
Bounded Suboptimal Heuristic Search in Linear Space

Matthew Hatem
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA

mhatem at cs.unh.edu

Roni Stern
School of Engineering and Applied Sciences

Harvard University
Cambridge, Massachusetts 02138 USA

roni.stern at gmail.com

Wheeler Ruml
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA

ruml at cs.unh.edu

Abstract

It is commonly appreciated that solving search problems op-
timally can overrun time and memory constraints. Bounded
suboptimal search algorithms trade increased solution cost
for reduced solving time and memory consumption. How-
ever, even suboptimal search can overrun memory on large
problems. The conventional approach to this problem is to
combine a weighted admissible heuristic with an optimal lin-
ear space algorithm, resulting in algorithms such as Weighted
IDA* (wIDA*). However, wIDA* does not exploit distance-
to-go estimates or inadmissible heuristics, which have re-
cently been shown to be helpful for suboptimal search. In this
paper, we present a linear space analogue of Explicit Estima-
tion Search (EES), a recent algorithm specifically designed
for bounded suboptimal search. We call our method Itera-
tive Deepening EES (IDEES). In an empirical evaluation, we
show that IDEES dramatically outperforms wIDA* on do-
mains with non-uniform edge costs and can scale to problems
that are out of reach for the original EES.

Introduction
Heuristic search is a fundamental problem-solving tech-
nique in artificial intelligence. Algorithms such as A* (Hart,
Nilsson, and Raphael 1968) have been developed to find op-
timal (lowest-cost) solutions. A* uses an admissible heuris-
tic function to avoid exploring much of the search space.
Verifying that a solution is optimal requires expanding ev-
ery node whose f value is less than the optimal solution
cost, which we will denote by C∗. For many problems of
practical interest, there are too many such nodes to allow the
search to complete within a reasonable amount of time. A*
maintains an open list, containing nodes that have been gen-
erated but not yet expanded, and a closed list, containing all
generated states, in order to prevent duplicated search effort.
Unfortunately, the memory requirements of A* also make it
impractical for large problems.

These concerns have motivated the development of
bounded suboptimal search algorithms. Bounded subopti-
mal search algorithms trade solution quality for solving
time. A bounded suboptimal search algorithm is given a
user-defined suboptimality bound w and is guaranteed to re-
turn a solution of cost C ≤ w · C∗. A range of bounded

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

suboptimal search algorithms have been proposed, many of
which are based on the well known Weighted A* (wA*) al-
gorithm (Pohl 1973). wA* is a best-first search using the
f ′(n) = g(n) + w · h(n) evaluation function. However, it
still maintains open and closed lists. Ideally, bounded subop-
timal searches generate fewer nodes than optimal searches
and therefore run faster and use less memory. However, for
large problems or tight suboptimality bounds, they can still
run out of memory.

Linear-space search algorithms are designed for diffi-
cult problems where the open and closed lists would ex-
haust memory. A linear-space search algorithm only requires
memory that is linear in the depth of the search. Exam-
ples of linear space algorithms include IDA* (Korf 1985),
RBFS (Korf 1993) and their bounded suboptimal equiva-
lents Weighted IDA* and Weighted RBFS (Korf 1993), de-
noted wIDA* and wRBFS, respectively.

All the algorithms mentioned above only exploit an ad-
missible heuristic. There has been much previous work over
the past decade demonstrating that an inadmissible but ac-
curate heuristic can be used effectively to guide search algo-
rithms (Jabbari Arfaee, Zilles, and Holte 2011; Samadi, Fel-
ner, and Schaeffer 2008). Inadmissible heuristics can even
be learned online (Thayer, Dionne, and Ruml 2011) and
used to speed up bounded suboptimal search (Thayer and
Ruml 2008; Thayer, Dionne, and Ruml 2011). One contribu-
tion of this paper is to demonstrate how inadmissible heuris-
tics can be used to speed up a linear space search while pre-
serving bounded suboptimality.

