
Beyond Static Mini-Bucket: Towards Integrating with
Iterative Cost-Shifting Based Dynamic Heuristics

William Lam, Kalev Kask, Rina Dechter, and Alexander Ihler
Donald Bren School of Information and Computer Sciences

University of California, Irvine
{willmlam,kkask,dechter,ihler}@ics.uci.edu

Abstract

We explore the use of iterative cost-shifting as a dy-
namic heuristic generator for solving MPE in graphi-
cal models via Branch and Bound. When mini-bucket
elimination is limited by its memory budget, it may not
provide good heuristics. This can happen often when
the graphical model has a very high induced width with
large variable domain sizes. In addition, we explore a
hybrid setup where both MBE and the iterative cost-
shifting bound are used in a combined heuristic. We
compare these approaches with the most advanced stat-
ically generated heuristics.

Introduction
Combinatorial optimization tasks are prevalent in many ap-
plications and can be formulated as a most probable expla-
nation (MPE) query in graphical models. Graphical models
are a widely-used framework for tasks not limited to opti-
mization and provide structure to a problem, which can be
used to reason about it and perform efficient computation
(Pearl 1988).

Branch-and-Bound (BnB) is one such algorithm for solv-
ing combinatorial optimization queries in graphical mod-
els. It is guided by a heuristic evaluation function that pro-
vides an optimistic bound on the cost to go for every node.
One such bounding scheme used is mini-bucket elimination
(MBE) (Dechter and Rish 2003), which generates bounds
for all of the nodes in the search space at once, given a static
variable ordering for the problem. It duplicate variables in
order to bound the treewidth of the problem and applys the
exact bucket elimination (BE) algorithm (Dechter 1999) on
the resulting relaxed problem. This is typically referred to
as the static mini-bucket heuristic. Still, the heuristics gener-
ated by MBE can be poor when the treewidth of the problem
is very high since we would need to relax the problem by du-
plicating many variables.

An alternative is to compute heuristics dynamically. In
this setup, we recompute the heuristic we use on the sub-
problem induced by the current partial conditioning during
search. However, this means that we must keep the compu-
tational cost of generating heuristics at each node, low. One

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

such approach is maintaining soft arc consistency (SAC)
(Larrosa and Schiex 2004) during branch-and-bound. Main-
taining SAC is a method of re-parameterizing the problem
by shifting costs from higher arity functions toward lower
arity functions, which bounds the problem with a single
nullary function that has cost shifted into it. One of these al-
gorithms is optimal soft arc consistency (OSAC), which for-
mulates the process of finding the set of re-parameterizations
that maximize the cost shifted into the nullary function as a
linear program (Cooper, de Givry, and Schiex 2007). How-
ever, maintaining OSAC entails solving a large LP for each
search node, which is cost-prohibitive in terms of time. An-
other algorithm is virtual arc-consistency, which finds a se-
quence of cost shifts to tighten the bound based on a con-
nection with classical arc consistency, yielding an iterative
cost-shifting method (Cooper et al. 2008).

In other literature, there are several iterative approxi-
mation techniques based on solving linear programming
(LP) relaxation of a graphical model (Wainwright, Jaakkola,
and Willsky 2005). This initial work established connec-
tions between these LP relaxations and message-passing,
which led to coordinate-descent update algorithms such as
max-product linear programming (MPLP) (Globerson and
Jaakkola 2007).

The ideas from this literature were used recently to extend
the approach of static MBE (Ihler et al. 2012). It employs
a similar algorithm to MPLP, known as factor graph linear
programming/join graph linear programming (FGLP/JGLP)
as a preprocessing step on the original problem. Next, it
uses MBE with moment-matching (MBE-MM), an enhanced
version of MBE that includes cost-shifting to enforce con-
sistency between the duplicated variables, as the heuristic.
However, as a static heuristic this still have similar draw-
backs of generating weak heuristics for problems having
large indcued-width and large domains.

In this work, we aim to 1. explore the use of FGLP
as a heuristic generator dynamically for every node dur-
ing the search, and compare with the most advanced stati-
cally generated heuristics describe above as in (Ihler et al.
2012), and 2. to combine both static and dynamic schemes
into a single, potentially more powerful heuristic for BnB
search. While generating dynamic heuristics based on FGLP
is closely related to the soft-arc consistency algorithms such
as those in the toulbar2 solver (http://mulcyber.toulouse.

105

Proceedings of the Seventh Annual Symposium on Combinatorial Search (SoCS 2014)

Figure 1: Primal graph of a graphical model over 8 variables.

inra.fr/projects/toulbar2/, our work provides an alternative
based on techniques that come from LP literature. In par-
ticular, FGLP solves a problem that is identical to that of
the LP for Optimal Soft Arc Consistency. Since FGLP is
an LP coordinate-descent algorithm, it allows us to aim to-
wards an optimal re-parameterization, yet terminating short
of solving it to optimality, based on a given computation
budget. The comparison of our dynamic re-parameterization
schemes against recent static mini-bucket based schemes is
performed here for the first time. Also, the combination of
the two approaches (static, mini-bucket-based and dynamic,
re-parameterization-based) is carried out here for the first
time.

