-launch ISAC from scratch af-
ter each such change. In practice, however, this can be very
computationally expensive. For example, with 50 seconds
timeout for 1000 instances, it can take 72 CPU days for train-
ing a portfolio (Malitsky and Sellmann 2012). In the case of
a portfolio approach, every solver would need to be run on
every instance in the training set. Alternatively, for the case
with a parameterized single solver, new parameterizations
would need to be tuned, a process that can take days or even
weeks depending on the number of training instances, pa-
rameters, and the timeout. We therefore propose to extend
ISAC to Evolving ISAC (EISAC). This new approach contin-
uously evaluates the current portfolio and provides ways to
continuously improve it by taking advantage of growing set
of available instances, enriched feature set and more up to-
date set of available solvers.

Notice that once the clustering of instances is known, ISAC
determines the best solver for each cluster. As the current
trend is to create computers with 2, 4 or even 8 cores, it is un-
usual to find single core machines still in use, and the num-
ber of cores will probably continue to double in the coming
years. It is for this reason that for EISAC we also consider
scenarios where κ CPU cores are available.

Let It, Ft, and St denote the set of instances, the feature
set and the set of solvers known at time t and let Ct denote
the clustering of instances at time t. We assume that each
time period is associated with one or more changes in at
least one of these sets. Following this notation I0, F0, and
S0 denote the initial sets of training instances, features, and
solvers respectively.

EISAC is divided in to an initial phase and an evolving phase.
Given an initial set of instances I0, an initial set of features
F0, and κ number of cores, EISAC finds an initial set of clus-
ters C0 and determines the κ best solvers from set S0 for each
cluster. This process is summarized in Figure 1.

In the evolving phase, EISAC is tasked to solve an influx of

current
clusters

current solvers

new Instance

find the
best cluster

find the solvers
of the best cluster

run the solvers

Figure 2: EISAC solving new instances.

add/remove feature
to/from the current set

add/remove instance
to/from the current

set of instances

recompute clusters

add/remove solver
to/from the current set

If difference be-
tween clusterings
is significant then

update current clusters

add/remove instance
to/from the clos-
est/current cluster

update solvers for
current clusters

Yes

Figure 3: Evolving the ISAC portfolio.

new instances. As these instances come in, they are assigned
to their corresponding clusters and are solved by the ap-
propriately assigned solvers. This is illustrated in Figure 2.
Once the instance is solved EISAC compares the original
clustering with the one obtained by re-clustering all the in-
stances. If the clusterings are sufficiently different, it accepts
the new clustering and retrain the portfolio. If the two clus-
terings are relatively identical, then it sticks to the portfolio
that has been used up to now. This process is summarized in
Figure 3.

We therefore see that if the original training set is represen-
tative of all the new instances, then the new instances fall
neatly into the initial clusters. In such a case, it never re-
trains the portfolio. On the other hand, if the new instances
are very different from the initial set, this approach aims
to automatically identify the best time to retrain the port-
folio. Depending on the time we have to retrain a portfolio
or how accurate we want to be, we can modify the threshold
at which we consider two clusterings to be similar enough.
In our experiments we use adjusted rand index to make this
assessment.

As presented, there are a number of decisions that gov-
ern how EISAC behaves. These include answering questions
like, how many new instances need to be solved before we
consider re-clustering? How do we handle the introduction
of new solvers in our portfolio, or solvers no longer being
available? If we have an infinite influx of new instances, we
cannot keep information about all of them in memory as our
training set, so how many instances should we keep track
of for re-clustering? We explain and discuss some of these
issues below.

134

Updating Clusters

Updating the clusters of ISAC can potentially be very ex-
pensive, if we need to train or select a new solver for each
cluster. It is therefore imperative to minimize the number
of times this operation is performed while still maintaining
good expected performance. There are two scenarios when
we might wish to consider a new clustering:

• When a new instance is made available and it is added
to the current set of instances, and when a number of in-
stances are removed if the total number of instances ex-
ceeds the maximum number of instances that can be main-
tained at any time point.

