
Planning Paths with Fewer Turns on Grid Maps

Hu Xu and Lei Shu and May Huang
AI Research Laboratory

International Technological University
San Jose, CA, USA

aaronhuxu@gmail.com leishu02@gmail.com mhuang@itu.edu

Abstract

In this paper, we consider the problem of planning any-
angle paths with small numbers of turns on grid maps.
We propose a novel heuristic search algorithm called
Link* that returns paths containing fewer turns at the
cost of slightly longer path lengths. Experimental re-
sults demonstrate that Link* can produce paths with
fewer turns than other any-angle path planning algo-
rithms while still maintaining comparable path lengths.
Because it produces this type of path, artificial agents
can take advantage of Link* when the cost of turns is
expensive.

Introduction
In robotics and video games, grids with blocked and un-
blocked cells are commonly used as navigation maps (Yap
2002). On these grids, the path planning problem is usu-
ally defined as finding a non-blocked path between two ver-
tices, which can be solved as standard shortest path prob-
lem. To save running time, A* (Hart, Nilsson, and Raphael
1968) and its variants use heuristic search to provide opti-
mal or sub-optimal solutions. Furthermore, any-angle path
planning algorithms improve A* by not constraining head-
ing changes on the paths along grid edges. Among these al-
gorithms, Theta* (Nash et al. 2007; Daniel et al. 2010) pro-
duces any-angle paths with shorter lengths and fewer head-
ing changes (a.k.a turns) by a line-of-sight check at every
node expansion.

Because they do not figure the number of heading changes
into path quality determination, these shortest-path algo-
rithms can easily produce paths with many unnecessary
turns. In practice, paths with fewer turns are sometimes pre-
ferred when turning costs are high. For example, in trajec-
tory planning of robotics, this kind of path can simplify con-
trol complexity (Choset et al. 2005); robotic vehicles can
also maintain a higher average speed by following a path
smoothed from this kind of path. In order to meet these
needs, minimizing turns is factored into the determination
of path quality. In computational geometry, this is known
as the minimum-link path problem: given a set of disjoint
simple polygons with n vertices and two points s and g,

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the minimum-link path is a polygonal chain connecting s
to g with the minimum number of edges without intersect-
ing the polygons. Given a fixed starting point and a sim-
ple polygon without holes, such a path can be generated in
O(log n) query time after O(n) preprocessing time (Suri
1986). Path queries between any two points can be gener-
ated after O(n3) preprocessing time (Arkin, Mitchell, and
Suri 1992). Given a fixed starting point and a set of dis-
joint simple polygons, a path can be generated after O(n4)
preprocessing time (Mitchell, Rote, and Woeginger 1990;
1992). When applied to grids, similar to computing shortest-
path using a visibility graph on grids (Nash et al. 2007;
Daniel et al. 2010), these algorithms take expensive running
time.

Extending from the minimum-link path problem, we pro-
pose a heuristic search algorithm producing any-angle paths
with fewer turns on grid maps. Borrowing the term “link”
from computational geometry, we named our algorithm
“Link*”. Link* encompasses three related algorithms: Basic
Link*, Enhanced Link* and Weighted Link*. Experimental
results show that Link* produces paths with fewer than 60%
of the turns and no more than 122% of the path length of
those produced by Theta*, while their running times remain
comparable.

In this paper, we first describe grid map representation
and notation; we review Theta* and the framework; and then
we present three Link* algorithms: Basic Link*, Enhanced
Link* and Weighted Link*. After that, we provide experi-
mental results comparing Link* with A* and Theta*.

Preliminaries
In this section, we briefly review grid map representation
and notation. Then, we describe the Theta* algorithm and
the framework that is used by Link*.

Grid Map Representation and Notation
There are two major grid map models: corner-vertex and
center-vertex (Choi and Yu 2011), as depicted in Figure 1.
The corner-vertex model defines all vertices at the corners
of square cells. The center-vertex model defines vertices at
the centers of square cells. We use the corner-vertex model
for grid maps in this paper, but Link* can be applied to ei-
ther model. We assume each vertex has eight neighboring
vertices and non-blocked paths can pass through the vertex

Proceedings of the Sixth International Symposium on Combinatorial Search

193

$

(a) Corner-vertex model

$

(b) Center-vertex model

Figure 1: Two models of grid representation

shared diagonally by two blocked cells, as depicted in Fig-
ure 2.