We present preliminary empirical results showing that on
some problem instances for which static mini-bucket evalu-
ation is quite weak when we have very limited memory, the
dynamic FGLP scheme can prune the search space far more
effectively, and in some cases this is carried out in a cost-
effective manner despite the significant overhead inherent to
the dynamically generated heuristics. We acknowledge how-
ever that the overhead of the dynamic re-parameterization is
often quite prohibited limiting its effectiveness both when
applied in a pure form and within a hybrid scheme.

The remainder of this paper is structured as follows: Sec-
tion 2 introduces the underlying concepts. Section 3 presents
a faster FGLP algorithm. Section 4 identifies the differences
between the heuristics generated by the static MBE heuristic
and dynamic cost-shifting heuristics and shows how to com-
bine them into a hybrid scheme. Section 5 presents empirical
results and analysis before Section 6 concludes.

Background
We describe combinatorial optimization problems as graph-
ical models, which include Bayesian networks, Markov net-
works, and constraint networks. We provide some defini-
tions below. (Pearl 1988; Dechter 2003; 2013).

Definition 1. (graphical model) A graphical model is a 4-
tupleM = (X,D,F,⊗), where X = {Xi : i ∈ V } is a set
of variables indexed by a set V and D = {Di : i ∈ D} is
the set of finite domains of values for each Xi. F = {fα :
α ∈ F} is a set of discrete functions, where α ⊆ V and
Xα ⊆ X is the scope of fα. We associate a primal graph G
by representing each variable Xi as a node and include an
edge (Xi, Xj) if i, j ∈ Xα for any fα.⊗ = {

∏
,
∑
, ./} is a

combination operator that defines the function represented
by the graphical modelM as ⊗α∈F fα(Xα).

We focus on the max-sum problem, C∗ =
maxX

∑
α∈F fα(Xα), in this work and assume upper

Figure 2: Mini-bucket tree for the model in Figure 1, with a
z-bound of 3.

bounds when discussing bounds on this quantity.

Search in Graphical Models
The max-sum problem and other inference queries can be
solved via traversing the search space of a graphical model.
Internal nodes represent partial assignments and leaf nodes
represent complete assignments. For a node n, the cost of an
assignment is defined by the combination of the costs of all
functions that have been fully instantiated, which we denote
as g(n).

The size of the OR search tree is O(kn), representing all
possible assignments to the graphical model. In this work,
we search a smaller graph-based represenation of the search
space, formed by capturing problem structure. Identical sub-
problems are identified by their context, which for a partic-
ular variable at depth d, is the partial instantiation that de-
fines the subproblem, and can contain fewer variables than
d. The size of the context-minimal OR search graph, formed
by merging identical subproblems based on their context is
O(nkpw). n is the number of variables, k is maximum do-
main size, and pw is the pathwidth of the primal graph G
along the search ordering (Dechter and Mateescu 2007).

Branch and Bound (BnB) is a search algorithm which per-
forms a depth-first traversal of the search space and main-
tains a lower bound on the cost of the optimal solution,
which corresponds to the best solution found so far. At each
node, a heuristic h(n) is computed to give an upper bound of
the cost to go. c(n) = g(n)+h(n) then gives an upper bound
of the best solution extending the current partial assignment.
If the upper bound is smaller than the lower bound, then we
can prune the search space below that node. The effective-
ness of BnB is highly dependent on the quality of heuris-
tics. We discuss two possible approaches that are used in the
following section. One is the mini-bucket heuristic and the
other is based on re-parameterization.

Mini-Bucket Elimination
Bucket elimination (BE) (Dechter 1999) is a standard al-
gorithm for solving reasoning tasks over graphical models.
The buckets correspond to variables to be eliminated and are
formed by organizing the functions of the graphical model

into these buckets according to an elimination ordering o.
For each function fα, it is placed in bucket i if i ∈ α and
i ≺ j in o ∀j ∈ α, j 6= i. Buckets are then processed by
applying the ⊗ operator (

∑
for the max-sum task) to all

the functions within a bucket, then eliminating the variable
based on the reasoning task at hand (maximization for the
max-sum task). For a processed bucket i, we denote the re-
sulting function from the combination and elimination steps
as a message hi, which is passed to its parent bucket, de-
fined by the same bucket placement procedure as the origi-
nal functions. The result after all messages have been passed
forms a tree structure, known as a bucket tree, with each
hi passed along an edge from a bucket to its parent. The
largest scope size amongst all hi is known as the induced
width or treewidth w of the problem along ordering o. The
algorithm’s time and space complexity are exponential in w.
(Dechter 1999)
Mini-bucket elimination (MBE) (Dechter and Rish 2003)
approximates BE with a systematic way to avoid the compu-
tational complexity of BE. We consider an integer parameter
z. For a bucket Bi, we create a partition Qi = {q1i , . . . , q

p
i },

where qji is referred to as a mini-bucket and corresponds to a
subset of the functions of Bi such that the combined scope
of these functions have no more than z + 1 variables. We
refer to this as satisfying the z-bound. Each mini-bucket is
then processed separately as in BE and we denote the mes-
sages generated as hij . As such, each mini-bucket within
Bi can be viewed as duplicate copies of variable i and the
bucket tree of MBE corresponds to the bucket tree of BE
for a relaxed version of the problem with such duplicate
variables. The result is a bound (upper-bound in the case
of maximization) on the solution to the original problem.
Using a single parameter z, we have a simple way to trade
off computational complexity and the tightness of the bound.
Increasing z generally tightens this bound, and MBE is iden-
tical to BE when z ≥ w.

