
Exponential Deepening A* for Real-Time Agent-Centered Search
(Extended Abstract), full version has been accepted to AAAI-2014

Guni Sharon
ISE Department

Ben-Gurion University
Israel

gunisharon@gmail.com

Ariel Felner
ISE Department

Ben-Gurion University
Israel

felner@bgu.ac.il

Nathan R. Sturtevant
Department of Computer Science

University of Denver
USA

sturtevant@cs.du.edu

Abstract
This paper introduces Exponential Deepening A* (EDA*),
an Iterative Deepening (ID) algorithm where the threshold
between successive Depth-First calls is increased exponen-
tially. EDA* can be viewed as a Real-Time Agent-Centered
(RTACS) algorithm. Unlike most existing RTACS algorithms,
EDA* is proven to hold a worst case bound that is linear in
the state space. Experimental results demonstrate up to 5x
reduction over existing RTACS solvers wrt distance traveled,
states expanded and CPU runtime. Full version of this paper
appears in AAAI-14.

Real-Time Agent-Centered Search
In the real-time agent-centered search (RTACS) problem, an
agent is located in start and its task is to physically arrive
at the goal. RTACS algorithms perform cycles that include
a planning phase where search occurs and an acting phase
where the agent physically moves. Several plan-act cycles
are performed under the following restrictive assumptions:
Assumption 1: As a real-time problem, the agent can only
perform a constant-bounded number of computations before
it must act by following an edge from its current state. Then,
a new plan-act cycle begins from its new position.
Assumption 2: The internal memory of the agent is limited.
But, agents are allowed to write a small (constant) amount
of information into each state (e.g., g- and h- values). In this
way RTACS solvers are an example of ‘ant’ algorithms, with
limited computation and memory (Shiloni et al. 2009).
Assumption 3: As an agent-centered problem, the agent is
constrained to only manipulate (i.e., read and write infor-
mation) states which are in close proximity to it; these are
usually assumed to be contiguous around the agent.

Most existing RTACS solvers belong to the LRTA* fam-
ily (Korf 1990; Koenig and Sun 2009; Hernández and Baier
2012). The core principle in algorithms of this family is
that when a state is visited by the agent, its heuristic value
is updated through its neighbors. An RTACS agent has two
types of state visits:
First visit - the current state was never visited previously by
the agent. We denote the number of first visits by F .
Revisit - the current state was visited previously by the agent.
We denote the number of revisits by R.

In areas where large heuristic errors exist, all LRTA* al-
gorithms may revisit states many times, potentially linear in

Algorithm 1: IDA*/RIBS/EDA*
Input: Vertex start, Vertex goal, Int C

1 T = start.h
2 while BDFS(start, goal, T ) = FALSE do
3 Case IDA* : T = T + C
4 Case EDA* : T = T × C

the state space per state (Koenig 1992). Thus, denoting the
size of the state-space by N , while F = O(N), R is O(N2)
in the worst case. Consequently, the total number of states
visits (F +R) is O(N2) - quadratic in N .

We define an RTACS algorithm to be efficient if F = θ(R).
We break this into two conditions:
Condition 1 - R = O(F ), meaning that the order of F is
greater than or equal to R.
Condition 2 - F = O(R), meaning that the order of R is
greater than or equal to F .

If R >> F (condition 1 is violated) the agent spends most
of the time revisiting previously seen (non-goal) states. Many
existing RTACS algorithms (e.g., the LRTA* family) do not
satisfy condition 1.

If F >> R (condition 2 is violated) the agent might spend
too much time in exploring new but irrelevant states.

Lemma 1 An algorithm has a worst case complexity linear
in the size of the state space N iff it satisfies condition 1.

Proof: Since in the worst case the entire state space will be
visited, and each state can be visited for the first time only
once, F = O(N). If condition 1 is satisfied then R = O(F ).
Now, since F = O(N) then R = O(N) too. Thus the
complexity of the algorithm (F +R) is also O(N). On the
other hand, if F +R = O(N) and since F = O(N), R must
also be O(N), so R = O(F ) and condition 1 is satisfied. �

Exponential Deepening A*
To tackle the problem of extensive state revisiting we in-
troduce Exponential Deepening A* (EDA*), a variant of
IDA* (Korf 1985).

IDA* acts according to the high-level procedure presented
in Algorithm 1. T denotes the threshold for a given Bounded
DFS (BDFS) iteration where all states with f ≤ T will be
visited. In IDA*, T is initialized to h(start) (line 1). For the

209

Proceedings of the Seventh Annual Symposium on Combinatorial Search (SoCS 2014)



next iteration, T is incremented to the lowest f -value seen
in the current iteration that is larger than T . For simplicity,
we assume that T is incremented by a constant C (line 3). A
lower bound for C is the minimal edge cost.

Unlike IDA*, where the threshold for the next iteration
grows linearly, in EDA* the threshold for the next iteration is
multiplied by a constant factor (C) (line 4) and thus grows ex-
ponentially. To deal with the efficiency conditions for EDA*,
we distinguish two types of domains.
1. Exponential domains: In exponential domains, the num-
ber of states at depth d is bd (exponential in d) where b is
the branching factor. Assume that the depth of the goal is
d = Ci + 1. In this case, the goal will not be found in it-
eration i, and will instead be found in iteration i + 1. All
states with f ≤ Ci+1 will be visited during the last iteration.
There are F = O(b(C

(i+1))) such states in total. In all pre-
vious iterations R =

∑i
j=0 b

(Cj) = O(b(C
i)) states will be

visited. In exponential domains EDA* satisfies Condition 1,
R = O(F ).

