
Identifying Hierarchies for Fast Optimal Search

Tansel Uras Sven Koenig
Department of Computer Science
University of Southern California

Los Angeles, USA
{turas, skoenig}@usc.edu

Abstract
For some search problems, the graph is known beforehand
and there is time to preprocess the graph to make the search
faster. One such example is video games, where one can of-
ten preprocess maps before a game is released or while a map
is loaded into memory. The data produced by preprocess-
ing should use only a small amount of memory, and, in case
they are generated during runtime, preprocessing should be
fast. Search with Subgoal Graphs (Uras, Koenig, and Hernán-
dez 2013) was a non-dominated optimal path-planning algo-
rithm in the Grid-Based Path Planning Competitions 2012
and 2013. During a preprocessing phase, it computes a Sim-
ple Subgoal Graph from a given grid, which is analogous to a
visibility graph for continuous terrain, and then partitions the
vertices into global and local subgoals to obtain a Two-Level
Subgoal Graph. During the path-planning phase, it performs
an A* search over the subgoal graph that ignores local sub-
goals that are not relevant to the search, which significantly
reduces the size of the graph being searched. This paper is an
abstract of (Uras and Koenig 2014), which generalizes this
partitioning process to any undirected graph and shows that
it can be recursively applied to generate more than two lev-
els, which reduces the size of the graph being searched even
further. We call these graphs N-Level Graphs.

N-Level Graphs
Graphs can contain vertices that are not necessary to opti-
mally connect other vertices of the graph. For instance, ver-
tex A in Figure 1(a) cannot appear on any shortest path un-
less it is the start or the goal vertex. Vertex K can appear on a
shortest path between H and L, but if it is removed from the
graph, there is an alternative shortest path between H and L
through G. Therefore, unless K is the start or the goal vertex,
it can safely be excluded from the search without increasing
the length of the resulting path. More generally, we can par-
tition the vertices of a graph into two levels, levels 1 and
2, that satisfy the following property: Between any two ver-
tices of the graph, there is a shortest path that uses only level
2 vertices, the start, and the goal. This property allows us to
search a smaller graph by ignoring level 1 vertices, except
for the start and the goal, while still guaranteeing optimality.

We can take this idea a little further by partitioning the
level 2 vertices into levels 2 and 3 with the property that,

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

between any two vertices of level 2 or 3, there is a shortest
path that uses only level 3 vertices, the start, and the goal.
To find a shortest path between any two vertices of the origi-
nal graph, we can search an even smaller graph that contains
only level 3 vertices, the start, the goal, and any level 2 ver-
tices that are neighbors of the start or the goal. We can keep
adding levels to the graph by moving some of the highest
level vertices into a new level, thereby reducing the size of
the graph to be searched, until no more partitioning is possi-
ble. This is the main idea behind N-Level Graphs, which is
illustrated in Figure 1.

We call the partitioning method described above simple
partitioning, which simply assigns levels to the vertices of
a graph. A more sophisticated partitioning method, which
we call advanced partitioning, is allowed to add new edges
to the graph whose lengths are equal to the distances be-
tween the vertices they connect. Advanced partitioning can
move more vertices into lower levels, which might increase
the number of vertices ignored during search. For instance,
if we add an extra edge of length 2 between B and G, C can
be moved to level 1, in which case C does not need to be
part of the graph shown in Figure 1(c). Such edges can be
refined after a search if they are on the shortest path found
by the search, by replacing them with a corresponding short-
est path on the original graph. One needs to be careful when
adding extra edges, as they can increase the branching fac-
tor and the memory required to store the graph. In the ex-
treme case, partitioning can add edges between all pairs of
vertices, in which case partitioning can move all vertices to
level 1. We leave it to the user to provide a property P that all
extra edges need to satisfy in order to obtain a good perfor-
mance/memory trade-off. A formal description of N-Level
Graphs, along with algorithms to construct and search them,
are provided in (Uras and Koenig 2014).

Experimental Results

We compare A*, S, TL, SN and S+
N , where S and TL

are the implementations of Simple Subgoal Graphs (SSGs)
and Two-Level Subgoal Graphs used in (Uras, Koenig, and
Hernández 2013) and SN and S+

N are N-Level Graphs of
SSGs. TL is a state-of-the art algorithm and was one of
the non-dominated entries in the Grid-Based Path Planning

211

Proceedings of the Seventh Annual Symposium on Combinatorial Search (SoCS 2014)



(a) An undirected graph with unit-length
edges

(b) 3-Level graph of the undirected graph (c) Graph searched for a shortest path
between F and B

Figure 1: Idea behind N-Level Graphs.