Bounds by Re-parameterization
The second orthogonal approach is based on re-
parameterization coming from the literature on solving
Linear Programming (LP) relaxations of the graphical
model to generate bounds. The literature on enforcing soft
arc consistency also offers various methods, instead based
on varying strengths of soft arc consistency.

In the LP relaxation view, the idea is to consider bound-
ing the max-sum objective by the maxima of each individual
function:

C∗ = max
X

∑
α∈F

fα(Xα) ≤
∑
α∈F

max
X

fα(Xα), (1)

which exchanges the sum and max operators. One view of
this is that each function has its own copy of each variable,
and each are optimized separately. If each variable copy does
happen to agree on its maximizing assignment, then this re-
laxation is tight and the bound produced is equal to the ob-
jective. However, this is generally not the case, so we need
to compensate for the errors that accumulate.

The idea is to introduce a collection of functions over in-
dividual variables Λ = {λα(Xi)} and require

∀i,
∑
α∈Fi

λα(Xi) = 0

This yields

C∗ = max
X

∑
α∈F

fα(Xα)

= max
X

∑
α∈F

fα(Xα) +
∑
i

∑
α∈Fi

λα(Xi)

= max
X

∑
α∈F

fα(Xα) +
∑
α∈F

∑
i∈α

λα(Xi)

= max
X

∑
α∈F

(fα(Xα) +
∑
i∈α

λα(Xi))

≤
∑
α∈F

max
X

(fα(Xα) +
∑
i∈α

λα(Xi)) (2)

Our objective is to find λ such that we minimize (2),
which serve to produce an optimal re-parameterization of
the original model.

Depending on the literature, these λ functions are viewed
as equivalence-preserving transformations (EPTs), in the
soft arc consistency literature (Cooper and Schiex 2004),
or as Lagrange multipliers enforcing consistency between
the variable copies in the LP relaxation (Yedidia, Freeman,
and Weiss 2005; Wainwright, Jaakkola, and Willsky 2005).
In the latter view, these functions are computed by coordi-
nate descent updates that can be viewed as message passing
(Globerson and Jaakkola 2007).

Improving Factor Graph Linear
Programming

Factor graph LP (FGLP) algorithm (Ihler et al. 2012) is a
coordinate-descent algorithm for solving the LP in the pre-
vious section. We show the pseudocode in Algorithm 1.

Algorithm 1: FGLP(X,D,F)
Input: Graphical Model 〈X,D,F,

∑
〉, where fα is a

function defined on variables Xα

Output: Re-parameterized factors F′, bound on
optimum value

1 Iterate until convergence:
2 for each variable Xi do
3 Let Fi = {α : i ∈ α} with Xi in their scope
4 ∀α ∈ Fi, compute max-marginals:

λα(Xi) = maxXα\Xi fα(Xα)
5 ∀α ∈ Fi, update parameterization:

fα(Xα)← fα(Xα)−λα(Xi)+ 1
|Fi|

∑
β∈Fi λβ(Xi)

6 return Re-parameterized factors F′ and bound∑
α∈F maxX fα(Xα)

The main loop of the algorithm updates functions along
a particular variable such that their max-marginals become

107

identical, which is known to achieve the minimum given that
we fix the updates along all of the other variables. (Sontag et
al. 2008). A typical fixpoint from iteratively applying the up-
dates on each variable is that all of the function maximums
become identical.

In our version, we make improvements to the algorithm
to make efficient execution during search. This includes a
change that normalizes the functions and a improved sched-
ule for updates.

Normalization
In the setup for dynamic heuristics, we apply conditioning
on a single variable and compute our heuristic based on the
conditioned functions. For FGLP, we want to leverage the
state of the problem achieved by running FGLP before con-
ditioning. After conditioning, the max-marginals of the con-
ditioned functions may not be the same and updates can be
performed to tighten the bound once again. A typical sce-
nario is that the conditioning removes the maximum value
of one or more functions. Since their max-marginals now
have lower values, running FGLP will shift costs from the
rest of the problem into the conditioned functions to reach
the fixpoint, so all functions need to be updated.

However, it is not necessary to update all of the func-
tions if we normalize the re-parameterized functions such
that their maximum is zero. By doing this, we only need to
apply updates to variables in functions with non-zero maxi-
mums to achieve the same bound. We perform an additional
cost shift given by the maximum of the function to a nullary
function f∅, which is added to the set of functions in the
graphical model. This is the same as the unary project op-
erator in the soft arc consistency literature. We get the same
bound as before, but can avoid many updates, as the maxi-
mum value for most functions after conditioning are already
zero. By collecting costs into a single nullary function, sub-
sequent cost-shifts during search do not move these costs
around other functions.

We present this change as a subroutine that performs an
update on a single variable in Algorithm 2. Figure 3 presents
the update as message passing on a part of a factor graph.
Line 4 describes the cost shift for normalization and line 5
is changed from the original FGLP algorithm to take into
account the cost shifted into f∅.

Figure 3: View of FGLP update as message passing. The
numbers 1, 2, 3 indicate the order that the messages are com-
puted.