$ $ $

Figure 2: Examples of paths passing through the vertex
shared diagonally by two blocked cells

Let S be a set of all vertices in grids and s be a vertex
in S. Let the vertex sequence: sss1 . . . snsg denotes a non-
blocked path connecting the start vertex ss to the goal vertex
sg . Three consecutive vertices in this sequence can form a
turn (heading change). A vertex sequence with n+2 vertices
has exactly n turns.

Theta* and the Framework
Theta* (Nash et al. 2007; Daniel et al. 2010) differs from
A* primarily in that it can perform any-angle path plan-
ning. Link* algorithm proposed in this paper is based on the
framework of Theta*.

Each vertex s in Theta* contains three values: a parent
pointer p(s), an f -value f(s) and a g-value g(s). The parent
vertex pointer p(s) stores the pointer to the previous vertex
of s in the path between s and the start vertex ss. The f -value
is defined as a distance function: f(s) = g(s) +h(s), where
g(s) is the g-value that represents the length of currently
obtained path between ss and s and h(s) is the Euclidean
distance between s and sg . Initially, p(ss), f(ss) and g(ss)
are initialized as ss, the Euclidean distance from ss to sg
and 0, respectively; p(s), f(s) and g(s) of other vertices are
initialized as NULL, infinity and infinity accordingly. The
expansion operation of a vertex s examines its visible neigh-
boring vertices and updates three values of these vertices,
accordingly.

The framework of Theta* is described in Algorithm 1,
which maintains two global sets of vertices: an open set
O and a closed set C, where O keeps track of all ver-
tices to be expanded and C contains all expanded vertices.
A priority queue is built on top of O to enable the query
of the vertex with the smallest f -value. Initially, vertex ss
is initialized by procedure InitializeVertex(s) and put into
O = {ss}. Then vertex se = ss is expanded and moved
from O to C. Procedure VisibleNeighbors(se) only returns

Algorithm 1: The Framework of Theta*
Input: a grid map with blocked and unblocked cells, a

start vertex ss and a goal vertex sg .
Output: a non-blocked path connecting ss to sg .

InitializeVertex(ss)
O ← ss
C ← ∅
while O 6= ∅ do

remove se with the smallest f -value from O
if se = sg then

return ExtractPath(ss, sg)
end
C ← C ∪ {se}
//Vertex Expansion
foreach sc ∈ VisibleNeighbors(se) do

if sc /∈ C then
if sc /∈ O then

InitializeVertex(sc)
end
if LineofSight(p(se), sc) then

ChoosePath1(se, sc)
else

ChoosePath2(se, sc)
end

end
end

end
return NULL //Path Not Found

visible neighbors of se. During vertex expansion, every ver-
tex sc ∈VisibleNeighbors(se) is examined and all vertex
values are updated and then sc is added into O if not al-
ready in it and priority queue is updated. Algorithm 1 keeps
expanding vertices and terminates only when the goal ver-
tex sg is expanded or every vertex in the same connected
component as ss in grid graph is expanded. The former case
indicates a path is found and ExtractPath(ss, sg) retrieves
the path by repeatedly following parent vertex from sg to
ss. The latter case indicates that sg is not reachable from ss.

When sc is visited as a visible neighbor of se,
the framework examines p(sc) based on the procedure
LineofSight(p(se), sc), which checks whether vertex sc is
visible to p(se) using Brensenham’s algorithm (Bresenham
1965). It updates p(sc) and f(sc) by considering the follow-
ing two paths:

• Path1: when LineofSight(p(se), sc) returns true,
ChoosePath1(se, sc) evaluates the new path from ss to
p(se) and from p(se) to sc and updates vertex values if
necessary. Theta* updates sc by computing the length of
the new path from ss to p(se) and from p(se) to sc. If
the new path is shorter than g(sc), Theta* updates p(sc),
f(sc) and g(sc) for the new path.

• Path2: when LineofSight(p(se), sc) returns false,
ChoosePath2(se, sc) evaluates the new path from ss to se
and from se to sc and updates vertex values if necessary.

