
A* with Lookahead Re-Evaluated

Zhaoxing Bu
Department of Computing Science

University of Alberta
Edmonton, AB Canada T6G 2E8

zhaoxing@ualberta.ca

Roni Stern and Ariel Felner
Information Systems Engineering

Ben Gurion University
Beer Sheva, Israel 85104

roni.stern@gmail.com, felner@bgu.ac.il

Robert C. Holte
Department of Computing Science

University of Alberta
Edmonton, AB Canada T6G 2E8

rholte@ualberta.ca

Abstract

A* with lookahead (AL*) is a variant of A* that performs a
cost-bounded DFS lookahead from a node when it is gener-
ated. We show that the original version of AL* (AL∗

0) can,
in some circumstances, fail to return an optimal solution be-
cause of the move pruning it does. We present two new ver-
sions, AL∗

1 and ELH , that we prove to always be correct
and give conditions in which AL∗

0 is guaranteed to be cor-
rect. In our experiments with unit costs, AL∗

0 was usually the
fastest AL* version, but its advantage was usually small. In
our experiments with non-unit costs, AL∗

0 substantially out-
performs both A* and IDA*. We also evaluate the idea of
immediately expanding a generated node if it has the same
f -value as its parent. We find that doing so causes AL* to
require more memory and sometimes slows AL* down.

Introduction
The main drawback of A* is that its memory requirements
usually grow exponentially with depth. Consequently, for
large state spaces A* usually exhausts the available memory
before reaching a goal. By contrast, the memory needed by
depth-first search (DFS) is only linear in the search depth.
However, DFS algorithms can be very inefficient in state
spaces containing many transpositions (redundant paths)
since they do not perform duplicate pruning.

Stern et al. (2010) introduced a hybrid of A* and DFS
called A* with lookahead (AL*). AL* is exactly the same as
A* except that it performs a cost-bounded DFS lookahead
from a node when it is generated. The main advantage of
AL* over A* is that lookahead always reduces A*’s mem-
ory requirements, with deeper lookaheads producing larger
reductions. Stern et al. showed that AL* can also reduce the
time needed to solve a problem, but this is not guaranteed.

The main contributions of this paper are as follows.
Move pruning. In order to eliminate many of the trans-

positions in the state spaces they studied, Stern et al. pro-
vided AL* with a small table saying which operators may
be applied immediately after a given operator. For exam-
ple, in Figure 1 operators a and b commute, so there are
two paths from S to U , ab and ba. Such a table might in-
dicate that b may be applied immediately after a but that

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

S

A

B

U G

a

b

b

a

Figure 1: Sequences ab and ba are redundant.

a may not be applied immediately after b, thereby elimi-
nating one of the redundant sequences. This table is a spe-
cial case of “move pruning” (Burch and Holte 2011; 2012;
Holte and Burch 2014) for operator sequences of length 2.

In this paper we examine three versions of AL*, AL∗0,
AL∗1 and ELH .1 We show that, because of its move prun-
ing, Stern et al.’s version (AL∗0) can sometimes fail to return
optimal solutions, but we also prove that it behaves correctly
except in rather unusual circumstances. We also present two
new AL* variations, AL∗1 and ELH , which we prove al-
ways return optimal solutions. We experimentally compare
these three algorithms and find that their memory require-
ments are virtually identical and that their solving times are
almost always within a factor of two of one another.

Immediate Expansion. In A*, “immediate expansion”
(IE) means that if a generated node has the same f -value as
its parent it is “immediately expanded” without going into
OPEN (Sun et al. 2009). Stern et al. used IE in all their AL*
experiments.2 In this paper we give the first evaluation of
AL* without IE. We show that IE requires more memory,
produces limited speedup, and sometimes slows AL* down.

A* with Lookahead (AL*)
Figure 2 gives pseudocode capturing the essence of Stern et
al.’s (2010) implementation of AL*. We refer to this pseu-
docode and any implementation of it as AL∗0. AL∗0’s expan-
sion cycle is shown in the upper part of the figure, its looka-
head algorithm in the lower part. This figure does not show
the code for immediate expansion nor the many efficiency-
improving details in Stern et al.’s (2010) implementation or
our re-implementation of AL∗0.

1We use AL* to refer to the general family of A* with Looka-
head algorithms and names in italics, e.g. AL∗

0, to refer to specific
instances of the AL* family.

2They called it “trivial lookahead”.

44

Proceedings of the Seventh Annual Symposium on Combinatorial Search (SoCS 2014)

input: n, node chosen for expansion
input/output: UB, search upper bound

1 foreach operator op do
2 c← generateNode(op, n)
3 if goalTest(c) = True then
4 UB = min(UB, g(c))
5 if g(c) ≥ gstored(c) or fs(c) ≥ UB then
6 Continue
7 LHB ← min(UB, fs(n) + k)
8 if fs(c) ≤ LHB then
9 fmin←∞

10 Lookahead(c, op, LHB,UB, fmin)
11 hu(c)← fmin− g(c)
12 else
13 hu(c)← hs(c)
14 Save hu(c), update gstored(c), and update

OPEN and CLOSED as appropriate.
15 end

Algorithm 1: Expansion cycle of AL∗0.

input: v, the root node of the lookahead
input: H , move sequence history
input: LHB, lookahead bound
input/output: fmin, the minimum cost of

lookahead frontier nodes
input/output: UB, search upper bound

1 foreach operator op do
2 if operatorAllowed(op,H) = False then
3 Continue
4 c← generateNode(op, v)
5 if goalTest(c) = True then
6 UB = min(UB, g(c))
7 fmin = min(fmin, g(c))
8 else
9 if fs(c) ≤ LHB and fs(c) < UB then

10 Lookahead(c,H�op,LHB,UB,fmin)
11 else
12 fmin = min(fmin, fs(c))
13 end

Algorithm 2: AL∗0’s Lookahead.
Figure 2: Algorithms for AL∗0. H�op appends op to H .