Algorithm 2: FGLP-Variable-Update(Xi)
Input: Graphical Model 〈X,D,F,

∑
〉, where fα is a

function defined on variables Xα, variable Xi to
update, current upper bound f∅

Output: Re-parameterized factors fα(Xα) ∀α ∈ Fi
1 Let Fi = {α : i ∈ α} with Xi in their scope
2 ∀α ∈ Fi, compute max-marginals:
3 λα(Xi) = maxXα\Xi fα(Xα)
4 Shift costs into f∅:
f∅ ← f∅ +

∑
α∈Fi maxXi λα(Xi)

5 ∀α ∈ Fi, update parameterization:
λ′α(Xi) = λα(Xi)−maxXi λα(Xi)
λ̄′(Xi) = 1

|Fi|
∑
α∈Fi λ

′
α(Xi)

fα(Xα)← fα(Xα)− λα(Xi) + λ̄′(Xi)
6 return Re-parameterized F′ containing updates to fα

Theorem 1. (complexity of FGLP-Variable-Update)
Computing each max-marginal takesO(ka) time, where k is
the maximum domain size and a is the maximum arity size
over the functions in the problem. Since we need to do this
|Fi| times, the total time complexity is O(|Fi|ka).

Scheduling Updates
Unlike Algorithm 1 where the scheduling is left undefined,
we address here scheduling to achieve faster performance.
In particular, we seek to identify the variables that are the
most important to update next.

Residual BP (Elidan, McGraw, and Koller 2006) main-
tains a priority queue of messages by computing them as if it
were the next message to update and comparing them to the
previously applied update via a distance measure known as a
message norm. Message norms are computed by treating the
messages as vectors and taking vector norms (L1, L2, L∞,
etc.) between them. This yields a weight indicating the im-
portance of an update.

However, since this requires the calculation of messages
we may possibly not use, we instead calculate priorities
based on the changes made to functions that would affect a
particular variable. Large changes to a function suggest that
variables in that function should be updated. We maintain
a priority pi for each variable Xi. For a particular function
and variable, the magnitude of an update is quantified by
taking a message norm between the two normalized update
messages ‖λ′α(Xi) − λ̄′(Xi)‖. Each variable in fα except
Xi then gets a priority value based on this quantity, or stays
with its current priority value, whichever is greater. To stop
the computation early we have two parameters: a tolerance ε
that stops updates with the highest priority pi is less than that
value, and a maximum number of iterations m. Our full ver-
sion of the FGLP algorithm with normalization and schedul-
ing (FGLP-S) is given in Algorithm 3. The algorithm runs in
a main loop that runs while the maximum priority is greater
than the ε value or if the number of iterations m has not
been exceeded (line 1). In each iteration, the variable with
the maximum priority is extracted and its priority value is
set to 0 (lines 2-3). The following lines are those of FGLP-

108

Variable-Update (Algorithm 2) (lines 4-8). Finally, we up-
date all of the neighboring variable priorities with a prior-
ity based on the magnitude of the update just performed on
variable i. The initial bound and priorities parameters are
primarily used when we are computing dynamic heuristics,
which we describe in a later section. Otherwise, the initial
bound is 0, as no cost has been shifted from the problem at
the start. The initial priorities are all ∞, to ensure that all
variable updates are performed at least once.

Algorithm 3: FGLP-S(X,D,F, f∅, p1, ..., pn, ε,m)
Input: Graphical Model 〈X,D,F,

∑
〉, where fα is a

function defined on variables Xα, initial bound
f∅, initial priorities p1, ..., pn for each Xi,
tolerance value ε, maximum number of
iterations m

Output: Re-parameterized factors F′, bound on
optimal value f ′∅, updated priorities p′i

1 while maxi pi > ε and # iterations <= m do
2 i← arg maxi pi
3 pi ← 0
4 Let Fi = {α : i ∈ α} with Xi in their scope
5 ∀α ∈ Fi, compute max-marginals:
6 λα(Xi) = maxXα\Xi fα(Xα)
7 Shift costs into f∅:

f∅ ← f∅ +
∑
α∈Fi maxXi λα(Xi)

8 ∀α ∈ Fi, update parameterization:
λ′α(Xi) = λα(Xi)−maxXi λα(Xi)
λ̄′(Xi) = 1

|Fi|
∑
α∈Fi λ

′
α(Xi)

fα(Xα)← fα(Xα)− λα(Xi) + λ̄′(Xi)
9 ∀α,∀j ∈ α|j 6= i, update priorities:

pj ← max(pj , ‖λ′α(Xi)− λ̄′(Xi)‖)
10 Let F′ and p′1, ..., p

′
n be the set of updated functions and

priorities, respectively
11 return Re-parameterized factors F′, updated bound f ′∅,

and updated priorities p′1, ..., p
′
n

Heuristics for Branch-and-Bound
We now turn to heuristic generation for Branch-and-Bound.
We present static and dynamic methods of evaluating heuris-
tics. In addition, we propose a hybrid that combines both
methods.

Static Heuristics
The existing static mini-bucket schemes include MBE
and MBEMM, with augmentations based on re-
parameterizations via FGLP and JGLP (Ihler et al. 2012).
The augmentations are based on executing FGLP/JGLP
only once on the original problem to re-parameterize it,
followed by an MBE variant (typically MBEMM) is run on
the re-parameterized set of functions.

In any of these schemes, MBE is computed once and
the hij messages are then used to compute the heuristics
hMBE(n), corresponding to a bound on the cost to go
from any node in the search space. The value cMBE(n) =

g(n) +hMBE(n) is then compared against the best solution
so far to decide whether to prune.