194

When update happens, a new turn is introduced at vertex
se. Theta* updates sc by computing the length of the new
path from ss to se and then from se to sc. If this path is
shorter than g(sc), it updates p(sc), f(sc) and g(sc) for
the new path.

(a) Path1 (b) Path2

Figure 3: Path1 and path2 of the framework of Theta*

Figure 3 illustrates an example of the choice between
path1 and path2. When the bottom right cell is an unblocked
cell, vertex sc is visible to vertex p(se). Vertex p(se) is con-
sidered as the parent of sc. In this case path1 is formed,
which allows the generation of any-angle paths. When the
bottom right cell is a blocked cell, vertex sc is not visible to
p(se). Vertex se is considered as the parent of sc and path2
is formed.

Algorithm 2: Basic Link* Algorithm
InitializeVertex(s)
if s = ss then

p(s)← ss
fB(s)← 0

else
p(s)← NULL
fB(s)←∞

end

ChoosePath1(se, sc)
f ′B(sc)← fB(p(se)) + Θ(sg, p(se), sc)
if f ′B(sc) < fB(sc) then

p(sc)← p(se)
fB(sc)← f ′B(sc)
if sc /∈ O then

O ← O ∪ {sc}
end

end

ChoosePath2(se, sc)
f ′B(sc)← fB(se) + Θ(sg, se, sc)
if f ′B(sc) < fB(sc) then

p(sc)← se
fB(sc)← f ′B(sc)
if sc /∈ O then

O ← O ∪ {sc}
end

end

Link*
Since Theta* finds sub-optimal shortest paths, simply
changing it may not work for planning paths with fewer
turns. For example, if we take the edge cost as 1 rather than
its length, we can simply count the number of turns and take
it as part of the f -value. This causes a tie-breaking problem
since lots of different paths may have the same number of
turns. It’s also hard to find a good heuristic value (h(s) of
Theta*). So it may be difficult for this algorithm to reach the
goal vertex.

We choose the framework of Theta* as the main proce-
dure of our solution and take angle values into f -values.
We present three variants of Link*: Basic Link*, Enhanced
Link* and Weighted Link*. Basic Link* is fast and easy to
implement. Enhanced Link* improves path quality and pro-
duces shorter paths than Basic Link*. Weighted Link* can
provide a better balance between number of turns and vertex
expansions than Basic Link* and Enhanced Link* by con-
trolling the f -value.

Basic Link*
The f -value of each vertex in Basic Link* and its two vari-
ants is derived from angles formed by grid vertices.

Given three points A, B and C in the plane, the angle
formed by vectors −−→AB and −→AC is calculated as follows :

Θ(B,A,C) =


0, if A = B or A = C (null vector);

arccos

(−−→
AB·
−→
AC

‖
−−→
AB‖·‖

−→
AC‖

)
, otherwise.

Let sss1 . . . si . . . sk denotes a non-blocked path connect-
ing ss to sk on grids. Given the goal vertex sg , the backward-
angle of vertex si is defined as Θ(sg, si−1, si), where 1 ≤
i ≤ k. The α-value of vertex sk is the sum of all backward-
angles of vertices along the path from s1 to sk:

α(sk) =

k∑
i=1

Θ(sg, si−1, si).

In Basic Link*, the f -value of vertex sk is simply defined
as:

fB(sk) = α(sk).

Algorithm 2 describes Basic Link*. We skip the frame-
work of Theta* and only provide procedures related to ver-
tex updates. Each vertex of Basic Link* contains only two
values: a parent vertex p(s) and an f -value f(s). In proce-
dure InitializeVertex, the value p(ss) and the value f(ss) of
the start vertex ss are initialized as ss and 0, respectively;
the value p(s) and the value f(s) of the other vertices are
initialized as NULL and infinity accordingly, which indicate
unknown.

Let f ′B(sc) denote the f -value of vertex sc for the new
path to be evaluated between ss and sc. When considering
Path1, we compute f ′B(sc) for the new path from vertex ss
to p(se) and from p(se) to sc by adding Θ(sg, p(se), sc) to
fB(p(se)). If f ′B(sc) is smaller than fB(sc), Algorithm 2
will update p(sc) and fB(sc).