• A new feature is added to the current set of features or if
an existing feature is removed.

In each of these cases one would like to determine whether
the existing clustering is still appropriate or if it should be
modified.

Let δ be the time difference between the last time when
EISAC was activated and the current time. Given a value δ
EISAC recomputes the partition of the instances and com-
pares it with the current partition. In the following we de-
scribe one way of comparing the similarity between two par-
titions.

The Rand index (Rand 1971; Hubert and Arabie 1985) or
Rand measure (named after William M. Rand) is a measure
of the similarity between two data clusterings. Given a set
of instances It and two partitions of It to compare, X =
{X1, . . . , Xk} a partition of It into k subsets, and, Y =
{Y1, . . . , Ys} a partition of It into s subsets, the Rand index
is defined as follows:

• Let N11 denote the number of pairs of instances in It that
are in the same set in X and in the same set in Y .

• Let N00 denote the number of pairs of instances in It that
are in different sets in X and in different sets in Y .

• Let N10 denote the number of pairs of instances in It that
are in the same set in X and in different sets in Y .

• Let N01 denote the number of pairs of instances in It that
are in different sets in X and in the same set in Y .

The Rand index, denoted by R is defined as follows:

R =
N11 +N00

N11 +N00 +N10 +N01
=

2(N11 +N00)

n ∗ (n− 1)

Intuitively, N11 + N00 can be considered as the number of
agreements betweenX and Y andN10+N01 as the number
of disagreements between X and Y .

To correct for chance, the adjusted rand index (ARI) then
normalizes the rand index to be between -1 and 1 by:

ARI =
R− ExpectedIndex

MaxIndex− ExpectedIndex

If X is the current partition and Y is the new partition and
if the Adjusted Rand Index is less than some chosen thresh-
old, denoted by λ, then we replace the current partition of
the instances with the new partition. If the current partition
is replaced by the new partition then we may need to update
the solvers for one or more clusters of the new partition. We
experiment with a variety of thresholds and present our find-
ings as part of the numerical results.

Updating Solver Selection for a Cluster

For EISAC we solve the optimization problem as described
below to find κ best solvers for each cluster.

Let xij be a Boolean variable that determines if solver j ∈
St is chosen for instance i of some clusterC. Let Tij denotes
the time required for solving instance i using solver j ∈ Si.
Let yj be a Boolean that denotes whether solver j is selected
for the cluster C. For each instance i ∈ C exactly one solver
is selected:

∀i∈C :
∑
j∈St

xij = 1 (1)

The solver j is selected if it is chosen for any instance
i:

∀i∈C∀j∈St
: xij ⇒ yj (2)

The number of selected solvers should be equal to κ:∑
j∈St

yj = κ (3)

The objective is to minimize the time required to solve all
the instances of the cluster, i.e.,

min
∑
i∈C

∑
j∈St

Tij · xij (4)

Given a constant κ, the set of solvers St at
time t, a cluster C ∈ Ct, and the maxtrix T ,
computeBestSolvers(C, κ,St, T) denotes the κ
best solvers obtained by solving the MIP problem com-
posed of constraints (1)–(3) and the objective function (4).
In the following we describe four cases when EISAC might
update the set of κ best solvers for a cluster.

Removing Solvers. It may happen that an existing solver
is no longer available now, which could happen when a
solver is no longer supported by the developers, or when a
new release is made then one would like to discard the pre-
vious version and update it with the new version. If the re-
moved solver is used by any cluster then one can re-solve
the above optimization problem for finding the current κ
solvers.

Adding Solvers. When a new solver s is added to the set
of solvers St at time t it can have an impact on the current
portfolio. One way is to reconstruct the portfolio by run-
ning the solver s for all the instances in It, which could
be time consuming. Therefore, EISAC selects a sample from

135

each cluster and runs the solver s for only those samples.
If adding the new solver to St improves the total execution
time of solving the sample instances then EISAC computes
the runtime of solver s for all the instances of the corre-
sponding cluster. Otherwise, it avoids running the solver s
for the remaining instances of the cluster. In EISAC the sam-
ple size for a cluster C is set to (|I0|/|It|)∗ |C|. This allows
EISAC to maintain the runtimes of all the solvers in St for at
least |I0| number of instances.