Furthermore, recent work has shown that wA* can per-
form very poorly in domains where edge costs are not uni-
form (Wilt and Ruml 2012). In such domains, an estimate
of the minimal number of actions needed to reach a goal
can be utilized as an additional heuristic to effectively guide
the search to finding solutions quickly. This is known as the
distance-to-go heuristic of a node, and denoted by d(n).
An efficient bounded suboptimal search algorithm called
EES has been developed that uses d(n), h(n) and an on-
line learned inadmissible heuristic ĥ(n) (Thayer and Ruml
2011). Unfortunately, like A*, EES must store all unique
nodes that are generated during search.

In this paper we present Iterative Deepening Explicit Esti-
mation Search (IDEES); a linear space bounded suboptimal
search algorithm that uses both admissible and inadmissible

Proceedings of the Sixth International Symposium on Combinatorial Search

98



heuristic estimates of cost-to-go as well as distance-to-go.
Experimental results on several benchmark domains show a
speed up of several orders of magnitude over wIDA* and
in some cases IDEES is the only algorithm capable of solv-
ing problems within a reasonable time bound. IDEES shows
that the notions behind EES, of using more than the tradi-
tional h(n) to guide the search, can be implemented beyond
openlist-based search and without requiring complex data
structures.

In the remainder of this paper we describe Weighted
IDA* (Korf 1993) in detail and prove its w-admissibility.
Then we describe Explicit Estimation Search (Thayer and
Ruml 2011), which forms the foundation for IDEES; our
linear space bounded suboptimal search algorithm. Then we
describe IDEES and prove its correctness. Finally, we show
experimental results illustrating the strengths and weak-
nesses of IDEES.

Weighted IDA*
Iterative-deepening A* (IDA*, Korf, 1985) is a heuristic
search that requires memory only linear in the maximum
depth of the search. This reduced memory complexity comes
at the cost of repeated search effort. IDA* performs itera-
tions of a bounded depth-first search where a path is pruned
if f(n) becomes greater than the threshold for the current it-
eration. After each unsuccessful iteration, the threshold is in-
creased to the minimum f value among the nodes that were
generated but not expanded in the previous iteration. This
value is denoted by minf .

Simply weighting the heuristic in IDA* results in
Weighted IDA* (wIDA*): a bounded suboptimal linear
space search algorithm. wIDA* is a linear space analogue
of wA*, which, like wA*, is also guaranteed to be w-
admissible. To the best of our knowledge, the proof for
wIDA* being w-admissible has never been published and
we provide it below.

Theorem 1 The solution returned by wIDA* is w-
admissible.

Proof: Let C be the cost of the goal returned by wIDA*
and assume by contradiction that C > w · C∗. Let ti be
the threshold used in the iteration when the goal node was
expanded. Since the goal node was expanded it holds that
C ≤ ti. On the other hand, the goal was not expanded in
the previous iteration, where the threshold was lower than
ti. Hence, at least one node p that is on the optimal path to
the goal has f ′(p) ≥ ti. Therefore:

C ≤ ti
≤ f ′(p)

≤ g(p) + w · h(p)
≤ w · (g(p) + h(p))

≤ w · C∗

This contradicts the assumption that C > w · C∗. 2

IDA*CR

Each iteration of IDA* and wIDA* expands a super set of the
nodes in the previous iteration. If the number of nodes ex-

panded in each iteration grows geometrically, then the num-
ber of nodes expanded by IDA* is O(n), where n is the
number of nodes that A* would expand (Sarkar et al. 1991).
In domains with non-uniform edge costs, there can be many
unique f values and the standard minimum-out-of-threshold
schedule of IDA* may lead to only a few new nodes being
expanded in each iteration. The number of nodes expanded
by IDA* can be O(n2) in the worst case when the number
of new nodes expanded in each iteration is constant (Sarkar
et al. 1991).