195

Similarly, when considering Path2, we compute f ′B(sc)
for the new path from vertex ss to se and from se to sc.
If f ′B(sc) is smaller than fB(sc), Algorithm 2 will update
p(sc) and fB(sc) and a new turn is formed at vertex se.

Figure 4: Example trace of Basic Link* with f -values and
parent pointers (1)

Figure 5: Example trace of Basic Link* with f -values and
parent pointers (2)

Figure 4 to 6 illustrate an example trace of Basic Link*.
The vertices are labeled with their f -values in degrees. Ar-
rows of these vertices point to their parent vertices. Ver-
tex C1 and vertex F9 are ss and sg accordingly. As de-
picted in Figure 4, we put C1 into closed set C; expand
C1 and find D1, D2, C2, B2 and B1; compute their f -
values and put them into open set O. Since the f -value
of C2, Θ(F9, C1, C2), isequalto20.5◦ that is smaller than
other vertices in O, C2 will be expanded next. Because two
blocked cells are located on the right side of C2, no new
vertices are added into O. We choose D2 as the next ver-
tex being expanded and compute the f -values of E1, E2,
E3, D3 and C3. Among these vertices, E3 is visible to C1
so it’s f -value is the same as D2; D3 is blocked so it’s f -
value is Θ(F9, C1, D2) + Θ(F9, D2, D3), which is 40.3◦.
We then expand E3 and F4 and find F4 is blocked by ob-
stacles. As depicted in Figure 5, after a few steps, when the
f -value of C4 is higher than B2, we expand C2 instead of C4
as the next vertex. In this way, we skip the path with more

Figure 6: Example trace of Basic Link* with f -values (3)

turns. We keep exploring grids until F9 is expanded and find
a path from C1 to F9, as depicted in Figure 6. Please notice
that the last edge of the path is parallel to y-axis, which is
constrained on one of grid edge directions.

Figure 7 shows a comparison of paths generated by Basic
Link* and Theta*. In this example, Basic Link* generates a
path with 4 fewer turns by not following the convex bound-
ary at the bottom of the map. A more ideal path with only
one turn is shown by the dashed line. Another set of traces is
shown in Figure 8, where Basic Link* generates a path with
9 fewer turns by passing through the upper tunnel. This path
is smoother but longer than the lower one with zigzag shape.

Ideal Path

Basic Link*

Theta*

Figure 7: Paths generated by Theta* and Basic Link* com-
pared with an ideal path

Enhanced Link*
Enhanced Link* is introduced to produce paths with more
natural turns and shorter length than those in the paths pro-
duced by Basic Link*. Sometimes, Basic Link* constrains
the direction of turns on the direction of grid edges. For ex-
ample, in Figure 6 and Figure 7, the last turns of the paths
generated by Basic Link* are constrained in multiples of
45◦.

Given a goal vertex sg , the forward-angle γ-value of ver-
tex sk is defined as:

γ(sk) = Θ(sk−1, sg, sk).

196

Basic Link*

Theta*

Figure 8: Comparison of paths generated by Theta* and Ba-
sic Link* in a map with two tunnels

In Enhanced Link*, the f -value of vertex sk is defined as:

fE(sk) = α(sk) + γ(sk).

Figure 9: Example trace of Enhanced Link* with f -values

Algorithm 3 describes Enhanced Link*. Each vertex s
contains an extra value α(s) to store the α-value, which is
initialized to be the same value as f(s).

Let α′(sc) and f ′E(sc) denote the α-value and f -value of
vertex sc for the new path to be evaluated between ss and
sc. When considering Path1, we compute α′(sc) and f ′E(sc)
for the new path from vertex ss to p(se) and from p(se) to
sc. Value α′(sc) is the sum of Θ(sg, p(se), sc) and α(p(se))
and value f ′E(sc) is the sum of γ(sc) and α′(sc). If f ′E(sc)
is smaller than fE(sc), Algorithm 3 will update p(sc), α(sc)
and fE(sc) for the new path.

Similarly, when considering Path2, we compute α′(sc)
and f ′E(sc) for the new path from vertex ss to se and from
se to sc. If f ′E(sc) is smaller than fE(sc), Algorithm 3 will
update p(sc), α(sc) and fE(sc).