Removing Instances. If the clustering changes because of
removing instances or because of change in the feature set,
EISAC updates the current set of best solvers for each cluster
by re-solving the above optimization problem.

Adding Instances. If the current clustering is replaced
with the new clustering because of adding new instances
then EISAC would recompute the κ best solvers for one
or more clusters of the new clustering. In order to do so,
one approach could be to compute the run-times of all the
solvers for all the new instances and then recompute the κ
best solver for each cluster. However, it would be more de-
sirable if the κ best solvers for a cluster can be computed
without computing the run-times of all the solvers for all
the newly added instances. We, therefore, propose a lazy ap-
proach. The idea is to predict the expected best run-time of
each solver for one or more instances whose run-times are
unknown and use them to compute the κ best solvers for a
cluster. If the newly computed best solvers are same as the
previously known best solvers for a cluster then the task of
solving new instances using many solvers is avoided. Oth-
erwise, the current set of κ best solvers is updated and the
actual run-times which are unknown for the instances are
computed using the newly computed κ best solvers. This
step is repeated until the newly computed best solvers are
same as the previously known best solvers.

Algorithm 2 presents pseudo-code for computing κ best
solvers for a cluster C lazily. Let Sti be the set of solvers
at time t for which the run-times are known for solving an
instance i. We assume that Sti is initialized to κ solvers
which are used in the on-line phase to solve an instance i.
Let At be the set of instances for which the run-times of
all the solvers are known at time t (Line 2). Let rip denotes
the pth best solver for instance i ∈ At based on run-times
(Line 3). Let ep denotes the average ratio between the run-
times of the best solver and the pth best solver for each in-
stance i ∈ At (Line 4). Let Cu ⊆ C be the set of instances
for which the run-times of one or more solvers in the set
St are unknown (Line 5). The expected best run-time for a
solver j ∈ St − Sti for an instance i ∈ Cu is computed
in as described below (Lines 6–9). If we assume that Sti is
the set of the |Sti| worst solvers for instance i ∈ Cu, then
the runtime of the best solver, b, of Sti would have the pth
best runtime over all the solvers, where p = |St| − |Sti|+1,
and the expected best run-time of a solver in j ∈ St − Sti
would be Tib · ep. Notice that different assumptions on the

Algorithm 2 updateBestSolvers(C,κ)
1: loop
2: At ← {i|i ∈ It ∧ |Sti| = |St|}
3: ∀i ∈ At : Tiri1 ≤ . . . ≤ Tiri|St|

4: ∀p < |St| : ep ← 1
|At|

∑
i∈At

Tiri1
Tirip

5: Cu ← C −At

6: for all i ∈ Cu do
7: p← |St| − |Sti|+ 1
8: b← arg minj∈Sti(Tij)
9: ∀j ∈ St − Sti : Tij ← ep × Tib

10: NC ← computeBestSolvers(C, κ,St, T)
11: if NC = BC then
12: return BC

13: for all i ∈ Cu ∧ j ∈ NC − Sti do
14: Tij ← computeRuntime(i, j)
15: Sti ← Sti ∪ {j}
16: BC ← NC

value of p would result in different performance of EISAC.
Let NC be the newly computed best solvers using expected
best run-times (Line 10). Let BC be the previously known
κ best solvers for the cluster C. If NC is same as BC then
the previously known κ solvers are still the best solvers for
cluster C even when the known run-times are assumed to
be worst, and the computation of the run-times of St − Sti
solvers are avoided for each instance i ∈ Cu (Lines 11–12).
If NC is different to BC then the actual run-time of each
solver j ∈ NC − Sti is computed for each instance i ∈ Cu,
denoted by computeRuntime(i, j), and the best solvers
for cluster C is updated to NC (Lines 13–16).

Empirical Results

In this section we demonstrate the effectiveness of using
EISAC on SAT as well as MaxSAT instances.