To alleviate this problem, Sarkar et al. introduce IDA*CR.
IDA*CR tracks the distribution of f values during an iteration
of search and uses it to find a good threshold for the next it-
eration. This is achieved by selecting the threshold that will
cause the desired number of pruned nodes to be expanded in
the next iteration. If the successors of these pruned nodes are
not expanded in the next iteration, then this scheme is able to
accurately double the number of nodes between iterations. If
the successors do fall within the threshold on the next itera-
tion, then more nodes may be expanded than desired.

Since the threshold is increased liberally, the search can-
not immediately halt when a goal is expanded. To verify
optimality IDA*CR is required to check that all other nodes
in the current iteration do not lead to a solution with cost
C ′ < C, where C is the cost of the incumbent solution.
This can be done by performing branch-and-bound on the
remaining nodes in the final iteration, pruning nodes with
f ≥ C, and updating C if a goal is found with lower cost.

wIDA*CR

Using a weighted evaluation function for wIDA* can result
in many distinct f values, resulting in too few extra expan-
sions at every threshold. To handle this, we propose combin-
ing wIDA* with the threshold setting mechanism of IDA*CR.
Instead of keeping track of the distribution of f values of the
pruned nodes, as in IDA*CR, we keep track of the distribu-
tion of f ′ values. This distribution is used to set the threshold
of the next iteration to cause the desired number of pruned
nodes to be expanded. We will see below that wIDA*CR is
superior to regular wIDA* for domains with non-uniform
edge costs.

The stopping condition for wIDA*CR is also different than
that of IDA*CR. To verify w-admissibility in wIDA*CR, it is
necessary to check that all other nodes in the current itera-
tion do not lead to a solution of cost C ′, where C > w · C ′.
This can be done by performing branch-and-bound on the
remaining nodes in the final iteration, pruning nodes with
w · f ≥ C, and updating C if a goal is found with lower
cost. We also use this pruning rule and branch-and-bound
approach in our IDEES algorithm, which will be explained
later in this paper.

Explicit Estimation Search
The motivating logic behind wIDA* is similar to that of
wA*: searching with an evaluation function f ′ = g + w · h
is expected to lead to finding a solution faster as w is in-
creased. Recent work, however, has shown that this is not
always the case (Wilt and Ruml 2012). In particular, in do-
mains with non-uniform edge cost, increasing w does not

99



necessarily cause the search to find a solution faster and in
fact can have no correlation with the speed of the search.
In non-uniform edge cost domains it is useful to distin-
guish between the distance-to-go of a node n — the length
of the shortest path from n to a goal, and the cost-to-go
of a node n — the cost of the lowest-cost path from n to
a goal. Several efficient bounded suboptimal search algo-
rithms have been proposed (Thayer, Ruml, and Kreis 2009;
Thayer and Ruml 2011) that exploit two heuristic estimates:
an estimate of cost-to-go h(n) and an estimate of distance-
to-go d(n).

In addition to d(n) and h(n), the state-of-the-art bounded
suboptimal search algorithm Explicit Estimation Search
(EES, Thayer and Ruml, 2011) also uses information
learned during the search to guide the search. EES constructs
and uses unbiased but possibly inadmissible estimates of the
distance-to-go and cost-to-go, denoted by d̂(n) and ĥ(n),
respectively. Similarly, f̂(n) = g(n) + ĥ(n) is the inadmis-
sible counterpart of f(n). These online learned estimates are
generated using a domain independent method that attempts
to generalize the error of the heuristic that is observed in
a single step (Thayer, Dionne, and Ruml 2011). EES uses
these inadmissible estimates and maintains three relevant
data structures to track the following nodes in the open list
(OPEN):

bestf = argmin
n∈OPEN

f(n)

bestf̂ = argmin
n∈OPEN

f̂(n)

bestd̂ = argmin
n∈OPEN∧f̂(n)≤w·f̂(best

f̂
)

d̂(n)

bestf provides a lower bound on the cost of an optimal
solution, bestf̂ provides the estimated optimal solution cost
using the corrected cost-to-go estimate and bestd̂ is the node
that is estimated to be closest to the goal among all nodes
that are estimated to lead to goals within the suboptimality
bound w. EES uses the following rule to chose which node
to expand:

1. if f̂(bestd̂) ≤ w · f(bestf ) then bestd̂
2. else if f̂(bestf̂ ) ≤ w · f(bestf ) then bestf̂
3. else bestf

In this way, EES attempts to pursue d̂, the node leading
to the nearest estimated goal that is estimated to be within
the suboptimality bound. While shown to be very effective
in a wide range of domains, EES still stores every node it
generates in memory.