Figure 9 illustrates an example trace of Enhanced Link*
using the same grids and ss and sg as Figure 6. Most f -
values of Enhanced Link* are higher than those of Ba-
sic Link*. For example, we compute the f -value of C2 as

Algorithm 3: Enhanced Link* Algorithm
InitializeVertex(s)
if s = ss then

p(s)← ss
α(s)← 0
fE(s)← 0

else
p(s)← NULL
α(s)←∞
fE(s)←∞

end

ChoosePath1(se, sc)
α′(sc)← α(p(se)) + Θ(sg, p(se), sc)
γ(sc)← Θ(p(se), sg, sc)
f ′E(sc)← α′(sc) + γ(sc)
if f ′E(sc) < fE(sc) then

p(sc)← p(se)
α(sc)← α′(sc)
fE(sc)← f ′E(sc)
if sc /∈ O then

O ← O ∪ {sc}
end

end

ChoosePath2(se, sc)
α′(sc)← α(se) + Θ(sg, se, sc)
γ(sc)← Θ(se, sg, sc)
f ′E(sc)← α′(sc) + γ(sc)
if f ′E(sc) < fE(sc) then

p(sc)← se
α(sc)← α′(sc)
fE(sc)← f ′E(sc)
if sc /∈ O then

O ← O ∪ {sc}
end

end

Θ(F9, C1, C2)+Θ(C1, F9, C2), which is 23.1◦. By adjust-
ing the f -values, Enhanced Link* finds paths with better
turning directions.

Another sample path generated by Enhanced Link* is
shown in Figure 10 in comparison with Basic Link*. Note
that Enhanced Link* outputs a slightly shorter path and that
the direction of the turns in this path is more natural.

Weighted Link*

Weighted Link* differs from Enhanced Link* in that it
weights angles. That is, it controls the balance between the
number of turns and vertex expansions by applying different
weights to backward-angles and forward-angles.

Let sss1s2 . . . sk be a non-blocked path connecting ss to
sk. Let ci be the weight function for the i-th backward-angle,
where 1 ≤ i ≤ k and c is a constant number. The α-value of

197

Enhanced Link*

Basic Link*

Figure 10: Sample paths of Enhanced Link* and Basic Link*

vertex sk is defined as:

αW (sk) =
k∑

i=1

ci ·Θ(sg, si−1, si).

The γ-value of vertex sk is defined as:

γW (sk) = ck ·Θ(sk−1, sg, sk).

The f -value of vertex sk is defined as follows:

fW (sk) = αW (sk) + γW (sk).

Note that when c = 1, Weighted Link* behaves the same as
Enhanced Link*.

Algorithm 4 describes Weighted Link*. Each vertex s
contains an extra l-value l(s) to store the number of
backward-angles in the path between ss and s. In procedure
InitializeVertex, l(ss) is initialized as 1 and l(s) of all other
vertices is initialized as infinity, which indicates unreach-
able.

Let l′(sc), α′W (sc) and f ′W (sc) denote the l-value, α-
value and f -value of vertex sc for the new path to be evalu-
ated between ss and sc. When considering Path1, we com-
pute l′(sc), α′W (sc) and f ′W (sc) for the new path from
vertex ss to p(se) and from p(se) to sc. The new path
between ss and sc has the same number of backward-
angles as the path between vertex ss and vertex se. Algo-
rithm 4 copies l′(sc) from l(se). Value α′W (sc) is the sum
of cl

′(sc) ·Θ(sg, p(se), sc) and αW (p(se)) and value f ′W (sc)
is the sum of γW (sc) and α′W (sc). If f ′W (sc) is smaller than
fW (sc), Algorithm 4 will update l(sc), p(sc), αW (sc) and
fW (sc).

Similarly, when considering Path2, we compute l′(sc),
α′W (sc) and f ′W (sc) for the new path from vertex ss to se
and from se to sc. The new path between ss and sc has one
more backward-angle at vertex se. The l′(sc) is assigned by
adding 1 to l(se). If f ′W (sc) is smaller than fW (sc), Algo-
rithm 4 will update l(sc), p(sc), αW (sc) and fW (sc).