The main variables in AL* are as follows. UB, the cost
of the best solution found so far, is a global variable that is
initially infinite. LHB is the cost used to bound f -values in
the lookahead search, defined by a user-provided constant k.
g(c) is the cost of the current path to node c, and gstored(c)
is the cost of the cheapest path to c previously found. Two
heuristic values are computed for each node c. hs(c) is the
normal heuristic value. The subscript s stands for “static”,
since hs(c) does not change over time. The other heuris-
tic value, hu(c), is initially equal to hs(c), but is dynami-
cally updated by Algorithm 1 as the search proceeds. fs(c)
is g(c) + hs(c), and fu(c) is g(c) + hu(c).

In each iteration of the main A* loop (not shown), the
node n with the smallest fu-value is moved from OPEN to

CLOSED and expanded by calling Algorithm 1. In Algo-
rithm 1, the children of n are generated (lines 1 and 2), and
UB is updated if a child is a goal (lines 3 and 4). If the cur-
rent path to child c is not strictly better than the best path
so far or c cannot possibly lead to a better solution, c is ig-
nored (lines 5 and 6). Otherwise LHB is set to the smaller of
UB and fs(n)+k (line 7) and lookahead is performed from
c (line 10) unless fs(c) exceeds LHB (line 8). The looka-
head returns fmin, the minimum fs-value among the fron-
tier nodes of the lookahead search, which is used to compute
hu(c) (line 11). Lookahead will also update UB if it finds a
cheaper path to the goal (lines 5 and 6 in Algorithm 2). Line
14 of Algorithm 1 adds c to OPEN (or updates it) and saves
the new values of g(c) and hu(c) for subsequent use.

Note that the goal is never added to OPEN and, if an opti-
mal path to the goal is found during a lookahead, every node
p on an optimal path with fs(p) = UB generated there-
after will also not be added to OPEN (line 5, Algorithm 1).
This version of A* terminates with failure if OPEN becomes
empty and UB is still infinite, and terminates with success if
either (1) OPEN becomes empty and UB is finite, or (2) if
the smallest f -value on OPEN equals or exceeds UB.

Algorithm 2 is a straightforward cost-bounded depth-first
search that updates UB when it can and returns, in fmin,
the minimum fs-value at the frontier of its search.

Move Pruning in AL*
In AL*, move pruning is done in lines 2 and 3 of Algo-
rithm 2. H is the sequence of recent moves leading to v.
In a preprocessing phase, move pruning analysis (Holte and
Burch 2014) checks each operator sequence of length L or
less to determine if it can be pruned because it is redundant
(see Definition 1 below) with another sequence of length L
or less. This creates a table mapping each operator sequence
of length L−1 or less to the operators that may be applied
immediately following that sequence. In Algorithm 2, this
table is consulted (line 2) to determine if op may be applied
after H (considering only the last L−1 moves in H). Stern
et al. constructed a similar table by hand.

A key feature ofAL∗0 is that the move sequence historyH
used for move pruning during lookahead is initialized to be
the operator op that generated the root node of the lookahead
search (op in Algorithm 1 is passed as the second parameter
when Algorithm 2 is called in line 10). This, however, can
cause the updated heuristic value for child c, hu(c), to be
inadmissible. For example, consider Figure 1. When opera-
tor b is applied to S, child B is generated, and a lookahead
from B is initiated with H initialized to b, the operator that
generated B. Move pruning does not permit a to be applied
after b so this lookahead search will immediately terminate
and hu(B) will be set to infinity, even though there is a path
from B to the goal G. In this example, the inadmissible val-
ues do not cause AL∗0 to return a suboptimal solution; Fig-
ure 3 gives an example where they do.

In Figure 3 S is the start and G is the goal. Operators a
and b generate the same state (T) when applied to S and have
the same cost, but are not redundant so neither is pruned.
Sequences ac and bc are redundant with one another and the
move pruning system, based on a predetermined ordering of

45

S T U G

a

b

c

Figure 3: Situation in which AL∗0 fails to return an optimal
solution (adapted from Holte (2013)).
move sequences, chooses to keep ac and prune bc (c will not
be executed after b). Suppose thatAL∗0 applies b first when S
is expanded. Lookahead proceeds from T with H initialized
to b. Because bc has been pruned, c is not applied to T given
that H = b so lookahead terminates with fmin = ∞. This
makes hu(T) = ∞, so T is not added to OPEN. Next a is
applied to S, generating T , but because g(T) via this path is
not strictly better than the best previously seen g(T) value
(gstored(T), see line 5 in Algorithm 1), T reached via a will
be ignored, OPEN will be empty, and AL∗0 will terminate
without finding a path from S to G.

The key to this example is that the order in which the op-
erators were applied by AL∗0 (b was given priority over a)
was different than the order used by move pruning to decide
whether to prune ac or bc (ac was given priority over bc).
Even if the same order is used by both, AL∗0 could still fail
to return an optimal solution if the order is not a “length-
lexicographic order” (see Definition 3 below). If a length-
lexicographic order is used for move pruning and the situ-
ation in Figure 3 does not occur then AL∗0 is guaranteed to
return an optimal solution. In the next section we express
these conditions formally in Definition 12 and prove AL∗0’s
correctness if the conditions in this definition are satisfied.
These conditions are satisfied in the experiments done by
Stern et al. (2010) and in all the experiments below.

Versions of AL* that are always correct
What always goes wrong when AL∗0 fails is that move prun-
ing eliminates some paths in the first lookahead below n
assuming that these paths will be examined by lookahead
when n is reached by a different path of the same cost. How-
ever, the second lookahead is never done because AL∗0 only
does a second lookahead for a node if it is reached by a
strictly better path (line 5 in Algorithm 1). One way to cor-
rect this is to allow a lookahead to be done for a node every
time it is reached by a path with the best known g-value.
This means changing line 5 in Algorithm 1 to

if g(c) > gstored(c) or fs(c) ≥ UB then
This change means that multiple lookaheads can now be
done from the same node c, and some of these might have
different initializations of H . Hence, the move pruning dur-
ing these lookaheads might be different, which could re-
sult in several different hu-values being computed for c for
a given g-value. It is important that the smallest of these
be kept as the value of hu(c) because all the others might
be inadmissible. Therefore, line 11 in Algorithm 1 must be
changed to
hu(c)← min(hu(c),fmin− g(c))

where the hu(c) inside the “min” refers to the smallest pre-
viously calculated hu(c) value for this g(c).AL∗1 is the algo-
rithm produced by making these two changes toAL∗0. These
changes will usually cause AL∗1 to be slower than AL∗0.