Dynamic Re-parameterization Heuristics
In a cost shifting approach, we instead focus re-
parameterizing the problem during search to generate
bounds dynamically. As is common in any dynamic heuris-
tic scheme, the state of the functions are maintained at
each node along a search path, allowing for backtracking
and leveraging the re-parameterization performed at ances-
tor nodes. We also maintain the state of the priorities at each
node. To quickly incorporate information from conditioning
a variable with a value, we additionally set the priorities of
all variables in functions that contain the conditioning vari-
able to∞.

We present the pure dynamic FGLP algorithm (dFGLP)
in Algorithm 4. We start by selecting the functions that form
the subproblem at the parent node of the search (line 1).
Next, we condition on the parent variable Xi−1 to form the
subproblem at the current node (line 2). Since the functions
may have been changed (especially if conditioning removes
the maximum of the function), we set the priority of all of the
remaining variables of these functions to∞. The following
line then calls the FGLP-S algorithm (Algorithm 3) (line 4).
In order to generate a bound for each assignment to Xi, we
select the remaining functions in the problem that contain
variable Xi and maximize over the other variables. We then
sum up these functions to generate a single unary function.
This function represents a bound on the summation of the
functions that contain Xi, for each assignment xi. Each of
the values of this function are then combined with the bound
generated by FGLP-S to create a bound for each assignment
(line 5).

Functions that are fully conditioned are implicitly col-
lected into the f∅ function, so f∅ (and the c(Xi) outputted
by dFGLP) correspond to a bound on the best solution we
can get from extending the current assignment cFGLP (n),
rather than only bounding a best cost to go.

Hybrid Heuristic. We can also combine the power of
the static heuristic directly with the cost-shifting meth-
ods by taking the minimum of the two at each node.
The hybrid heuristic is then given by chybrid(n) =
min(cMBE(n), cFGLP (n)), taking the minimum of the two
for the tighter upper bound.

Experiments
We experimented with running branch-and-bound with sev-
eral heuristics.
For static heuristic schemes, we have:

• MBEMM with only FGLP preprocessing
(FGLP+MBEMM)

• MBEMM with both FGLP and JGLP preprocessing
(FGLP+JGLP+MBEMM)

For dynamic/hybrid heuristic schemes, we have:

• Dynamic FGLP alone with FGLP preprocessing
(FGLP+dFGLP(m))

109

Algorithm 4: dFGLP(X,D,F, f∅, p1, ..., pn, ε,m,Xi)
Input: Graphical Model 〈X,D,F,

∑
〉 formed after

conditioning on previous search variables
X1, ...Xi−2, where fα is a function defined on
variables Xα, current bound f∅, current
priorities p1, ..., pn, tolerance value ε, maximum
number of iterations m, parent variable
assignment Xi−1 = xi−1, current search
variable Xi

Output: Re-parameterized factors F′, best solution cost
bounds given the assignment to ancestors of
Xi for each assignment xi: c(Xi), updated
bound f ′∅, updated priorities p′1, ..., p

′
n

1 Let Fi−1 = {α : Xi−1 ∈ α}, set of scopes with Xi−1
in their scope

2 ∀α ∈ Fi−1, condition:
fα ← fα|Xi−1=xi−1

3 Set maximum priority for variables of affected
functions, ∀α ∈ Fi−1,∀i ∈ α:
pi ←∞

4 Re-parameterize factors, get bound and updated
priorities:
F′, f ′∅, p

′
1, ..., p

′
n ←

FGLP-S(X,D,F, ε,m, f∅, pi, ..., pn, ε,m)
5 Compute the bounds for each assignment, c(Xi):
c(Xi)← f ′∅ +

∑
α∈F :i∈α maxXα\Xi fα(Xα)

6 return c(Xi), re-parameterized factors F′, updated
bound f ′∅, updated priorities p′1, ..., p

′
n

• Hybrid Dynamic FGLP with static FGLP+MBEMM
(F+MBEMM+dFGLP(m))

• Hybrid Dynamic FGLP with static
FGLP+JGLP+MBEMM (F+J+MBEMM+dFGLP(m)).

where m indicates the maximum number of variable up-
dates performed per search node. We varied this parameter
with 50, 100, and 150 updates. We set the schedule tolerance
value ε = 10−7 and used the L1-norm as the message norm.

In all of the setups, the same variable ordering was used
for search and compiling the static heuristics. Each algo-
rithm also searches the context-minimal OR graph of the
problem. We present the list of benchmarks we experi-
mented with along with summary statistics on their prop-
erties in Table 1.

The block world benchmark is taken from block world
conformant planning instances expressed as unrolled dy-
namic Bayesian networks. The CPD benchmark comes from
work on modeling computational protein design as a cost
function network problem (Allouche et al. 2014). The rest
of the benchmarks are taken from the PASCAL2 Probabilis-
tic Inference Challenge problems.