Iterative Deepening EES
In this section we propose a linear space algorithm that
uses the same admissible and inadmissible estimates used
by EES, and follows the same intuition of pursuing the near-
est goal estimated to be within the bound. We call this algo-
rithm Iterative Deepening EES (IDEES). IDEES takes ad-
vantage of both distance-to-go and cost-to-go heuristic es-

IDEES(init)
1. incf ←∞
2. tf̂ ← h(init), tl̂ ← d(init)

3. minf ←∞
4. while incf > w ·minf

5. minfnext ←∞
6. if DFS(init) break
7. minf ← minfnext
8. tf̂ ← NEXT-THRESH(data f̂ )

9. tl̂ ← NEXT-THRESH(data l̂)
10. return incumbent

DFS(n)
11. if n is a goal
12. if f(n) < incf
13. incumbent ← n
14. return incf ≤ w ·minf

15. else if incf =∞ AND (f̂(n) > w · tf̂ OR l̂(n) > tl̂)
16. prune n
17. minfnext ← min(minfnext , f(n))
18. else if incf <∞ AND incf ≤ w · f(n)
19. prune n
20. else
21. for child ∈ expand(n)
22. OBSERVE(data f̂ , f̂(child))

23. OBSERVE(data l̂, l̂(child))
24. if DFS(child)), return true
25. return false

Figure 1: Pseudo-code for IDEES.

timates (h(n) and d(n), respectively), and their online cor-
rected counterparts (ĥ(n) and d̂(n), respectively).

IDEES, like wIDA*, runs a sequence of limited depth-
first search iterations but instead of maintaining a single
threshold of minf , it maintains two thresholds: tl̂ and tf̂ .

By l̂(n) we denote the distance analogue of f̂ : the poten-
tially inadmissible estimate of the total distance from the
root to the nearest solution under n. The first threshold, tl̂,
is a distance-based threshold, pruning nodes that are esti-
mated to be on a path to a goal that is more than tl̂ steps
from the start state. This is estimated by pruning nodes with
l̂(n) = depth(n) + d̂(n) > tl̂, where depth(n) is the dis-
tance between n and the start state. The second threshold,
tf̂ , is a cost-based threshold, pruning nodes on the basis of
an inadmissible heuristic. This is estimated by pruning nodes
with f̂(n) = g(n)+ĥ(n) > tf̂ . Thus, in an IDEES iteration,

a node n is pruned (i.e, not expanded) if either l̂(n) > tl̂ or
f̂(n) > tf̂ .

Figure 1 lists the pseudo code of IDEES. IDEES main-
tains three values: the cost based threshold tf̂ , the distance
based threshold tl̂ and the cost of the best solution seen so
far (the incumbent solution), denoted by incf and initialized
to∞ (line 1 in the pseudo code from Figure 1). In every iter-

100



S A B 
𝑓 (A)=10 

𝑙 (A)=3 

G 

𝑓 (B)=10 

𝑙 (B)=1 

D 

E F 

𝑓 (D)=10 

𝑙 (D)=3 

𝑓 (E)=10 

𝑙 (E)=2 

𝑓 (F)=10 

𝑙 (F)=1 

𝑓 (S)=5 

𝑙 (S)=1 

Figure 2: An example in which IDEES behaves well. IDEES
would expand only S,B and G while wIDA* would expand
all the nodes except B.

ation of IDEES, a limited depth-first search is executed (line
6, and described in lines 11–25). During an IDEES itera-
tion, nodes with either l̂(n) > tl̂ or f̂(n) > w · tf̂ are pruned

(lines 15-16). The f̂ of every pruned node is recorded in
dataf̂ , which is a histogram of observed f̂ values and the
number of pruned nodes with that value (line 22). This his-
togram is used to set the f̂ threshold for the next iteration,
as is done in IDA*CR(line 8). Similarly, the l̂ of every pruned
node is stored in datal̂ (line 23) and is used for setting the l̂
threshold (line 9).