On the example in Figure 3, AL∗1 would perform a looka-
head when T is generated via operator a, even though it had
previously generated T by a path (b) of the same cost. This
lookahead (with H initialized to a) would apply operator
c to T and return an admissible hu-value, and T would be
added to OPEN with fu(T) computed using this hu-value.
A proof of AL∗1’s correctness is given in the next section.

Another way to change AL∗0 so it is safe to use under any
conditions is to change the call to Algorithm 2 so that the
empty sequence (ε) is passed as the initial move sequence
history for move pruning instead of op, i.e. to change line 10
of Algorithm 1 to

Lookahead(c, ε, LHB,UB, fmin)

We call this method ELH (for “Empty Lookahead His-
tory”). On the example in Figure 3, when T is generated
for the first time, using operator b, ELH would perform
a lookahead with H initialized to ε, not b. Therefore, the
lookahead would apply operator c to T and return an admis-
sible hu-value, and T would be added to OPEN with fu(T)
computed using this hu-value.
ELH has the advantage over AL∗0 and AL∗1 that hu(c)

is always admissible.3 This means that hu (or fu) can be
used in ELH in places where AL∗0 and AL∗1 must use hs
(or fs): lines 5 and 8 in Algorithm 1 and everywhere in
Algorithm 2.4 This may make ELH faster than AL∗0 and
AL∗1 because its larger heuristic values will mean there are
more nodes for which lookahead is not done. On the other
hand, ELH will do less move pruning during lookahead be-
cause its move sequence history is initially empty, making it
slower than AL∗0 and AL∗1. It is not obvious which of these
effects will dominate in a given problem.

Proofs of Correctness for AL∗
0 and AL∗

1

Our correctness proofs forAL∗0 andAL∗1 have the same gen-
eral structure as the standard proof for A* (e.g. pp. 75–78
in (Pearl 1984)). For brevity we omit the proofs that AL∗0
and AL∗1 always terminate and return a solution path if one
exists, and focus on the optimality of the path they return,
which is Pearl’s Theorem 2 (p.78). Pearl’s proof rests on the
fact that at any time during A*’s execution, there exists on
OPEN at least one node n with these properties: (a) n is on
a least-cost path from start to goal; (b) the current value of
g(n) is optimal; and (c) the value of h(n) is admissible.

To prove that AL∗0 and AL∗1 are guaranteed to return an
optimal solution (if one exists) it would therefore suffice to
prove that at any time during their execution there exists on
OPEN at least one node n with the required properties, with
h(n) in requirement (c) being understood as hu(n). How-
ever, this might not be true because if an optimal solution is
found on iteration T , UB will be set to f∗, the optimal so-
lution cost, and there may be no nodes on OPEN with the
three required properties on subsequent iterations because
the goal itself is never added to OPEN and new nodes with

3The proof is omitted due to lack of space, but is very similar
to the proof of Fact 5 in the proof of AL∗

1’s correctness.
4In Algorithm 2, AL∗

0 can use fu when g(c) ≥ gstored, but
must use fs when g(c) < gstored(c).

46

fs(n) ≥ UB are not added to OPEN (line 5 in Algorithm 1).
However, the existence of such a node on OPEN after an
optimal solution is found is not necessary because once an
optimal solution is found it will never be replaced by a sub-
optimal (or no) solution, so when AL∗0 and AL∗1 terminate
they will return an optimal solution. It suffices therefore to
prove that there exists a node on OPEN with the three re-
quired properties at the start of iteration t for 0 ≤ t ≤ T .

Theorems 2 and 3 prove, for AL∗1 and AL∗0 respectively,
that at the start of iteration t (0 ≤ t ≤ T) there is a node
n on OPEN with the required properties. Both proofs use
the same reasoning as the analogous proof for A*. Initially
(t = 0), start is on OPEN and has the required proper-
ties. If a node, n, with the required properties is on OPEN
at the start of an iteration, there will be a node on OPEN
with the required properties at the end of that iteration for
one of two reasons: (1) n was not chosen for expansion, or
(2) n was expanded and one of its children will have the re-
quired properties and be added to OPEN. The standard proof
is straightforward because the heuristic value of a node is
constant and there is no move pruning. Our proofs have to
cope with a dynamically changing heuristic (hu), the fact
that some heuristic values may be inadmissible, and the fact
that many paths, even optimal ones, may be eliminated by
move pruning.

There are two main differences between the proofs for
AL∗0 and AL∗1. First, the proof for AL∗0 requires conditions
(see Definition 12 below) that have no counterparts in the
proof for AL∗1. This difference is mainly seen in the proof
of Fact 6 for the two algorithms. Second, the proof for AL∗1
shows that there is always a node from a specific least-cost
path, min(start, goal) (see Definition 4), that is on OPEN
with the required properties. By contrast, AL∗0 might elimi-
nate min(start, goal) from consideration, so its proof must
consider all least-cost paths. This difference is mainly seen
in the definitions of Ωt, Φt, and L(s), which are otherwise
very similar. Note that because Ωt, Φt, and L(s) have dif-
ferent definitions forAL∗0 andAL∗1, the definitions based on
these, e.g. of Lt

Ω, Lt
Φ, Ψt, etc., are also different even though

they look identical.
Due to space limitations, proofs of lemmas and facts are

omitted if they are straightforward.

Definition 1 Operator sequence B is redundant with oper-
ator sequence A iff (i) cost(A) ≤ cost(B), and, for any
state s that satisfies the preconditions required to apply B
both of the following hold: (ii) s satisfies the preconditions
ofA, and (iii) applyingA andB to s leads to the same state.

ε is the empty sequence. If A is an operator sequence, |A|
is the number of operators in A. If A and B are operator
sequences, B ≥ A indicates that B is redundant with A. If
O is a total order on operator sequences, B >O A indicates
that B is greater than A according to O, which means B
comes after A on O. If A and B are two operator sequences
then their concatenation (AB) will sometimes be written as
A
⋃
B. f∗ is the cost of an optimal path from start, the start

state, to goal.