EDA*, however, violates Condition 2. Let d be the optimal
solution. We say that states with f > d are surplus (Felner
et al. 2012). Since the EDA* threshold may be increased
beyond d = Ci + 1 up to Ci+1, the number of surplus
nodes that EDA* will visit isO(bC

i+1

). This is exponentially
more than the b(C

i)+1 necessary nodes to verify the optimal
solutions, i.e., those with f ≤ d (which are expanded by A*).
Since R = O(b(C

i)+1), R << F and condition 2 is violated.
Thus, EDA* is not efficient for exponential domains.
2. Polynomial domains: In polynomial domains the number
of states at radius r from the start state is rk where k is the
dimension of the domain. We assume that in a polynomial
domain the number of unique states visited by EDA* within a
threshold T is θ(T k). If the goal is found in iteration i, EDA*
will visit F = (Ci)k = (Ck)i = (Ĉ)i states, where Ĉ = Ck

is a constant. In all previous iterations the agent will visit
R =

∑i−1
j=0(C

j)k =
∑i−1

j=0(Ĉ
j) = θ(Ĉi). Consequently,

F = θ(R). EDA* satisfies both conditions 1 and 2. Since
EDA* satisfies condition 1, its worst case complexity is linear
in the state space, as proven in Lemma 1. Since it satisfies
condition 2, the number of surplus nodes visited will not
hurt the complexity. As a result, EDA* is considered fully
efficient on polynomial domains.

Experimental Results
We experimented with the entire set of Dragon-Age: Origins
(DAO) problems (all buckets, all instances) from (Sturte-
vant 2012). h was set to octile distance. The algorithms
used for this experiment were: IDA* (Korf 1985), LRTA*,
RTA* (Korf 1990), daLRTA* and daRTA* (Hernández
and Baier 2012), f -LRTA* (Sturtevant and Bulitko 2011),
RIBS (Sturtevant et al. 2010) and EDA*. For EDA*, the
number in parenthesis denotes the size of the constant factor
C. C was chosen from {1.1, 1.5, 2, 4, 8, 16}.

Table 1 reports the averages over all instances of three
measures aspects: (1) The number of node expansions (ex-
panded). (2) The total distance traveled during the solving
process (Distance). (3) CPU runtime in ms. The CPU time

Alg. Expanded Distance Time
IDA* 6,142,549 14,617,700 9,975
RIBS 330,397 742,138 1,971
f -LRTA* 82,111 92,149 340
LRTA* 237,233 243,075 284
daLRTA* 33,486 35,645 105
RTA* 60,744 70,481 78
daRTA* 26,664 30,978 82
EDA*(1.1) 48,797 109,146 135
EDA*(1.5) 18,984 38,518 51
EDA*(2) 15,243 29,764 40
EDA*(4) 12,970 24,248 34
EDA*(8) 12,714 23,553 33
EDA*(16) 12,785 23,689 33

Table 1: Average measurements over all DAO problems.

spent in the planning phases (Time).
The best algorithm in each category is in bold.
Different C values for EDA* influence the performance.

The value of C = 8 was best for all 4 measures. EDA*
outperformed all other algorithms in all measures.

Conclusions and Future Work
This paper presents Exponential Deepening A*. EDA* is
intuitive and very simple to implement. To the best of our
knowledge EDA* is the only RTACS algorithm that is, in the
worst case, linear in the state space. Experimental results on
grids support our theoretical claims; EDA* outperforms other
algorithms in all the measurements if standard lookahead of
radius 1 is assumed. If deeper lookahead is allowed (not
reported), EDA* is best in all measurements except Distance.

This research was supported by the Israel Science Founda-
tion (ISF) under grant #417/13 to Ariel Felner.

References
A. Felner, M. Goldenberg, G. Sharon, R. Stern, T. Beja, N. R.
Sturtevant, J. Schaeffer, and R. Holte. Partial-expansion A* with
selective node generation. In AAAI, 2012.
C. Hernández and J. A. Baier. Avoiding and escaping depressions in
real-time heuristic search. J. Artif. Intell. Res. (JAIR), 43:523–570,
2012.
S. Koenig and X. Sun. Comparing real-time and incremental heuris-
tic search for real-time situated agents. Autonomous Agents and
Multi-Agent Systems, 18(3):313–341, 2009.
S. Koenig. The complexity of real-time search. Technical Report
CMU–CS–92–145, School of Computer Science, Carnegie Mellon
University, Pittsburgh, 1992.
R. E. Korf. Depth-first iterative-deepening: An optimal admissible
tree search. AIJ, 27(1):97–109, 1985.
R. E. Korf. Real-time heuristic search. Artif. Intell., 42(2-3):189–
211, 1990.
A. Shiloni, N. Agmon, and G. A. Kaminka. Of robot ants and
elephants. In AAMAS (1), pages 81–88, 2009.
N. R. Sturtevant and V. Bulitko. Learning where you are going and
from whence you came: h-and g-cost learning in real-time heuristic
search. IJCAI, pages 365–370, 2011.
N. R. Sturtevant, V. Bulitko, and Y. Börnsson. On learning in
agent-centered search. In AAMAS, pages 333 – 340, 2010.
N. R. Sturtevant. Benchmarks for grid-based pathfinding. Transac-
tions on Computational Intelligence and AI in Games, 2012.

210