SAT

For our experiments we use the SAT portfolio data made
available by the SATzilla team after the 2011 SAT Compe-
tition (Data 2011). This dataset provides the runtimes of 31
top-tier SAT solvers with a 1,200 second timeout on over
3,000 instances spread across the Random, Crafted and In-
dustrial categories. After filtering out the instances where
every solver times-out, we are left with 2,524 instances. For
each of these instances the dataset also provides all of the
known SAT features, but we restrict our study to the 52 stan-
dard features (Nudelman et al. 2004) that do not rely on local
search probing.

We use this dataset to simulate the scenario where instances
are made available one at a time. Specifically, we start with
a set of I0 instances for which we know the performance of
every solver. Based on this initial set, we generate our ini-
tial clusters and select the solver that minimizes the PAR10
score of each cluster. PAR10 being the standard penalized
average measurement in SAT where when a solver times
out it is penalized as having taken 10 times the timeout to

136

Table 1: Comparison of performance of ISAC and EISAC on shuffled and ordered datasets using 200 or 500 training instances.
We set the minimum cluster size to be either 50 or 100 and the adjusted rand index to either 0.5 or 0.95.

Shuffled BS ISAC EISAC EISAC ISAC EISAC EISAC VBS
c50 c50-λ0.5 c50-λ0.95 c100 c100-λ0.5 c100-λ0.95

Solved 1760 1776 1753 1759 1776 1752 1752 2324
200 % Solved 75.7 76.0 75.4 75.7 76.0 75.4 75.4 100

PAR10 3001 2923 3037 3006 2923 3038 3038 75.2
Train 1 1 275 329 1 166 166 -
Solved 1532 1548 1548 1539 1548 1548 1544 2024

500 % Solved 75.7 76.4 76.4 76.0 76.4 76.4 76.3 100
PAR10 3004 2912 2912 2962 2912 2912 2935 74.82
Train 1 1 1 674 1 1 104 -

Ordered BS ISAC EISAC EISAC ISAC EISAC EISAC VBS
c50 c50-λ0.5 c50-λ0.95 c100 c100-λ0.5 c100-λ0.95

Solved 1078 1078 1725 1793 1078 1741 1741 2324
200 % Solved 46.3 46.3 74.2 77.2 46.3 74.9 74.9 100

PAR10 6484 6484 3160 2821 6484 3084 3084 70.42
Train 1 1 49 160 1 9 9 -
Solved 791 795 1261 1606 817 817 1373 2024

500 % Solved 39.1 39.3 62.3 79.3 40.4 40.4 67.8 100
PAR10 7357 7334 4578 2556 7205 7205 3910 70.79
Train 1 1 4 611 1 1 97 -

complete. We then add δ instances to our dataset, evaluate
them with the current portfolio, and then evaluate whether
we should retrain. We use two thresholds for the adjusted
rand index, 0.5 and 0.95. Simulating the scenario where we
can only keep a certain number of instances for the retrain-
ing, once we add the δ new instances, we also remove the
oldest δ instances.

We first consider the scenario where all the instances are
shuffled and come randomly. We then also consider an order-
ing on the data, where first we iterate through the Industrial
instances, followed by the crafted, and finally the instances
that were randomly generated. This last experiment is meant
to simulate the case where instances change over time. This
is also the case where traditional portfolio approaches would
fail because eventually they are tasked to solve instances
they have never observed during training.