Figure 11 illustrates an example trace of Weighted Link*
when c = 1.2. By adjusting f -values of Enhanced Link*,
Weighted Link* reduces one turn in the final path and still
maintains better turning direction.

Algorithm 4: Weighted Link* Algorithm
InitializeVertex(s)
if s = ss then

l(s)← 1
p(s)← ss
αW (s)← 0
fW (s)← 0

else
l(s)←∞
p(s)← NULL
αW (s)←∞
fW (s)←∞

end

ChoosePath1(se, sc)
l′(sc)← l(se)
α′W (sc)← αW (p(se))

+cl
′(sc) ·Θ(sg, p(se), sc)

γW (sc)← cl
′(sc) ·Θ(p(se), sg, sc)

f ′W (sc)← α′W (sc) + γW (sc)
if f ′W (sc) < fW (sc) then

l(sc)← l′(sc)
p(sc)← p(se)
αW (sc)← α′W (sc)
fW (sc)← f ′W (sc)
if sc /∈ O then

O ← O ∪ {sc}
end

end

ChoosePath2(se, sc)
l′(sc)← l(se) + 1
α′W (sc)← αW (se)

+cl
′(sc) ·Θ(sg, se, sc)

γW (sc)← cl
′(sc) ·Θ(se, sg, sc)

f ′W (sc)← α′W (sc) + γW (sc)
if f ′W (sc) < fW (sc) then

l(sc)← l′(sc)
p(sc)← se
αW (sc)← α′W (sc)
fW (sc)← f ′W (sc)
if sc /∈ O then

O ← O ∪ {sc}
end

end

Figure 12 illustrates the results of Weighted Link* using
two different c-values on the map with two tunnels. When
c = 1.2, Weighted Link* selects the upper tunnel and gen-
erates a path with 4 turns; when c = 0.8, it selects the lower
tunnel and generates a path with 9 turns. We also include the
path generated by Theta* depicted by the gray dashed line
for comparison. Weighted Link* finds a path with 4 fewer
turns when passing through the lower tunnel.

198

Figure 11: Example trace of Weighted Link* with f -values
when c = 1.2

c=1.2

Theta*

c=0.8

Figure 12: Paths of Weighted Link* under different weights

Correctness and Completeness
All Link* variants use the same framework as Theta* and
the proof of the correctness and completeness of Link* is
similar to that for Theta* (Daniel et al. 2010). We omit the
proof here for brevity.

Theorem 1 Link*(Basic Link*, Enhanced Link* and
Weighted Link*) terminates upon finding a non-blocked
path from vertex ss to vertex sg or determining that no such
path exists.

Experimental Results
Experiments were performed mainly on four types of grid
maps: random maps, video game maps, room maps and
maze maps, which are provided by the Pathfinding Bench-
marks (Sturtevant 2012). All provided maps were tested, ex-
cept that the only tested video game maps were from War-
craft III and Baldurs Gate II. All maps are based on 512 by
512 grids. We randomly chose 200 pairs of ss and sg ver-
tices from the problem set of each map.

We implemented five planning algorithms, including A*,
Theta*, Basic Link*, Enhanced Link* and Weighted Link*.
Among these algorithms, A* performs path planning with
paths on grid edges, while the others perform any-angle path

planning without that constraint. All algorithms are imple-
mented in Java, running on a 2.4 GHz Core i5 2430m laptop
with 4GB RAM. Our implementation is not optimized for
performance, so further improvements are possible.

Table 1 compares average number of turns, path length
and running time of A*, Theta* Basic Link* and Enhanced
Link* in four map categories. Since Weighted Link* is iden-
tical to Enhanced Link* when the c-value equals to 1.0, we
omitted Weighted Link* here. Overall, we found that Basic
Link* and Enhanced Link* generated paths with far fewer
turns and slightly longer length than those in paths produced
by Theta*. On random maps, Basic Link* generated paths
with fewer than 60% of the turns and no more than 122%
of the path length of Theta*. With respect to the number
of turns, Basic Link* performed best on random maps with
10% blocked cells. As depicted in Figure 13, the output
of Basic Link* had only 20% of the turns of the output of
Theta*. Enhanced Link* usually generated only a few more
turns than did Basic Link* but the path length of its output
was shorter.