If a goal is found, the value of incf is updated (lines 11-
14). Once a goal is found, the purpose of the iteration be-
comes to prove that the goal is w-admissible (or to find a
goal that is). Therefore, nodes are pruned or expanded only
according to their w · f value. Nodes with w · f ≥ incf
are pruned (line 18-19), while nodes with w · f < incf are
expanded, regardless of their l̂ and f̂ (line 15).

To determine when it can halt, IDEES maintains in ev-
ery iteration the minimal f value seen for all pruned nodes
(this is stored in minfnext , see line 17). When IDEES fin-
ishes a complete iteration, the value of minfnext is stored in
minf , and serves as a lower bound on the optimal solution
(line 7). Thus, if incf ≤ w · minf IDEES can halt with
a w-admissible solution (line 4). Note that even during the
iteration, IDEES can halt immediately when an incumbent
solution is found for which it holds that incf ≤ w · minf

(lines 14 and 24).
Figure 2 shows an example in which IDEES behaves well.

Assume that S is the start node, G is the goal node and the
node ordering used by all algorithms is to evaluate A before
B. Each node is labeled with its f̂ value and l̂ value. Running
wIDA* will result in expanding all the nodes: S, A, D, E, F ,
G. By contrast, running IDEES will only result in expanding
nodes S, B and G, as the distance threshold tl̂ would be
initially set to 1, pruning node A.

Figure 3 shows a pathological case for IDEES. As in Fig-
ure 2, S is the start node and G is the goal node and the
node ordering used by all search algorithms expands A be-
fore B. However, in Figure 3 the l̂ estimates are misleading,
causing IDEES to have 4 iterations while wIDA*will only
have a single iteration where it expands all the nodes. Note
that in general IDEES uses CR to avoid such redundant it-

S A B 
𝑓 (A)=10 

𝑙 (A)=1 

G 

𝑓 (B)=10 

𝑙 (B)=4 

D 

E F 

𝑓 (D)=10 

𝑙 (D)=2 

𝑓 (E)=10 

𝑙 (E)=3 

𝑓 (F)=10 

𝑙 (F)=4 

𝑓 (S)=5 

𝑙 (S)=1 

Figure 3: A pathological example of IDEES behavior.
IDEES would expand all the nodes, requiring four iterations
while wIDA* would require only a single iteration. This oc-
curs when the heuristic estimates are very misleading.

erations. However, in this case CR is not able to guess the
fitting threshold for l̂ to expand enough nodes to be efficient.

Theoretical Analysis
Next we prove formally that IDEES returns solutions that
are w-admissible.

Weighted IDA* simply stops when a goal node is ex-
panded and a bounded suboptimal solution is guaranteed.
As with wIDA*CR, stopping IDEES when the first goal node
has been expanded may not guarantee w-admissibility. This
is especially true in IDEES, since nodes may be pruned ac-
cording to either tl̂ or tf̂ . To overcome this, we must con-
tinue the search until the cost of the incumbent solution is
within a factor w of the cost of the optimal solution. This
is done by keeping track of the minimal f value of all the
pruned nodes (minf ), and only halting when the incumbent
solution is smaller than w ·minf (line 4 in the pseudo-code
shown in Figure 1).

Theorem 2 IDEES is guaranteed to return a solution that
is w-admissible.