Definition 2 A total order on operator sequences O is
“nested” iff ε <O Z for all Z 6= ε, and B >O A implies

XBY >O XAY for all A,B,X, and Y .

Definition 3 A “length-lexicographic order” O is a total
order on operator sequences based on a total order of the
operators o1 <O o2 <O For operator sequences A and
B,B >O A iff |B| > |A| or |B| = |A| and ob >O oa where
ob and oa are the leftmost operators where B and A differ
(ob is in B and oa is in the corresponding position in A).

Definition 4 For a nested order, O, on operator sequences,
and states s and t (t reachable from s),min(s, t) is the least-
cost path from s to t that is smallest according to O.

Theorem 1 Let O be any nested order on operator se-
quences and B any operator sequence. If there exists an
operator sequence A such that B is redundant with A and
B >O A, then B does not occur as a consecutive subse-
quence in min(s, t) for any states s, t.

The preceding are from Holte and Burch (2014). Theo-
rem 1 is the basis for Holte and Burch’s move pruning tech-
nique. If B = b1 . . . bk >O A and analysis determines
that B ≥ A, then move pruning refuses to apply bk after
b1 . . . bk−1. Theorem 1 implies that this will not prune any
portion ofmin(s, t) if a depth-first search is performed from
s with a move sequence history that is initially empty.

Definition 5 If min(s, t) is the operator sequence
σ1, ..., σk then we say node n is on min(s, t) if n = s or if
n = σi(σi−1(...(σ1(s))...)) for some i, 1 ≤ i ≤ k.

Lemma 1 For any nested order O, any states s and t
(reachable from s), and any node n on min(s, t), then
min(s, t) = min(s, n)

⋃
min(n, t).

Correctness Proof for AL∗
1

Definition 6 Ωt is the set of states n at the start of iteration
t that satisfy these three conditions:

1. n is on min(start, goal).
2. the g-value for n is optimal.
3. n is on OPEN with admissible hu(n), or n is on CLOSED.

AL∗1 sets hu(start) = hs(start) so start ∈ Ωt ∀t ≥ 0.

Definition 7 Φt is the subset of states in Ωt on OPEN.

The nodes in Φt are precisely those with the three prop-
erties needed to prove that AL∗1 returns an optimal solution
(if one exists). What we must prove, therefore, is that Φt is
non-empty for all 0 ≤ t ≤ T .

Definition 8 If s is a state on min(start, goal), L(s) is the
number of operators in min(s, goal). L(s) = ∞ for states
not on min(start, goal).

Definition 9 Lt
Ω is the minimum L(s) for s ∈ Ωt.

Definition 10 Lt
Φ is the minimum L(s) for s ∈ Φt. Lt

Φ is
undefined if Φt is empty.

Definition 11 Ψt = {s ∈ Φt|L(s) = Lt
Φ}.

Φt can contain several states but they will all have dif-
ferent L-values so Ψt contains exactly one state when Φt is
non-empty.

47

Theorem 2 LetO be a nested order on operator sequences,
start a state, goal a state reachable from start, hs an ad-
missible heuristic, and T the index of the first iteration on
which UB becomes equal to f∗. If AL∗1 is run with start,
goal, hs and move pruning based on O, then at the start of
iteration t, Φt is non-empty and Lt

Ω = Lt
Φ ∀t, 0 ≤ t ≤ T .

Proof The proof is by induction on t.
Base case (t = 0): Ω0 = Φ0 = Ψ0 = {start}, L0

Ω = L0
Φ =

L(start).
Inductive step: We need to show the theorem is true for iter-
ation t+ 1 given that it is true for iteration t, 0 ≤ t < T . Let
P be the node expanded on iteration t.
Case 1. P /∈ Ψt. Proof sketch: If no child of P meets all
the criteria for being in Φt+1 then Φt+1 ⊇ Ψt+1 = Ψt is not
empty and Lt+1

Ω = Lt+1
Φ = Lt

Φ. If a child B of P meets all
the criteria for being in Φt+1 then Φt+1 will not be empty
(B will be in it) and Lt+1

Ω = Lt+1
Φ = min(L(B), Lt

Φ). �
Case 2. P ∈ Ψt. Let B be the child of P generated by
applying the first operator b on min(P, goal) to P . Then the
following are true:
Fact 1. B is on min(start, goal).
Fact 2. b = min(P,B).
Fact 3. L(B) = L(P)− 1.
Fact 4. g(B), after applying operator b to P , is optimal.
Fact 5. If lookahead is performed when B is generated by
applying b to P , it will return an admissible hu-value for B.
Proof: Let UBb be the value of UB when B is generated by
applying b to P . The lookahead from B, with the move se-
quence history initialized to be b and UB = UBb, generates
exactly the same search tree as the tree below b generated
by lookahead from P with a move sequence history initial-
ized to be empty and UB = UBb. By Theorem 1, no por-
tion ofmin(P, goal) will be pruned by move pruning during
these lookaheads. In particular, no portion of min(B, goal)
will be pruned during lookahead from B with a move se-
quence history initialized to b. In addition, because t < T ,
g(B) is optimal, and hs is admissible, fs(n) < UB for
every node n on min(B, goal). Therefore lookahead will
expand all nodes on min(B, goal) except for those with
fs > LHB (line 9 of Algorithm 2). Let F be the shallowest
node on min(B, goal) that is not expanded during looka-
head. Then hu(B) = fmin − g∗(B) ≤ fs(F) − g∗(B) ≤
f∗(F)− g∗(B) = h∗(B), i.e. hu(B) is admissible.
Fact 6. B will be on OPEN with an admissible hu-value at
the end of iteration t.
Proof: Because Lt

Ω = Lt
Φ, B is not, at the start of itera-

tion t, on CLOSED with an optimal g-value. If lookahead
from B is not performed because fs(B) > LHB then
hu(B) = hs(B) is admissible. If lookahead from B is per-
formed then hu(B) is admissible (Fact 5). Because AL∗1
keeps the minimum hu(B) for the current g-value, B will
be added to OPEN, or updated if it is already on OPEN with
a larger g- or h-value, with this admissible hu-value.