 0

 50

 100

 150

 200

 250

 300

10 15 20 25 30 35 40

N
u
m

b
e
r

o
f

T
u
rn

s

% Random Blocked Cells

A*
Theta*

Basic Link*
Enhanced Link*

Figure 13: Number of turns in random maps

Given the same map and the same ss and sg vertices,
Weighted Link* may generate different paths under differ-
ent c-values. So the path quality of Weighted Link* can be
adjusted by the c-value, which can be determined by sta-
tistical results of running Weighted Link* with different c-
values in a fixed map, or within similar maps. For example,
Figure 14 illustrates the number of turns and vertex expan-
sions for Weighted Link* under different c-values on ran-
dom maps with 10% blocked cells. The x-axis represents c-
value and the y-axis represents the number of turns or vertex
expansions. As the c-value increased, Weighted Link* gen-
erated paths with fewer turns but more vertex expansions.
When c = 1.2, the number of turns reached a low level
but the number of vertex expansions was sub-maximal. So
Weighted Link* can choose c = 1.2 as the weighing param-
eter in maps with 10% blocked cells. The number of turns in
paths is optimized in this map category.

In Table 1, the running time of Link* is usually longer
than that of Theta* primarily for two reasons: (1) the cost of
computing angles is more expensive than that of computing
distances; (2) the number of vertex expansions is larger in
Link* than in Theta*. This is because Link* usually tries to

199

Map Types A* Theta* Basic Link* Enhanced Link*
Random10 257.94(312.28, 49.28) 24.28(297.33, 16.70) 4.91(362.58, 215.10) 8.85(332.96, 650.47)
Random15 265.72(322.61, 47.40) 36.13(307.81, 20.59) 8.16(372.06, 362.43) 12.09(350.92, 650.04)
Random20 262.74(318.55, 46.82) 46.04(304.42, 24.38) 12.67(358.65, 399.03) 16.33(344.20, 584.87)
Random25 265.33(321.96, 45.78) 56.00(308.10, 28.67) 18.85(355.02, 368.15) 21.71(345.52, 516.70)
Random30 270.43(324.88, 45.06) 65.37(311.27, 32.09) 26.17(351.59, 314.84) 28.34(345.54, 436.38)
Random35 270.44(323.96, 45.17) 74.17(310.68, 36.76) 35.68(345.28, 257.51) 37.48(340.69, 366.30)
Random40 264.48(308.43, 24.17) 78.64(296.14, 25.72) 46.98(326.41, 112.17) 47.98(324.07, 176.46)
Warcraft III 189.65(223.72, 17.69) 4.42(212.87, 28.26) 2.04(242.97, 54.91) 2.36(225.16, 93.63)

Baldurs Gate II 197.06(236.52, 14.19) 4.75(225.59, 31.83) 2.35(249.38, 51.10) 2.56(236.86, 87.68)
Room8 296.14(346.27, 74.37) 56.64(329.89, 50.42) 41.84(356.56, 235.07) 42.28(353.57, 363.65)

Room16 300.62(352.85, 82.59) 31.81(335.48, 54.00) 25.79(358.77, 216.55) 26.14(354.19, 350.17)
Room32 312.75(367.35, 87.18) 17.02(348.79, 76.96) 14.23(372.35, 217.70) 14.52(365.70, 360.35)
Room64 337.94(396.14, 87.97) 9.30(376.66, 149.73) 7.73(407.10, 267.71) 7.94(396.42, 427.21)
Mazes1 2022.86(2241.79, 78.78) 770.99(2185.93, 96.74) 713.42(2466.49, 243.88) 713.36(2465.24, 461.43)
Mazes2 1635.01(1822.90, 82.57) 421.24(1754.13, 108.65) 374.25(2022.10, 259.56) 374.37(2019.15, 491.80)
Mazes4 1574.07(1767.66, 94.52) 239.89(1698.03, 150.78) 208.33(1994.31, 315.18) 209.45(1986.51, 593.30)
Mazes8 1624.90(1827.41, 108.31) 139.80(1758.73, 230.72) 118.27(2103.09, 406.25) 118.44(2090.22, 735.36)