Proof: At every iteration IDEES keeps track of minf of all
nodes that have been pruned and terminates only when it
has found a goal node n such that f(n) ≤ w · minf (lines
4, 6, 14 and 17). Therefore, when IDEES terminates and
returns the incumbent, it is w-admissible. 2

Setting the Cost and Distance Thresholds
A key component that affects the performance of IDEES
is how the tf̂ and tl̂ thresholds are updated. In our experi-
ments and in the description above, we have used the same
approach taken by IDA*CR by maintaining a distribution of
observed f̂ and l̂ values and choosing the thresholds such
that the number of nodes that will be expanded in the next
iteration and were pruned in the previous iteration is dou-
bled. However, other options to set the thresholds exist. For
example, one can set the tf̂ threshold to the minimum f̂(n)

of all pruned nodes for each iteration, and similarly set tl̂
to the minimum l̂(n) of all pruned nodes for each iteration.
More sophisticated threshold setting mechanisms might also
be considered (Burns and Ruml 2012).

101



15 Puzzle Unit Cost

Suboptimality Bound
1.51.41.31.21.1

T
o
ta

l 
N

o
d
e
s 

E
x
p
a
n
d
e
d
 (
lo

g
)

24

21

wIDA*

wIDA*cr

IDEES

15 Puzzle Unit Cost

Suboptimality Bound
1.51.41.31.21.1

T
o
ta

l 
W

a
ll
 T

im
e
 (
lo

g
)

8

6

4

wIDA*

wIDA*cr

IDEES

15 Puzzle Sqrt Cost

Suboptimality Bound
1.51.41.31.21.1

T
o
ta
l 
N
o
d
e
s 
E
x
p
a
n
d
e
d
 (
lo
g
)

22

20

wIDA*cr

IDEES

15 Puzzle Sqrt Cost

Suboptimality Bound
1.51.41.31.21.1

T
o
ta
l 
W
a
ll
 T
im

e
 (
lo
g
)

7

6

5

wIDA*cr

IDEES

Figure 4: Comparison between IDEES, wIDA* and wIDA*CR on Korf’s 100 15 puzzles. Plots show the total time in seconds
and total number of nodes expanded for solving all 100 instances.

Weight Time Expanded
wIDA*CR 1.2 186,061 32,077,127,188

1.3 37,158 6,357,882,067
1.4 7,602 1,297,420,767
1.5 1,531 259,623,405

IDEES 1.2 5,676 355,001,273
1.3 419 29,998,895
1.4 217 16,148,375
1.5 127 9,308,167

Table 1: Performance summary on Heavy Pancakes. Table
shows the total time in seconds and the total number of
nodes expanded for solving all 100 instances.

Experimental Results
For our experiments we implemented IDEES and wIDA*
and compared them on two permutation puzzle domains
with a variety of edge cost functions. We use many of the op-
timizations recommended by Burns et al. (2012) and Hatem
et al. (in press) . For the algorithms that incorporate the CR
threshold setting technique we set the number of buckets to
100. All of our experiments were run on a machine with a
dual-core 3.16 GHz processor and 8 GB of RAM running
Linux. We implemented our algorithms in Java and com-
piled with OpenJDK 1.6.0.24.

Unit Costs
To see if IDEES can be competitive on a standard unit
cost benchmark we first compared IDEES to wIDA* and
wIDA*CR on the 15 puzzle with unit costs and the Manhat-
tan distance heuristic. In these experiments we used subop-
timality bounds ranging from 1.1 to 1.5. It has been shown
that Weighted A* performs better than EES on this domain
even though EES expands fewer nodes. This is because of
the significant overhead associated with managing the multi-
ple priority queues that EES uses. IDEES does not have this
overhead and therefore has a much higher expansion rate.

The first two plots in Figure 4 show the total number of
nodes expanded and the total wall time for solving all in-
stances of Korf’s 100 15 puzzles. In all cases IDEES ex-
pands many fewer nodes and solves all instances in less

time than IDA*CR. IDEES is able to prune parts of the
search space that have higher distance-to-go, finding w-
admissible solutions faster than wIDA*CR. For most subop-
timality bounds, wIDA*CR is faster than plain wIDA*. For
certain suboptimality bounds IDA* has extremely fast ex-
pansion rates and is able to solve problems faster.