These six facts allow us to prove Case 2. By Facts 1, 4,
and 6, B meets all the criteria for being in Φt+1, therefore
Φt+1 will not be empty. It is possible that other children of
P also meet all the criteria, in which case Lt+1

Ω = Lt+1
Φ =

the minimum L-value of all such children. �

Correctness Proof for AL∗
0.

Definition 12 AL∗0 is “safe” with move pruning using move
sequence order O for state space S iff O is a length-
lexicographic order and either of the following holds:

1. In Algorithm 1, AL∗0 applies operators in the order spec-
ified by O.

2. There does not exist a state s and an operator o different
than os, the first operator on min(s, goal), such that:

(a) s is on a least-cost path from start to goal,
(b) cost(o) = cost(os),
(c) o applies to s and o(s) = os(s).

Definition 13 Ωt is the set of states n at the start of iteration
t that satisfy these three conditions:

1. n is on a least-cost path from start to goal.
2. the g-value for n is optimal.
3. n is on OPEN or CLOSED.

Definition 14 Φt is the set of states n at the start of iteration
t that satisfy these two conditions:

1. n ∈ Ωt.
2. n is on OPEN with an admissible hu-value.

AL∗0 sets hu(start) = hs(start) so start ∈ Φ0.
The nodes in Φt are precisely those with the three prop-

erties needed to prove that AL∗0 returns an optimal solution
(if one exists). What we must prove, therefore, is that Φt is
non-empty for all 0 ≤ t ≤ T .

Definition 15 If s is a state, L(s) is the minimum number of
operators in a least-cost path from s to goal. L(s) = ∞ if
goal is not reachable from s.

Note: if O is length-lexicographic, L(s) = |min(s, goal)|.

Lemma 2 Let p be a state such that p ∈ Ωt, and a length-
lexicographic order is used for move pruning. If during the
expansion of p, p generates c by operator e, c is on a least-
cost path from p to goal and its g-value is optimal, then
L(c) ≥ L(p) − 1. If e is the first operator in min(p, goal),
then L(c) = L(p)− 1.

Definition 16 Lt
Ω is the minimum L(s) for s ∈ Ωt.

Definition 17 Lt
Φ is the minimum L(s) for s ∈ Φt. Lt

Φ is
undefined if Φt is empty.

Definition 18 Ψt = {s ∈ Φt|L(s) = Lt
Φ}.

From the definitions we know Ψt ⊆ Φt ⊆ Ωt, and Ψt is
non-empty iff Φt is non-empty.

Theorem 3 LetO be a length-lexicographic order on oper-
ator sequences, S a state space, start a state, goal a state
reachable from start, hs an admissible heuristic, and T the
index of the first iteration on which UB becomes equal to f∗.
If AL∗0 is run with start, goal, hs and move pruning based
on O, and is safe to use with move pruning using O for S,
then at the start of iteration t, Φt is non-empty andLt

Ω = Lt
Φ

∀t, 0 ≤ t ≤ T .

48

Proof The proof is by induction on t.
Base case (t = 0): Ω0 = Φ0 = Ψ0 = {start}, L0

Ω = L0
Φ =

L(start).
Inductive step: We need to show the theorem is true for iter-
ation t+ 1 given that it is true for iteration t, 0 ≤ t < T . Let
P be the node expanded on iteration t.
Case 1. P /∈ Φt. By Definition 14, there are three possi-
ble reasons for P /∈ Φt: (a) P is not on a least-cost path
from start to goal, (b) g(P) is not optimal, and (c) hu(P)
is not admissible. If (a) or (b) is true, then no child of P
that is not in Φt can be on a least-cost path with its opti-
mal g-value, otherwise P is on a least-cost path and g(P)
is optimal. Thus, if (a) or (b) is true, Φt+1 ⊇ Ψt+1 = Ψt

is not empty and Lt+1
Ω = Lt+1

Φ = Lt
Φ. Finally, it is im-

possible for (c) to be true if (b) is false, because in this
situation P would not have been chosen for expansion. Φt

is non-empty, and each node in Φt has an admissible hu-
value, hence an admissible fu-value. For each n ∈ Φt,
g∗(n) + hu(n) ≤ f∗ < g∗(P) + hu(P), so n would have
been chosen for expansion, not P , if (c) were true and (b)
false. �
Case 2. P ∈ Φt, P /∈ Ψt. If no child of P that is not
in Φt meets all the criteria for being in Φt+1 then Φt+1 ⊇
Ψt+1 = Ψt is not empty and Lt+1

Ω = Lt+1
Φ = Lt

Φ. If a
child B of P that is not in Φt meets all the criteria for being
in Φt+1 then Φt+1 will not be empty (B will be in it) and
Lt+1

Ω = Lt+1
Φ = Lt

Φ (by Lemma 2, Lt+1
Φ cannot be less than

Lt
Φ since L(P) > Lt

Φ). �
Case 3. P ∈ Ψt. Let B be the child of P generated by
applying the first operator b in min(P, goal) to P . Then the
following are true:
Fact 1. B is on a least-cost path from start to goal.
Fact 2. b = min(P,B).
Fact 3. L(B) = L(P)− 1.
Fact 4. g(B) after applying operator b to P is optimal.
Fact 5. If lookahead is performed when B is generated by
applying b to P , it will return an admissible hu-value for B.
Proof: This proof is same as the proof for Fact 5 of Theo-
rem 2’s Case 2, and is omitted here due to space limitation.
Fact 6. B will be on OPEN with an admissible hu-value at
the end of iteration t.
Proof: Because of Facts 1 and 3, Definition 13, and
Lt