Table 1 presents our first test case where the instances come
from a shuffled dataset. This is the typical case observed in
competitions, where a representative set of the test data is
available for training. The table presents the performance
of a portfolio which have been given 200 or 500 training
instances. The single best solver (BS) is choosing a single
solver during training and then always using it during the
test phase. Alternatively, the virtual best solver (VBS) is an
oracle portfolio that for every instance always runs the best
solver. The VBS represents the limit of what can be achieved
by a portfolio. We also evaluate ISAC-c50 and ISAC-c100,
trained with a minimum of 50 (respectively 100) instances
in each cluster. Note that in this setting ISAC is perform-
ing better than BS. It is also important to note here that in
the 2012 SAT Competition, the difference between the win-
ning and second placed single engine solver was 3 instances
and only 8 instances between the top 4 solvers. Therefore
the improvement of 16 instances when training on 500 in-
stances is significant. When compared to ISAC on this shuf-
fled data, we see that EISAC is performing comparably to
ISAC, although requiring significantly more training ses-

sions. For each version of EISAC in the table we present the
minimum cluster size and the adjusted rand index threshold.
So EISAC-c100-λ0.95 has clusters with at least 100 instances
and retrains as soon as the adjusted rand index drops below
0.95.

This comparable performance on shuffled data is to be ex-
pected. As the data is coming randomly, the initial training
data was representative enough to capture the diversity. And
even if the clusters change a little overtime, the basic as-
signment of solvers to instances doesn’t really change. Note
that the slight degradation between for the higher threshold
in EISAC-c100 for 500 training instance, can likely be at-
tributed to overtuning (or overfitting) in the numerous re-
training steps. Also note that the lower performance for 500
training instances is misleading, since by adding 300 in-
stances to our training set, we are removing 300 instances
from the test set.

Table 2: Comparison of performance on ordered dataset us-
ing an approximation learning technique.

BS ISAC EISAC EISAC+ VBS
c50 c50-λ0.5 c50-λ0.5

200 Solved 1078 1078 1725 1671 2324
PAR10 6484 6484 3160 3440 70.42
Train 1 1 49 44 -
% Eval 100 100 100 59.5 -

500 Solved 791 795 1261 1264 2024
PAR10 7357 7334 4578 4561 70.79
Train 1 1 4 3 -
% Eval 100 100 100 83.8 -

The story becomes significantly different if the data is not
shuffled as is the case at the bottom of Table 1. Here we
see that the clusters and solvers chosen by ISAC initially
are ill equipped to solve the future instances. EISAC on the
other hand, is able to adapt to the changes and outperform
ISAC by almost a factor of 2 in terms of the instances solved.
What is also interesting is that for the case of 500 training

137

Table 3: SAT: Comparison of performance of ISAC, EISAC and EISAC+. on data where instances become progressively harder.
Training set is composed of either 200 or 500 instances, the minimum cluster size to be 50 and the adjusted rand index is set to
either 0.5 or 0.95.

Easy BS ISAC EISAC EISAC EISAC+ EISAC+ VBS
to Hard c50 c50-λ0.5 c50-λ0.95 c50-λ0.5 c50-λ0.95

Solved 1060 1035 1690 1823 1698 1741 2324
% Solved 45.6 44.5 72.7 78.4 73.1 74.9 100

200 PAR10 6621 6746 3383 2710 3343 3122 82.51
Train 1 1 58 155 57 185 -
% Eval 100 100 100 100 83.8 83.3 -
Solved 1410 1057 1485 1526 1400 1532 2024
% Solved 69.7 52.2 73.4 75.4 69.2 75.7 100

500 PAR10 3753 5850 3322 3075 3811 3041 94.4
Train 1 1 4 611 3 663 -
% Eval 100 100 100 100 87.8 83.1 -

instances and small clusters, this performance is achieved
with only four re-training steps.

Table 2 examines the effectiveness of our proposed train-
ing technique. Instead of computing the time of every solver
on every training instance during re-tuning, we lazily fill in
this data until we converge on the expected best solver for a
cluster. We call this approach EISAC+. Due to space limita-
tions, we only present a comparison on the ordered dataset
and for algorithms tuned with a minimum cluster size of 50.
What we observe is that while performance is maintained
with this lazy selection, we cut down the number of evalu-
ations we need to 80% and occasionally to as low as 50%.
This means that we can potentially speed up each training
stage by a factor of 2 while still maintaining nearly identical
performance.