We ran the experiments on an Intel Xeon X5650 2.66GHz
processor and limited the memory usage to 1GB 1, which

1We chose a 1GB limit, based on our experimentation with the
algorithms and a range of test problems, in order to focus on prob-
lems that were neither trivial nor impossible, to get a meaningful

limits the z-bound that we can use. The time limit for each
problem was 1 hour. For each instance, we also ran stochas-
tic local search for 60 seconds to generate an initial solution.
For other preprocessing schemes, we ran FGLP for 30 sec-
onds and JGLP for 30 seconds (for the applicable setups).
From this table, we exclude (but not limited to) instances
where z = w, which makes the static MBE heuristic com-
pute the exact solution, and instances where none of the
algorithms managed to solve the instance within the time
limit.

Results
We report the preprocessing time, total execution time, and
the number of nodes processed for each algorithm setting in
Table 2 on a selected set of instances from each benchmark.
A ‘-’ indicates that the algorithm was unable to solve the
problem within the time limit. On each benchmark, we focus
on pointing out which method performs better.

We can interpret the results by looking across the columns
for each problem instance. In terms of heuristic strength, we
see that the number of nodes processed decreases on many
instances when using any of the dynamic schemes.

Block World Planning These instances, based on un-
rolled dynamic Bayesian networks, have relatively large in-
duced widths ranging up to 60. Due to their moderate do-
main size of 3, we are still able to use relatively larger z-
bounds for MBEMM. However, there are also high amounts
of determinism in these problems that FGLP is able to
propagate throughout the network. As such, although the
static heuristic alone does not solve the harder instances in
this benchmark, augmenting it with dynamic FGLP helps
greatly.

Graph Coloring For the instances we managed to solve
with our schemes, the z-bound used was relatively close
to the induced width, allowing MBEMM to produce good
bounds. Therefore, although there were savings in terms of
the number of nodes when applying our dynamic schemes,
the savings were often not substantial enough to trade well
with the increased node processing time.

Computation Protein Design Notably, the primal graphs
for these instances are complete graphs. As such their in-
duced width is always n − 1. In addition, the domain sizes
are extremely large, ranging up to 198. As such, this places
a great restriction on the z-bound that MBEMM can use,
which heavily hinders its performance. On the other hand,
the number of variables is relatively low (mostly < 100)
compared to the other benchmarks and all of the functions
are binary, which makes FGLP updates fast. In the hybrid se-
tups, the dynamic FGLP component was often the heuristic
that was actually used.

PDB (Protein DB) We managed to solve only 2 of the in-
stances in this benchmark. Similar to the previous bench-
mark, the domain sizes are large compared to the other
benchmarks we experimented on, which has the same ex-
pected effect of limiting the z-bound for MBEMM. How-

comparison of the relative performance of the algorithms

110

Benchmark # inst # solved n w pw k |F | max arity z
Block world 15 13 192-2695 17-60 101-1699 3 196-2703 5 12-17

Coloring 12 8 25-450 6-287 15-387 2-5 82-5715 2 6-15
CPD 47 33 11-120 10-119 10-119 48-198 67-7261 2 2-5
PDB 10 2 337-1972 22-51 151-988 81 1360-8817 2 3

Pedigree 22 19 298-1015 15-39 86-357 3-7 335-1290 4-5 10-21
Planning 13 7 45-431 9-90 18-226 4-27 272-9689 2 5-12

Radio frequency 11 3 14-458 7-119 10-295 44 58-1878 2 3-4

Table 1: Benchmark statistics. # inst - number of instances, # solved - number of instances solved by methods in this work, n -
number of variables, w - induced width, pw - pathwidth, k - maximum domain size, |F | - number of functions, a - maximum
arity, z - z-bound used for MBE

ever, unlike the CPD instances, there is also a high number
of variables and functions, which makes them difficult to
solve even with dynamic FGLP, each update step can take
a long time. The two solved instances are the two with the
lowest number of variables and functions. For one of them,
the preprocessing from FGLP/JGLP is sufficient to make the
problem easy. For the other, we see that the dynamic FGLP
scheme produces a much better heuristic.

Pedigrees The relationship between the z-bound used and
the induced width is similar to those of the coloring in-
stances, where z is relatively close to the induced width.
We can note that for many of the instances, using the dy-
namic FGLP scheme alone does not return a solution. In the
few cases that it does, considering the number of nodes pro-
cessed, it is also producing weaker bounds.

Planning For many of these instances, the z-bound used
is once again limited relative to the induced width, due to
the larger domain sizes. As expected, the dynamic FGLP
scheme is producing much of the heuristics that are actually
being used at each node.

Radio Frequency Assignment This benchmark has sim-
ilar properties to the protein problems (high domain sizes
and induced width). For the two instances shown, though
the dynamic FGLP scheme alone has the best runtime, it is
not significantly better than those of the static heuristic.

Summary
We omit from Table 2 many results from each benchmark
due to space constraints. To provide a general summary,
most problem classes either perform well with the static
heuristic alone or the dynamic heuristic alone. In particular,
we noticed that 5 of 8 of the solved coloring instances and
11 of 19 of the solved pedigrees had the best time perfor-
mance using the static heuristic only. The rest of the solved
instances for these benchmarks worked better in the hybrid
setup, but the improvement was marginal. On the other hand,
28 of the 33 solved CPD instances and 5 of the 7 solved
planning instances had the best time performance using the
dynamic heuristic only. Only the block world instances per-
formed better with the hybrid setup, with 8 of the 13 in-
stances having the best time performance using the hybrid
heuristic.