Ω = Lt
Φ, B is not, at the start of iteration t, on OPEN

or CLOSED with an optimal g-value. If lookahead from
B is performed when B is generated by applying b to P ,
then, by Fact 5, hu will be admissible. In Algorithm 1,
there are three reasons why lookahead from B, when it is
generated by applying b to P , might not be performed. We
will consider each in turn.
(a) fs(B) ≥ UB (line 5) is impossible because t < T ,
g(B) is optimal, and hs is admissible.
(b) Lookahead would not be performed if g(B), as calcu-
lated when B is generated by applying b to P , was equal
to gstored(B) (line 5). By Fact 4 we know this g(B) is
optimal, and, as noted above, we know gstored(B) was not
optimal at the start of this iteration. It is possible, however,
that gstored(B) was updated to an optimal value during
this iteration. That would happen if there was an operator
different than b but having the same cost as b, that was

applied to P before b and generated B. This cannot have
happened because AL∗0 is safe with move pruning using O
for state space S (Definition 12).
(c) The only other reason lookahead would not be per-
formed from B is that fs(B) > LHB (line 8). In this case
hu(B) = hs(B) is admissible (line 13).
Thus, B will be added to OPEN, or updated if it is already
on OPEN with a larger g-value, with an admissible hu-value.

These six facts allow us to prove Case 3. By Facts 1, 4, and
6, B meets all the criteria for being in Φt+1, therefore Φt+1

will not be empty and Lt+1
Ω = Lt+1

Φ = L(B) (by Lemma 2,
Lt+1

Φ cannot be less than L(B)). �

Experimental Comparison – Unit Costs
As mentioned above, we cannot predict the exact effect on
performance of the changes made to AL∗0 to create AL∗1 and
ELH . We expectAL∗1 to be slower thanAL∗0, but we do not
know by how much. ELH could potentially be the fastest,
or the slowest, of them all. The main purpose of the ex-
periment in this section is to compare the performance of
these methods on a wide range of problems. In addition, be-
cause our implementations of AL*, A*, and IDA*, are com-
pletely different than those of Stern et al. (2010), this experi-
ment serves to test which of their results are implementation-
independent and which are not.

We use 9 domains in which all operators cost 1. We
use the same two domains as Stern et al., the 15-puzzle
and (16,4)-TopSpin, with exactly the same heuristics (Man-
hattan Distance, and a pattern database (PDB, (Culberson
and Schaeffer 1996)) defined by the same 8 tokens), and
6 new domains, all with PDB heuristics. The new domains
were chosen to be small enough that A* could solve all the
test instances without running out of memory. Finally, we
used the 15-puzzle with the 7-8 additive PDB and an addi-
tional lookup defined by the reflection about the main diag-
onal (Korf and Felner 2002).

For test instances, we used 100 solvable start states for
each domain, generated uniformly at random, except as fol-
lows: for the 15-puzzle with Manhattan Distance we used
the 74 instances Stern et al.’s A* could solve with 2 Giga-
bytes of memory; for the 15-puzzle with the 7-8 PDB we
used the complete set of 1000 standard test instances (Korf
and Felner 2002); for the 3x3x3 Rubik’s Cube our start states
were all distance 9 from the goal (“easy”); for “Work or
Golf” we generated the instances by random walks back-
wards from the goal; and for Gripper we used only 2 start
states, one with all the balls in the wrong room, and one
with all but one of the balls in the wrong room.

All experiments were run on a 2.3 GHz Intel Core i7
3615QM CPU with 8 GB of RAM. The results presented
for each domain are averages over its test instances, and the
times reported do not include the preprocessing time for the
move pruning analysis and building the PDBs. The value of
L used for move pruning is shown in parentheses after the
domain name in Table 1. The results for IDA*, using the
same move pruning as AL*’s lookahead search, and for A*
are shown below the domain names in Table 1 with the faster

49

of the two in bold.
For all algorithms other than A* a time limit for solving

all the instances in a domain was set to be five times the
time required by A* to solve all the instances. If the time
limit was exceeded, “n/a” is shown for “# Stored Nodes”
and the time shown in Table 1 is the time limit, divided by
the number of instances, followed by a + (e.g. ELH on
the Arrow puzzle for k ≥ 3). If the largest value of k for
a domain is less than 6 it is because all the AL* variants
exceeded the time limit for the larger values of k.

We focus first on the results when immediate expansion is
used (columns labeled ELH , AL∗0, and AL∗1).

The primary objective of AL* is to reduce A*’s memory
requirements without substantially increasing solving time,
and this it achieves admirably. The number of stored nodes
is almost identical for the three AL* variants and is only
shown for AL∗0. As Stern et al. observed, the number of
stored nodes decreases substantially for every increase in k
(except in “Work or Golf” and Towers of Hanoi, where the
decrease is moderate). In most domains AL* achieves up to
three orders of magnitude reduction in memory. In all do-
mains except Gripper, memory reduction is achieved with
only a modest increase in solving time in the worst case.
k = 0 stores substantially fewer nodes than A* only in 2
domains (TopSpin, Arrow Puzzle).
AL∗0 is almost always the fastest (ELH is slightly faster

than AL∗0 on the Pancake puzzle when k = 6, and on Ru-
bik’s Cube when k ≥ 4; AL∗1 is slightly faster than AL∗0 on
Rubik’s Cube when k = 2) but the times required to solve
an average instance by the different AL* algorithms are all
within a factor of two of one another except in the Arrow
Puzzle whereAL∗0 is much faster thanELH andAL∗1 and in
Rubik’s Cube with k = 4 where ELH is slightly more than
twice as fast as the others. ELH is sometimes faster than
AL∗1 and sometimes slower. In other words, there is usually
not much difference between the algorithms’ solving times,
and when there is, AL∗0 is usually fastest.

Solving time always increases as k increases, except: on
TopSpin, k=4, 5 (all methods); on the Arrow Puzzle, k=1–
3 for AL∗0, k=1 for AL∗1, and k=2 for ELH; on Rubik’s
Cube, k=3 (all methods); and on the 15-puzzle with Man-
hattan Distance, k = 2, 4 (all methods).

There are few cases where an AL* variation is faster than
A* (these are marked in bold in the table).AL∗0 on the Arrow
Puzzle for k = 2, 3 is the only case where an AL* variation
is more than twice as fast as A*. When IDA* is faster than
A* it is also faster than AL*, except on the 15-puzzle with
Manhattan Distance (k > 0).