Runtime per Instance (ms) Average Level Partition Time (ms)
A* S TL SN S+

N SN S+
N TL SN S+

N

bg512 2.69 0.07 0.05 0.06 0.05 26.17 7.59 267 398 284
DAO 5.45 0.36 0.13 0.26 0.08 27.70 10.06 229 837 257

starcraft 24.87 0.94 0.30 0.63 0.18 71.12 14.43 8657 59334 8912
wc3maps512 5.52 0.08 0.06 0.07 0.06 28.44 9.22 313 376 379

maze1 15.73 3.84 3.39 0.47 0.45 1263.60 1138.40 45 22697 21230
maze2 29.95 2.53 1.78 0.33 0.30 832.20 675.60 48 9536 7864
maze4 42.99 1.04 0.49 0.21 0.18 407.80 179.90 36 1654 697
maze8 52.65 0.39 0.23 0.16 0.15 228.60 101.30 12 299 140

maze16 59.24 0.18 0.14 0.12 0.12 105.70 47.20 4 47 29
maze32 59.23 0.09 0.10 0.08 0.09 39.00 17.60 2 5 6

random10 3.93 1.52 1.44 1.52 1.30 7.60 13.70 875 1900 6430
random15 6.32 2.70 2.40 2.67 2.17 7.80 11.10 685 2003 4268
random20 8.37 3.69 3.12 3.56 2.75 9.70 12.20 533 2332 3706
random25 10.00 4.40 3.57 4.03 2.87 12.20 13.50 421 2554 3172
random30 11.15 4.77 3.58 3.98 2.57 17.60 14.30 324 2984 2509
random35 12.65 5.27 3.61 3.66 2.09 27.30 22.70 244 3340 2647
random40 12.16 4.84 3.05 2.51 1.22 39.50 32.30 126 2281 1645

room8 15.37 0.65 0.57 0.64 0.54 8.40 7.40 35 164 206
room16 16.75 0.17 0.16 0.17 0.15 6.90 7.10 9 33 54
room32 19.60 0.07 0.07 0.07 0.06 7.30 5.70 3 8 13
room64 23.61 0.04 0.05 0.04 0.04 6.40 6.70 1 2 5

Table 1: Results of different subgoal graphs

Competition (GPPC) in 20121. SN is constructed from an
SSG using simple partitioning, whereas S+

N is constructed
from an SSG using a version of advanced partitioning that is
allowed to add h-reachable edges (defined in (Uras, Koenig,
and Hernández 2013)). We compare the methods on differ-
ent map types, all of which are available from Nathan Sturte-
vant’s repository2. For each map type, Table 1 shows the av-
erage runtime per instance for all methods, the average num-
ber of levels for SN and S+

N , and the average preprocessing
time for TL, SN , and S+

N needed for partitioning.
The results show that, in general, S+

N is the fastest method,
followed by TL, SN , S, and finally A*. S+

N is faster than
TL by a factor of 1.6 on Dragon Age: Origins and StarCraft
maps, a factor of 7.5 on maze maps with corridor width 1,
and a factor of 2.5 on maps with 40% randomly blocked
cells. Its performance is comparable to TL on other game
maps and room maps. It is faster than A* by a factor of 193
on StarCraft maps. S+

N is generally faster than SN , espe-
cially on Dragon Age: Origins and StarCraft maps (by fac-

1http://movingai.com/GPPC
2http://movingai.com/benchmarks/

tors of 3.5 and 3.2, respectively), which demonstrates the
benefits of adding extra edges during partitioning. SN is
generally slower than TL, except on maze maps. TL is faster
than SN by a factor of 2.1 on StarCraft maps. On the other
hand, SN is faster than TL by a factor of 7.2 on maze maps
with corridor width 1. These results show that the structure
of the graph can have a significant impact on the perfor-
mance increase obtained by adding extra edges during parti-
tioning and by partitioning the vertices into more levels. For
instance, StarCraft maps have lots of diagonal obstacles that
result in a large number of subgoals. Many of them can be
partitioned into the lowest level by adding h-reachable edges
between them. On the other hand, mazes have lots of bend-
ing corridors, which limits the number of h-reachable edges
that can be added.

Conclusions
N-Level Graphs are constructed from undirected graphs by
partitioning the vertices into levels to create a hierarchy,
which allows searching for shortest paths while ignoring
parts of the graph. The main idea of using hierarchies to
ignore parts of the graph during search is similar to Multi-
Level Graphs, but the means of achieving this is very differ-
ent. For instance, for N-Level Graphs, one needs to spec-
ify an edge connection strategy whereas, for Multi-Level
Graphs, one needs to specify the levels of the vertices. We
demonstrate the effectiveness of N-Level Graphs on grids by
improving the state-of-the-art of path planning on grids. Fu-
ture research includes application of these methods to differ-
ent domains, investigation of whether stopping partitioning
early increases performance, and exploration of new tech-
niques for partitioning and search.

Acknowledgments
Our research was supported by NSF under grant number IIS-
1319966 and ONR under grant number N00014-09-1-1031.

References
Uras, T., and Koenig, S. 2014. Identifying hierarchies for fast
optimal search. In Proceedings of the 28th AAAI Conference on
Artificial Intelligence.
Uras, T.; Koenig, S.; and Hernández, C. 2013. Subgoal graphs
for optimal pathfinding in eight-neighbor grids. In Proceedings
of the 23rd International Conference on Automated Planning and
Scheduling.

212