Finally, Table 3 examines the effectiveness of EISAC and
EISAC+ on a dataset where instances become progressively
harder. Specifically we order the 2524 instances at our dis-
posal according to the average runtime of all solvers. The
first 200 (500) are used for training, and each instance is on
average harder than the last. From the table we see that the
regular version of ISAC struggles with this dataset, perform-
ing worse than the best single solver. This suggests that the
structure of the easier instances is different from that of the
harder instances. If we allow our portfolio to adapt to the
changes, it is able to perform significantly better than the
best single solver. Furthermore, EISAC+ is able to perform
comparably to its regular counterpart but with fewer evalua-
tions at each training stage.

We have also tried differing the frequency, δ, at which we
consider retraining. The results presented in this paper are
for cases where δ = 1, but we also tried setting it to 10, 50,
and 100. The results and trends presented, however, do not
change significantly due to this change.

MaxSAT

Additionally, we explored how the Evolving ISAC approach
behaves on the MaxSAT dataset, employing the instances
from the 2012 MaxSAT Competition. This competition had
4 major categories: MaxSAT, Partial MaxSAT, Weighted
MaxSAT, and Partial Weighted MaxSAT. Combining all

these sets, results in 2681 instances. What differentiates this
merged dataset from the one we had for SAT, is that the
solvers used for each of the different types of instances are
different. So while a solver can perform very well on one
category, it might completely fail to read in instances of an-
other type. In our case, whenever a solver is not able to solve
an instance, it is marked as if it timed out.

For our solvers we employed 14 top-tier MaxSAT solvers
with a 2,100 second timeout. Meanwhile the features we
used are based on the original base SAT features plus a five
features examining the weights of the soft clauses. Particu-
larly what percentage of the clauses are soft, and what is the
mean, standard deviation, minimum and maximum of the
weights of these soft clauses.

Our experiments explore three scenarios. First, we take a
look at the standard competition, train-once, situation where
the training set is representative of the data to be seen in
the test set. We can see under the rows labeled “Shuffled”
in Table 5, that the adaptive approach while better than the
best single solver, is not better than the plain vanilla version
of ISAC. This however, quickly changes if the data is intro-
duced first from the MaxSAT (MS) category, followed by
Partial MaxSAT (PMS), then Weighted MaxSAT (WMS),
and finally Partial Weighted MaxSAT (PWMS). These re-
sults are presented in the rows under “Ordered by Category”
in Table 5. These experiments exemplify why it is necessary
to continuously refine ones portfolio approach. The regular
ISAC approach performs worse than the single best solver,
since it is unable to generalize the portfolio it has learned to
instances that it has never seen before. The EISAC approach
however can cope with the changes. It is also important to
note here, that EISAC+ is able to achieve nearly the same
performance as EISAC, with half the number of evaluations
during the tuning stage.

The third set of rows in Table 5, labeled “Easy to Hard”
refers to a data set where the instances arrive in order of
difficulty, from easy to hard. Here we define easy as an in-
stance whose average runtime over all solvers in our port-
folio is smallest. Here, we again see that the regular version
of ISAC struggles to find a portfolio that generalizes to the
harder instances. EISAC on the other hand, can double the
number of instances solved.

138

Table 4: MaxSAT: Comparison of performance of ISAC, EISAC and EISAC+. on shuffled data (Shuffled), Ordered by Category
(Ordered), and Ordered by difficulty (Easy to Hard) datasets using 200 or 500 training instances. We set the minimum cluster
size to be 50 and the adjusted rand index to either 0.5 or 0.95.

Shuffled BS ISAC EISAC EISAC EISAC+ EISAC+ VBS
c50 c50-λ0.5 c50-λ0.95 c50-λ0.5 c50-λ0.95

Solved 1472 1802 1540 1544 1502 1479 2260
% Solved 59.3 72.6 62.1 62.2 60.5 59.6 91.1

200 PAR10 8187 5675 7640 7609 7949 8132 1831
Train 1 1 908 1266 872 1259 -
% Eval 100 100 100 100 95.2 93.4 -
Solved 1298 1724 1564 1555 1474 1475 1986
% Solved 59.5 79.0 71.7 71.3 67.6 67.6 91.1