Evaluation of Immediate Expansion (IE)
With “immediate expansion” (IE), if a node is generated (in
line 2 of Algorithm 1) with the same f -value as its parent it
is immediately expanded (it is put on CLOSED, its children
are generated, and the same process is applied to them), so
genuine lookahead only takes place from nodes that have f -
values different than their parents. Without IE, by contrast, a
normal lookahead is done from all children, even if a child’s
f -value is the same as its parent’s.

Avg. # Stored Nodes Avg. Time (secs)
k AL∗

0 No IE ELH AL∗
1 AL∗

0 No IE
(16,4)-TopSpin (L=5)

A*: 8,580,684 stored nodes, 4.05s. IDA*: 1.72s
0 2,371,540 1,750,085 3.13 3.13 3.13 3.97
1 1,129,039 575,435 5.50 5.04 4.41 5.00
2 335,512 121,278 5.69 5.76 4.43 5.27
3 94,134 21,552 7.55 6.61 5.49 4.58
4 13,706 3,898 7.12 5.38 4.86 3.56
5 2,280 237 6.57 4.60 4.45 3.32
6 1,489 19 7.66 5.53 5.45 4.18

28-Arrow Puzzle (L=2)
A*: 2,495,747 stored nodes, 2.68s. IDA*: 0.38s

0 1,096,924 875,124 2.57 2.57 2.57 4.54
1 622,168 550,731 3.16 1.97 1.40 5.40
2 377,820 312,222 2.88 13.4+ 1.18 7.70
3 131,367 68,898 13.4+ 13.4+ 1.10 3.79
4 63,995 3,430 13.4+ 13.4+ 2.29 0.80
5 60,486 25 13.4+ 13.4+ 2.74 0.43
6 60,486 25 13.4+ 13.4+ 3.86 0.68

14-Pancake Puzzle (L=5)
A*: 3,135,552 stored nodes, 1.44s. IDA*: 2.56s

0 3,134,333 1,342,999 1.46 1.46 1.46 1.61
1 600,127 249,838 2.45 2.52 2.22 2.90
2 99,534 28,391 2.62 3.03 2.58 3.83
3 19,006 3,504 3.67 3.49 3.22 4.76
4 3,282 282 4.75 4.15 4.00 5.58
5 1,139 14 4.92 4.30 4.28 4.13
6 1,097 14 6.90 7.03 7.02 6.85

16 ball Gripper (L=4)
A*: 9,592,688 stored nodes, 8.34s. IDA*: 41.7+s

0 9,592,686 n/a 8.38 8.38 8.38 41.7+
3x3x3 Rubik’s Cube (L=4)

A*: 2,314,413 stored nodes, 0.98s. IDA*: 0.42s
0 2,236,741 1,174,385 1.02 1.03 1.00 0.95
1 670,255 302,035 1.98 1.81 1.69 1.54
2 99,075 36,116 2.57 2.03 2.12 1.61
3 7,797 2,703 1.76 1.61 1.53 1.40
4 1,475 n/a 2.13 4.52 4.47 4.9+
5 n/a n/a 4.69 4.9+ 4.9+ 4.9+

Work or Golf (L=3)
A*: 1,093,754 stored nodes, 0.93s. IDA*: 4.65+s

0 1,093,761 928,222 0.93 0.93 0.93 1.36
1 961,237 791,317 1.58 1.33 1.11 1.89
2 544,604 439,802 2.61 3.50 1.87 3.90
3 472,982 n/a 3.46 4.60 2.50 4.65+

4-Peg Towers of Hanoi 12 Disks (L=3)
A*: 915,544 stored nodes, 1.03s. IDA*: 5.15+s

0 915,536 885,506 1.04 1.04 1.04 1.42
1 853,416 815,468 2.54 2.24 1.96 3.43
2 732,162 n/a 5.15+ 5.15+ 4.64 5.15+

15-Puzzle (L=2) Manhattan Distance
A*: 4,780,390 stored nodes, 1.63s. IDA*: 1.58s

0 4,780,410 2,625,665 1.66 1.66 1.66 1.63
2 1,366,333 709,795 1.47 1.52 1.40 1.46
4 364,396 180,518 1.37 1.41 1.34 1.42
6 91,315 41,949 1.40 1.45 1.39 1.54

15-Puzzle (L=2) 7-8 additive PDB
A*: 11,723 stored nodes, 0.012s. IDA*: 0.025s

0 11,702 4,153 0.012 0.012 0.012 0.014
2 2,269 739 0.016 0.016 0.016 0.019
4 407 120 0.019 0.019 0.019 0.022
6 79 18 0.023 0.023 0.022 0.025

Table 1: Experimental results with unit costs.

50

The “No IE” columns in Table 1 are AL∗0 without IE. In
all domains, AL∗0 stores more nodes with IE than without it.
This is because all the nodes expanded by IE are stored in
CLOSED, but they might not be stored at all if IE is not done
(because search terminates before they are generated in line
2 of Algorithm 1). In the Pancake puzzle and 15-puzzle with
the 7-8 PDB, and in several domains for larger values of k,
the difference in the number of stored nodes is substantial.

IE tends to be faster but there are exceptions: k ≥ 3 for
TopSpin, k ≥ 4 for the Arrow Puzzle, k ≥ 5 for the Pan-
cake puzzle, and k ≤ 3 for Rubik’s Cube. However, in all
domains except Gripper and the Arrow Puzzle, and “Work
or Golf” when k ≥ 2, the times with or without IE are within
a factor of two of one another. When k is chosen optimally,
IE produces the fastest time in all domains except the Arrow
Puzzle, where k = 5 without IE is fastest, and Rubik’s Cube,
where k = 0 without IE is fastest.

IE always requires more memory and is slightly faster in
most domains but not all. The No IE variant tends to give a
better memory/time tradeoff; orders of magnitude in mem-
ory at the cost of a slight increase in time in some cases.