Mazes16 1459.99(1644.80, 120.66) 67.84(1588.44, 370.05) 57.34(1911.47, 543.35) 57.26(1886.55, 905.11)
Mazes32 1051.73(1189.38, 133.38) 26.45(1150.13, 604.61) 21.24(1394.50, 782.88) 21.45(1356.50, 1149.88)

Table 1: Comparison of average number of turns, path length, and running time (ms) (path length and running time are in
parenthesis)

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

N
u
m

b
e
r

o
f

T
u
rn

s

N
u
m

b
e
r

o
f

V
e
rt

e
x
 E

x
p
a
n
s
io

n
s

c-value

Num of Turns Num of Vertex Expensions

Figure 14: Number of turns and vertex expansions in
Weighted Link* with different weights on random maps
with 10% blocked cells

explore multiple passages and finds more straight ones than
Theta*. According to our test, the running time of Link* is
close to that of Theta* on maps of applications such as robot
path planning and video games. Among the three variants of
Link*, Basic Link* is faster than either Enhanced Link* or
Weighted Link* because it makes only one angle calculation
in determining its f -values.

Conclusion and Future Work
In the paper, we present Link* as a solution to the problem
of finding fewer turns in any-angle path planning. Link* en-
compasses three related algorithms: Basic Link*, Enhanced
Link* and Weighted Link*. Basic Link* is the simplest. It
has better performance as measured by number of turns and
running time. Enhanced Link* delivers superior path quality
and shorter length than Basic Link*. Weighted Link* pro-
vides the flexibility to adjust the balance between the num-

ber of turns and the number of vertex expansions. Link*
finds paths with fewer than 60% of the turns at the cost of no
more than 122% of the path length of those found by Theta*
on random maps. Link* thus offers a big advantage when
turns in paths are expensive. Further research can be focused
on extending Link* by considering vertex re-expansion and
incremental heuristic search. Paths generated by Link* can
also be smoothed with arcs for trajectory planning in robot
motion planning.

Acknowledgements
The authors would like to thank International Technological
University (ITU) for its financial support on AI Research
Lab and this research. We would also like to thank Dr. Greg
O’Brien, Dr. Steve Miller and Dr. Richard Riehle for their
editing and comments.

References
Arkin, E. M.; Mitchell, J. S.; and Suri, S. 1992. Optimal
link path queries in a simple polygon. In Proceedings of the
third annual ACM-SIAM symposium on Discrete algorithms,
269–279. Society for Industrial and Applied Mathematics.
Bresenham, J. E. 1965. Algorithm for computer control of
a digital plotter. IBM Systems journal 4(1):25–30.
Choi, S., and Yu, W. 2011. Any-angle path planning on
non-uniform costmaps. In Robotics and Automation (ICRA),
2011 IEEE International Conference on, 5615–5621. IEEE.
Choset, H.; Lynch, K. M.; Hutchinson, S.; Kantor, G.; Bur-
gard, W.; Kavraki, L. E.; and Thrun, S. 2005. Principles
of robot motion: theory, algorithms, and implementations.
MIT press.
Daniel, K.; Nash, A.; Koenig, S.; and Felner, A. 2010.
Theta*: Any-angle path planning on grids. Journal of Ar-
tificial Intelligence Research 39(1):533–579.

200

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. Systems Science and Cybernetics, IEEE Transactions
on 4(2):100–107.
Mitchell, J. S.; Rote, G.; and Woeginger, G. 1990.
Minimum-link paths among obstacles in the plane. In Sym-
posium on Computational Geometry, 63–72.
Mitchell, J. S.; Rote, G.; and Woeginger, G. 1992.
Minimum-link paths among obstacles in the plane. Algo-
rithmica 8(1):431–459.
Nash, A.; Daniel, K.; Koenig, S.; and Felner, A. 2007.
Theta*: Any-angle path planning on grids. In Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI), vol-
ume 22, 1177–1183.
Sturtevant, N. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and AI in
Games 4(2):144 – 148.
Suri, S. 1986. A linear time algorithm for minimum link
paths inside a simple polygon. Computer Vision, Graphics,
and Image Processing 35(1):99–110.
Yap, P. 2002. Grid-based path-finding. In Advances in Arti-
ficial Intelligence. Springer. 44–55.

201