500 PAR10 8149 4252 5722 5800 6541 6532 1836
Train 1 1 495 1811 512 1843 -
% Eval 100 100 100 100 93.2 83.8 -

Ordered by BS ISAC EISAC EISAC EISAC+ EISAC+ VBS
Category c50 c50-λ0.5 c50-λ0.95 c50-λ0.5 c50-λ0.95

Solved 1466 1087 1830 1958 1741 1796 2268
% Solved 59.1 43.8 73.8 78.9 70.2 72.4 91.4

200 PAR10 8236 11275 5325 4287 6033 5584 1764
Train 1 1 266 557 255 529 -
% Eval 100 100 100 100 50.4 48.9 -
Solved 1247 1131 1314 1555 1261 1422 2049
% Solved 57.1 51.9 60.2 71.3 57.8 65.2 93.9

500 PAR10 8607 9656 7990 5789 8480 7006 1245
Train 1 1 145 871 155 866 -
% Eval 100 100 100 100 58.3 56.9 -

Easy BS ISAC EISAC EISAC EISAC+ EISAC+ VBS
to Hard c50 c50-λ0.5 c50-λ0.95 c50-λ0.5 c50-λ0.95

Solved 837 875 1520 1604 1509 1544 2241
% Solved 33.7 35.2 61.2 64.6 60.8 62.2 90.3

200 PAR10 13297 12987 7812 7137 7902 7539 1988
Train 1 1 266 557 263 532 -
% Eval 100 100 100 100 83.6 82.5 -
Solved 539 687 1401 1403 1260 1352 1941
% Solved 24.7 31.5 64.2 64.3 57.8 62.0 89.0

500 PAR10 15103 12742 7226 7207 8519 7674 2262
Train 1 1 145 871 123 854 -
% Eval 100 100 100 100 88.0 88.4 -

Table 5: MaxSAT: Comparison of performance of ISAC, EISAC and EISAC+. on shuffled data (Shuffled), Ordered by Category,
and Ordered by difficulty datasets using 200 or 500 training instances. We set the minimum cluster size to be 50 and the adjusted
rand index to either 0.5 or 0.95.

Conclusions

We presented the importance of an evolving portfolio ap-
proach when handling datasets that can change over time.
Specifically, we showed how or proposed changes can cre-
ate EISAC, a portfolio approach that solves twice as many
instances as its unmodified counterpart ISAC. We further
showed how a lazy training method can help to significantly
reduce the number of solver/instance combinations that need
to be evaluated before the best solver for a cluster is se-
lected.

As part of future research, EISAC can be further extended to
handle all the scenarios mentioned in this paper. We would,
however, like to argue that these extensions will not change
the trends presented in this paper. Adding or removing fea-
tures, if done properly, during the online stage of EISAC will
only improve the quality of the clusters. And while a retun-
ing might be required, this would be a one time modification
since the creation of new features is not a frequent occur-
rence. The same logic follows for the addition and removal

of solvers. If a solver is not used by any cluster, removing it
has no effect on performance. Otherwise, a single retraining
step might be necessary.

We would like to allow the possibility of maintaining more
instances than those that are provided in the initial phase
which could further improve the performance of EISAC. Cur-
rently the offline effort is measured coarsely which indicates
the number of times EISAC is activated. Notice that many
times EISAC just recomputes the clusters but no work is done
on reconstructing the portfolio. Also in many occasions it
only updates the best solver for only 1 or 2 clusters. There-
fore, we would also like to devise more refined ways of com-
puting the offline effort. Finally, it would be interesting to in-
vestigate the performance of EISAC by computing more than
one solver for each cluster.

Acknowledgements
This work is supported by Science Foundation Ireland Grant
No. 10/IN.1/I3032 and by the European Union FET grant
(ICON) No. 284715.

139

References

Ansótegui, C.; Sellmann, M.; and Tierney, K. 2009. A
gender-based genetic algorithm for the automatic configu-
ration of algorithms. In Gent, I. P., ed., CP, volume 5732 of
Lecture Notes in Computer Science, 142–157. Springer.