We generally see that we are able to solve some prob-
lems more quickly compared with the static heuristics for

two reasons. First, there are cases where the cost of compil-
ing the static heuristic is large enough that using the dynamic
heuristic alone is better. Second, the heuristics produced by
the dynamic scheme are often stronger, enough to trade off
the additional cost incurred by the computation required on
each node. We can also observe that increasing the number
of variable updates generally improves the heuristic, though
there is also a time trade-off here in many cases.

In a number of cases, we can see some unintuitive results
such as getting decreased performance in terms of the num-
ber of nodes when increasing the number of variable up-
dates. This is due to variances in the bound quality as a re-
sult of the tolerance parameter, which may stop the update
iterations early.

Conclusion

We explored FGLP, a method that keeps the objective of
finding the set of optimal cost shifts to tighten in mind, plac-
ing our focus on improving the coordinate descent proce-
dure used. Results show that it generates a powerful heuris-
tic compared to static mini-bucket heuristics in many cases
where our memory budget is limited. In addition, the hybrid
heuristic yields the smallest number of nodes expanded in
the search space for some instances.

Existing scheduling work for message passing algorithms
lead us in the correct direction, but they are not designed
for our scenario of search. The current schedule which is
parameterized by the maximum number of variable updates
and a tolerance has its shortcomings in that it may not bal-
ance the computation load correctly. For instance, one might
consider performing more updates at a higher level of the
search space to allow descendant nodes to start at a better
parameterization. This suggests future work into more so-
phisticated scheduling schemes tuned for use at every node
within search. Additionally, expanding the heuristic to work
in AND/OR search spaces could also help by decompos-
ing the subproblems into independent parts, making both the
search space smaller and possibly allowing FGLP to operate
on much smaller problems. Lastly, we did not investigate the
scheme’s strength when searching along dynamic variable
orderings. Though this would result in not being able to use
the hybrid scheme, it would be interesting to observe how
our FGLP heuristic compares to the various soft-arc consis-
tency methods in the literature.

111

problem FGLP+MBEMM F+dFGLP(50) F+dFGLP(100) F+dFGLP(150)

(n,w, pw, k, |F |, a, z) FGLP+JGLP+MBEMM F+MBEMM+dFGLP(50) F+MBEMM+dFGLP(100) F+MBEMM+dFGLP(150)
F+J+MBEMM+dFGLP(50) F+J+MBEMM+dFGLP(100) F+J+MBEMM+dFGLP(150)

ptime time nodes ptime time nodes ptime time nodes ptime time nodes

Block World Planning
bw6 3 4 6 95 168 11205738 66 447 229640 66 113 30499 66 108 23339

(892,34,527,3,899,5,14) 131 326 25416493 89 165 51040 89 120 17999 89 121 16546
126 - - 131 1047 25132 131 1222 22662

bw6 3 4 8 100 - - 67 2034 901590 66 395 274699 67 3204 2102317
(1184,34,715,3,1191,5,14) 131 - - 94 174 47250 94 142 27029 94 142 24991

133 3301 398789 133 2893 2317756 134 1374 488446
bw7 4 4 7 85 - - 68 - - 67 655 228642 68 690 264774

(1894,58,1151,3,1902,5,12) 117 - - 78 1363 486831 78 615 190273 79 542 155002
118 - - 115 - - 118 - -

Graph Coloring
myciel5g 3.wcsp 103 104 405719 67 165 198249 67 158 106599 67 155 80655

(47,19,25,3,237,2,14) 136 137 232895 96 127 62737 96 132 42587 96 138 34771
139 226 43575 139 289 35875 139 354 32797

queen5 5 3.wcsp 130 131 138452 68 510 1087310 68 793 911666 69 1087 859040
(25,18,21,3,161,2,15) 143 144 274648 121 153 72494 122 173 65414 121 193 62960

143 288 126575 - - 144 535 111323

Computational Protein Design
1DKT.mat... 130 305 5121273 91 404 4625 92 285 1756 92 235 896

(46,45,45,190,1082,2,3) 152 284 3605639 123 559 6701 121 379 2246 122 304 1142
161 392 3745 161 453 2530 161 383 1324

1PIN.mat... 707 2221 59060806 92 1767 14094 92 1196 3390 92 1465 2569
(28,27,27,194,407,2,3) 1002 3296 94827316 700 2571 17986 705 1590 3394 701 1709 2161

728 2603 18395 726 1594 3054 727 1787 2485
2TRX.mat... 242 - - 91 359 6406 91 590 4587 91 872 4330

(61,60,60,186,1892,2,5) 235 - - 220 1098 22526 221 1750 14638 225 2221 12610
803 - - 783 - - 771 - -

Protein DB
pdb1i24 121 121 338

90 91 395 90 92 396 90 92 395
(337,29,151,81,1360,2,3) 139 139 395 93 104 1696 90 98 929 90 100 984

148 149 338 148 149 395 148 150 338
pdb1kwh 125 126 10652 91 96 664 90 95 643 90 96 558

(424,26,216,81,1881,2,3) 146 638 7743310 97 - - 97 - - 97 1957 61774
152 156 554 152 156 514 152 157 471

Pedigree
pedigree37 103 104 6047 74 - - 65 - - 65 - -

(726,20,217,5,1033,4,14) 113 113 10375 99 106 5931 99 107 5931 99 107 5931
112 754 1155216 112 620 889454 113 120 871

pedigree38 107 107 4011 68 - - 68 - - 68 - -
(581,16,221,5,725,4,11) 113 153 1959805 99 102 2824 99 103 2718 99 103 2655