Real Costs
We can modify the edge cost function of the 15 puzzle to
have real values by taking the square root of the tile as the
cost for moving it. For example, exchanging the blank tile
with the 3 tile would cost

√
3. IDA* performs poorly on do-

mains where edge costs do not fall within a narrow range of
integers — this was the original motivation for the thresh-
old setting technique of IDA*CR (Sarkar et al. 1991). Our
implementation of IDEES uses this same threshold setting
technique for setting tf̂ and tl̂. The next two plots in Fig-
ure 4 show the total number of nodes expanded and the total
wall time for solving all instances of Korf’s 100 15 puzzles
with the sqrt cost function. In all cases IDEES expands fewer
nodes and solves all instances in less time.

We also evaluated the performance of these algorithms on
the heavy pancake puzzle using the gap heuristic. In this do-
main each pancake, in a single stack of pancakes, begins in
an initial position and has a desired goal position. The ob-
jective is to flip portions of stack until all pancakes are in
their goal positions. The gap heuristic is a type of landmark
heuristic that counts the number of non adjacent pancakes or
“gaps” above each pancake in the stack. The gap heuristic
has been shown to be very accurate; outperforming abstrac-
tion based heuristics.

In heavy pancakes, each pancake is given an id {1...N}
where N is the number of pancakes and the cost to flip a
pancake is the value of its id. This produces a wide range
of integer edge costs. In our experiments we used 100 ran-
dom instances of the heavy pancake puzzle with N set to
14. wIDA*CRrequired over 2 days to solve all instances with
a suboptimality bound of 1.2 and over 10 hours to solve all
instances with a suboptimality bound of 1.3. IDEES is over
32 times faster, solving all instances with a suboptimality
bound of 1.2 in just 1.5 hours, and is significantly faster with
other bounds; expanding many fewer nodes than wIDA*. Ta-

102



ble 1 shows the total number of nodes expanded and the total
wall time for solving all instances.

We found IDEES to perform poorly compared to wIDA*
on large unit cost pancake puzzles using the gap heuristic
and an inadmissible heuristic learned using single step error.
In this setting the heuristic is very accurate and the inadmis-
sible heuristic overestimates. IDA* is able to find solutions
quickly, being guided by the accurate heuristic while IDEES
eagerly prunes many possible paths to the goal because it is
guided by an inadmissible heuristic that makes these paths
look unpromising. IDEES is most advantageous when d(n)
provides additional information beyond h(n).

Discussion

Like IDA*, IDEES suffers on search spaces that form highly
connected graphs. Because it uses depth-first search, it can-
not detect duplicate search states except perhaps those that
form cycles in the current search path. This problem, which
is intrinsic to IDA*, motivates the use of a transposition table
or closed list. IDEES combined with a closed list is easier
to implement than EES, because it does not require com-
plex datastructures. Furthermore, IDEES may even perform
faster than EES, as the overhead per node is smaller. This is
an exciting direction for future work.

However, even with checking for duplicates via a closed
list, the search can still perform poorly if there are many
paths to each node in the search space. If the search first ex-
pands a node via a suboptimal path, it will have to re-expand
it again later when it finds the same state by a better path.
Because of this, iterative deepening techniques like IDA* or
IDEES are not suitable for every domain.

In our implementation of IDEES, we prune nodes accord-
ing to tf̂ and tl̂ thresholds. At each iteration we update these
thresholds using the CR technique. We tried a few varia-
tions for updating the thresholds, including taking the min-
imum value observed during an iteration and only updat-
ing the tl̂ threshold when minf does not change. We found
that IDEES performed best when using the CR technique
and updating both thresholds at every iteration regardless of
changes to minf . When IDEES finds an incumbent, it must
visit all nodes n such that w·f(n) < f(incumbent) in order
to prove the incumbent is w-admissible. When IDEES finds
an incumbent, one potential strategy is to prune all nodes
n such that w ∗ f(n) ≥ f(incumbent). However, in our
implementation we still prune such nodes according to the
tf̂ and tl̂ thresholds as it is possible for IDEES to find an
incumbent with better f .