Audemard, G., and Simon, L. 2009. Glucose: a solver that
predicts learnt clauses quality. SAT Competition 7–8.

Biere, A.; Biere, A.; Heule, M.; van Maaren, H.; and Walsh,
T. 2009. Handbook of Satisfiability: Volume 185 Frontiers
in Artificial Intelligence and Applications. Amsterdam, The
Netherlands, The Netherlands: IOS Press.

CHOCO, T. 2010. CHOCO: An open source java
constraint programming library. Ecole des Mines de
Nantes. http://www.emn.fr/z-info/choco-solver/pdf/choco-
presentation.pdf.

CPLEX, S. 2003. Ilog. Inc., Armonk, NY.

Data, S. 2011. http://www.cs.ubc.ca/labs/beta/Projects/
SATzilla/.

Een, N., and Sörensson, N. 2005. MINISAT: A SAT solver
with conflict-clause minimization. Sat 5.

Hamerly, G., and Elkan, C. 2003. Learning the k in k-means.
In In Neural Information Processing Systems, 2003. MIT
Press.

Hubert, L., and Arabie, P. 1985. Comparing partitions. Jour-
nal of Classification 2(1):193–218.

Kadioglu, S.; Malitsky, Y.; Sellmann, M.; and Tierney, K.
2010. ISAC - instance-specific algorithm configuration. In
Coelho, H.; Studer, R.; and Wooldridge, M., eds., ECAI, vol-
ume 215 of Frontiers in Artificial Intelligence and Applica-
tions, 751–756. IOS Press.

Kadioglu, S.; Malitsky, Y.; Sabharwal, A.; Samulowitz, H.;
and Sellmann, M. 2011. Algorithm selection and schedul-
ing. In Proceedings of the 17th international conference on
Principles and practice of constraint programming, CP’11,
454–469. Berlin, Heidelberg: Springer-Verlag.

Malitsky, Y., and Sellmann, M. 2012. Instance-specific algo-
rithm configuration as a method for non-model-based port-
folio generation. In CPAIOR, 244–259.

Malitsky, Y.; Sabharwal, A.; Samulowitz, H.; and Sellmann,
M. 2011. Non-model-based algorithm portfolios for SAT.
In SAT, 369–370.

Nikolić, M.; Marić, F.; and Janičić, P. 2009. Instance-based
selection of policies for SAT solvers. In Proceedings of the
12th International Conference on Theory and Applications
of Satisfiability Testing, SAT ’09, 326–340. Berlin, Heidel-
berg: Springer-Verlag.

Nudelman, E.; Devkar, A.; Shoham, Y.; and Leyton-Brown,
K. 2004. Understanding random SAT: Beyond the clauses-
to-variables ratio. In In Proc. of CP-04, 438–452.

O’Mahony, E.; Hebrard, E.; Holland, A.; Nugent, C.; and
O’Sullivan, B. 2008. Using case-based reasoning in an al-
gorithm portfolio for constraint solving. In Irish Conference
on Artificial Intelligence and Cognitive Science.

Optimization, G. Inc.: Gurobi optimizer reference manual,
2012.

Rand, W. 1971. Objective criteria for the evaluation of clus-
tering methods. Journal of the American Statistical associ-
ation 66(336):846–850.

Rossi, F.; van Beek, P.; and Walsh, T. 2006. Handbook of
Constraint Programming. Foundations of Artificial Intelli-
gence. New York, NY, USA: Elsevier.

Schulte, C.; Lagerkvist, M.; and Tack, G. 2006. Gecode.
Software download and online material at the website:
http://www. gecode. org.

Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2008.
SATzilla: portfolio-based algorithm selection for SAT. Jour-
nal of Artificial Intelligence Research 32(1):565–606.

Xu, L.; Hoos, H. H.; and Leyton-Brown, K. 2010. Hydra:
Automatically configuring algorithms for portfolio-based
selection. In Twenty-Fourth AAAI Conference on Artificial
Intelligence, 179–184.

140