Stern et al. reported a 48% reduction in A*’s time on the
15-puzzle (with Manhattan Distance) when IE (k = 0) was
added, and a 33% reduction on TopSpin. On these domains
we get −2% and 23% reductions, respectively. Only in one
of the new domains, the Arrow Puzzle, does IE (k = 0)
reduce A*’s time, and then only slightly (4%). On the other
domains A*’s time remains the same or increases with IE
(k = 0). We believe this difference is the result of our using
a different OPEN list implementation (Sun et al. 2009).

Experimental Comparison – Non-unit Costs
The purpose of this experiment is to illustrate situations in
which AL* is superior to both A* and IDA*. We use Rubik’s
Cube, (16,4)-TopSpin, and larger versions of the Arrow and
Pancake puzzles. Each operator is assigned a cost between
1 and 100 uniformly at random. We used AL∗0 with IE and
k = 20. Note that 20 is a relatively small value of k consider-
ing the average cost of a single operator is 50.5. For A*, and
for AL∗0, the combined memory for OPEN and CLOSED
was limited to 1 GB. For test instances, we used 100 solv-
able start states for each domain, generated uniformly at ran-
dom, except for the 3x3x3 Rubik’s Cube, where our start
states were all 5 moves from the goal, independent of cost.
We repeated the experiment 5 times with different cost as-
signments on each run. IDA* was given a per-instance time
limit for each run on each domain equal to five times the
maximum time needed by AL∗0 to solve an instance on that
run in that domain. Table 2 reports the totals over the 5 runs.

In Table 2, for each domain there is a row for those in-
stances that AL∗0 solved and a row for those instances that
AL∗0 failed to solve because it exceeded the memory limit.
For A* and IDA*, there is a column for the instances each
solved and a column for the instances each failed to solve.
Cells in a “failed” row or column contain the number of in-
stances that fall into that cell (e.g. how many instances AL∗0
solved but A* failed to solve). Instances that fall into a cell
in a row and column that are both “solved” are divided into

A* IDA*
AL∗

0 solved failed solved failed
30-Arrow Puzzle (L=3)

solved 36W, 2L, 249D 172 401W, 4L, 27D 27
failed 0 41 7 34

15-Pancake Puzzle (L=5)
solved 0W, 46L, 252D 183 427W, 0L, 6D 48
failed 0 19 0 19

3x3x3 Rubik’s Cube (L=3)
solved 15W, 77L, 273D 36 134W, 104L, 163D 0
failed 0 99 19 80

(16,4)-TopSpin (L=5)
solved 1W, 3L, 326D 159 459W, 0L, 3D 12
failed 0 11 0 11

Table 2: Experimental results with non-unit costs.

“wins for AL∗0” (W), “losses” (L), and “draws” (D). An in-
stance solved by both AL∗0 and A* (IDA*) is a win if A*’s
(IDA*’s) solving time is more than double AL∗0’s, a loss if
AL∗0’s solving time is more than double A*’s (IDA*’s), and
a draw otherwise. For example, “15W, 77L, 273D” in the
“solved” row for Rubik’s Cube and the “solved” column for
A* means that of the instances solved by both AL∗0 and A*
AL∗0 was at least twice as fast A* on 15, at least twice as
slow on 77, and within a factor of 2 on the other 273.

In each domain A* fails on 27–42% of the instances and
AL∗0 solves the vast majority of these, except for Rubik’s
Cube, where it “only” solves 27% of the instances A* fails
on. By contrast, there are no problems in any domain that are
solved by A* but not by AL∗0. On most instances solved by
both systems, the times for A* and AL∗0 are within a factor
of 2 of each other. There are relatively few wins or losses.
They favor A* on all domains except the Arrow Puzzle.

IDA* has relatively few failures (231 out of 2000), in-
dicating that the time limits we set for it were reasonable.
AL∗0 solves 38% of the instances IDA* fails on. By contrast,
AL∗0 fails on fewer instances (170), and IDA* solves only
15% of those instances. The vast majority of instances are
solved by both methods, andAL∗0 has more wins than losses
in every domain, usually many more. We believe the poor
performance of IDA* is because the wide variety of opera-
tor costs force it to do a large number of iterations before its
cost bound reaches the optimal solution cost.

Conclusions
We have shown that the original version of AL* (AL∗0) will
sometimes return a suboptimal solution, described condi-
tions in which it is guaranteed to return optimal solutions,
and presented two new versions, AL∗1 and ELH , that we
proved always return optimal solutions. All the AL* meth-
ods reduce the memory needed by A* substantially, with in-
creasing savings as the lookahead bound is increased. In our
unit-cost experiments, AL∗0 was usually the fastest, but its
advantage was usually small. In our non-unit cost experi-
ment we showed that AL∗0 substantially outperforms both
A* and IDA*. We also showed experimentally that immedi-
ate expansion always causes AL* to require more memory,
sometimes much more, and that its speedup benefits are lim-
ited; it even sometimes slows AL* down.

51

References
Burch, N., and Holte, R. C. 2011. Automatic move pruning
in general single-player games. In Proceedings of the 4th
Symposium on Combinatorial Search (SoCS).
Burch, N., and Holte, R. C. 2012. Automatic move pruning
revisted. In Proceedings of the 5th Symposium on Combina-
torial Search (SoCS).
Culberson, J., and Schaeffer, J. 1996. Searching with pattern
databases. In Proceedings of the 11th Biennial Conference
of the Canadian Society for Computational Studies of Intel-
ligence, volume 1081 of Lecture Notes in Computer Science,
402–416. Springer.
Holte, R. C., and Burch, N. 2014. Automatic move pruning
for single-agent search. AI Communications. (to appear).
Holte, R. C. 2013. Move pruning and duplicate detection. In
Proceedings of the 26th Canadian Conference on Artificial
Intelligence, 40–51.
Korf, R. E., and Felner, A. 2002. Disjoint pattern database
heuristics. Artificial Intelligence 134:9–22.
Pearl, J. 1984. Heuristics – Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.
Stern, R.; Kulberis, T.; Felner, A.; and Holte, R. 2010. Using
lookaheads with optimal best-first search. In AAAI, 185–
190.
Sun, X.; Yeoh, W.; Chen, P.-A.; and Koenig, S. 2009. Simple
optimization techniques for A*-based search. In AAMAS (2),
931–936.

52