Recursive Best First Search (RBFS) is another linear
space search algorithm (Korf 1993). One can construct an-
other bounded suboptimal search by weighting the heuristic
in RBFS (wRBFS). We would expect wRBFS to perform
significantly worse than IDEES because it does not take ad-
vantage of distance-to-go estimates or accurate, inadmissi-
ble heuristics. Investigating this empirically and seeing how
the ideas of EES and IDEES might be combined with RBFS
is an interesting direction for future work.

Conclusion
EES is an effective bounded suboptimal search that is capa-
ble of exploiting inadmissible heuristics and distance-to-go
estimates to find solutions faster than other bounded subop-
timal search algorithms such as wA*. However, EES stores
every unique node that it generates, its implementation is
non-trivial, and its node expansions can be expensive com-
pared to other algorithms such as wIDA* and even wA*. In
this paper we presented IDEES, a linear space analogue to
EES. IDEES is simple to implement and because it does not
maintain any priority queues, its expansion rate is similar to
wIDA*. The results of our experiments show that IDEES can
expand fewer nodes and find w-admissible solutions faster
than wIDA*. It also demonstrates that the ideas of EES ex-
tend to linear space heuristic search algorithms.

Acknowledgments
We gratefully acknowledge support from the NSF (grants
0812141 and 1150068) and DARPA (grant N10AP20029).

References
Burns, E., and Ruml, W. 2012. Iterative-deepening search
with on-line tree size prediction. In Learning and Intelligent
OptimizatioN Conference (LION), 1–15.
Burns, E.; Hatem, M.; Leighton, M. J.; and Ruml, W. 2012.
Implementing fast heuristic search code. In Proceedings of
the Symposium on Combinatorial Search (SoCS).
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions of Systems Science and Cybernet-
ics SSC-4(2):100–107.
Hatem, M.; Burns, E.; and Ruml, W. in press. Faster prob-
lem solving in Java with heuristic search. IBM developer-
Works.
Jabbari Arfaee, S.; Zilles, S.; and Holte, R. C. 2011. Learn-
ing heuristic functions for large state spaces. Artificial Intel-
ligence 175(16-17):2075–2098.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence 27(1):97–
109.
Korf, R. E. 1993. Linear-space best-first search. Artificial
Intelligence 62(1):41–78.
Pohl, I. 1973. The avoidance of (relative) catastrophe,
heuristic competence, genuine dynamic weighting and com-
putation issues in heuristic problem solving. In Proceedings
of International Joint Conference on Artificial Intelligence
(IJCAI), 12–17.
Samadi, M.; Felner, A.; and Schaeffer, J. 2008. Learning
from multiple heuristics. In Proceedings of the Association
for the Advancement of Artificial Intelligence (AAAI).
Sarkar, U.; Chakrabarti, P.; Ghose, S.; and Sarkar, S. D.
1991. Reducing reexpansions in iterative-deepening search
by controlling cutoff bounds. Artificial Intelligence 50:207–
221.
Thayer, J. T., and Ruml, W. 2008. Faster than weighted
A*: An optimistic approach to bounded suboptimal search.

103



In Proceedings of International Conference on Automated
Planning and Scheduling (ICAPS).
Thayer, J. T., and Ruml, W. 2011. Bounded suboptimal
search: A direct approach using inadmissible estimates. In
Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI).
Thayer, J. T.; Dionne, A.; and Ruml, W. 2011. Learning in-
admissible heuristics during search. In Proceedings of Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS).
Thayer, J. T.; Ruml, W.; and Kreis, J. 2009. Using distance
estimates in heuristic search: A re-evaluation. In Proceed-
ings of the Symposium on Combinatorial Search (SoCS).
Wilt, C. M., and Ruml, W. 2012. When Does Weighted A*
Fail? In Proceedings of the Symposium on Combinatorial
Search (SoCS).

104