114 - - 114 - - 114 - -
pedigree41 83 - - 64 - - 64 - - 64 - -

(885,33,323,5,1063,5,17) 126 699 123869387
79 - - 79 - - 79 - -
126 - - 126 - - 126 - -

Planning
bwt4ac.wcsp 99 - - 85 86 323 86 86 238 86 86 229

(179,40,73,18,2563,2,7) 126 - - 75 76 414 74 75 275 75 76 369
151 153 448 151 153 256 144 146 200

bwt5ac.wcsp 116 - - 91 154 8402 91 129 4056 91 123 3084
(431,61,165,27,9246,2,5) 132 - - 88 303 27659 86 139 5653 86 132 4474

137 245 7978 137 247 4970 138 242 3504
zenotravel04ac.wcsp 154 - - 91 95 900 91 94 474 90 93 392

(239,31,75,24,3147,2,5) 151 - - 125 131 1680 125 129 697 126 130 539
154 167 1125 154 164 332 153 167 474

Radio Frequency Assignment
graph05.wcsp 114 114 7816 91 105 4739 90 112 4843 90 117 4843

(100,24,60,44,417,2,3) 145 146 55830 87 185 195304 86 199 195314 86 205 195314
145 178 17584 145 203 14463 145 187 29387

graph06.wcsp 147 148 2521 91 129 2951 91 102 1333 92 104 885
(200,47,130,44,844,2,3) 178 178 236

120 - - 120 - - 120 - -
179 181 242 179 182 242 179 183 242

Table 2: Results on selected instances of each benchmark. n - number of variables, w - induced width, pw - pathwidth, k -
maximum domain size, |F | - number of functions, a - maximum arity, z - z-bound used for MBE. In bold are the minimum
running time/nodes achieved for a problem over all of the heuristic setups. Time limit: 1 hour, memory limit 1GB.

112

Acknowledgements This work was sponsored in part
by NSF grants IIS-1065618 and IIS-1254071, and by the
United States Air Force under Contract No. FA8750-14-C-
0011 under the DARPA PPAML program.

References
Allouche, D.; André, I.; Barbe, S.; Davies, J.; de Givry, S.;
Katsirelos, G.; O’Sullivan, B.; Prestwich, S.; Schiex, T.; and
Traoré, S. 2014. Computational protein design as an opti-
mization problem. Artificial Intelligence 212:59–79.
Cooper, M., and Schiex, T. 2004. Arc consistency for soft
constraints. Artificial Intelligence 154(1):199–227.
Cooper, M. C.; de Givry, S.; Sánchez, M.; Schiex, T.; and
Zytnicki, M. 2008. Virtual arc consistency for weighted
csp. In AAAI, volume 8, 253–258.
Cooper, M. C.; de Givry, S.; and Schiex, T. 2007. Optimal
soft arc consistency. In IJCAI, volume 7, 68–73.
Dechter, R., and Mateescu, R. 2007. And/or search spaces
for graphical models. Artificial intelligence 171(2):73–106.
Dechter, R., and Rish, I. 2003. Mini-buckets: A general
scheme for bounded inference. Journal of the ACM (JACM)
50(2):107–153.
Dechter, R. 1999. Bucket elimination: A unifying frame-
work for reasoning. Artificial Intelligence 113(1):41–85.
Dechter, R. 2003. Constraint processing. Morgan Kauf-
mann.
Dechter, R. 2013. Reasoning with probabilistic and de-
terministic graphical models: exact algorithms, volume 23
of Synthesis Lectures on Artificial Intelligence and Machine
Learning. Morgan & Claypool Publishers.
Elidan, G.; McGraw, I.; and Koller, D. 2006. Residual belief
propagation. In Uncertainty in Artificial Intelligence (UAI).
Globerson, A., and Jaakkola, T. S. 2007. Fixing max-
product: Convergent message passing algorithms for map
lp-relaxations. In Advances in neural information process-
ing systems (NIPS 2007), 553–560.
Ihler, A. T.; Flerova, N.; Dechter, R.; and Otten, L. 2012.
Join-graph based cost-shifting schemes. In Proceedings of
the 28th Conference on Uncertainty of Artificial Intelligence
(UAI 2012).
Larrosa, J., and Schiex, T. 2004. Solving weighted
csp by maintaining arc consistency. Artificial Intelligence
159(1):1–26.
Pearl, J. 1988. Probabilistic reasoning in intelligent sys-
tems: networks of plausible inference. Morgan Kaufmann.
Sontag, D.; Meltzer, T.; Globerson, A.; Jaakkola, T.; and
Weiss, Y. 2008. Tightening lp relaxations for map using
message passing. In Proceedings of the 24th Conference on
Uncertainty of Artificial Intelligence (UAI 2008).
Wainwright, M. J.; Jaakkola, T. S.; and Willsky, A. S. 2005.
Map estimation via agreement on trees: message-passing
and linear programming. Information Theory, IEEE Trans-
actions on 51(11):3697–3717.
Yedidia, J. S.; Freeman, W. T.; and Weiss, Y. 2005. Con-
structing free-energy approximations and generalized belief

propagation algorithms. Information Theory, IEEE Transac-
tions on 51(7):2282–2312.

113

