
Speedy versus Greedy Search

Christopher Wilt and Wheeler Ruml
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA
{ wilt, ruml} at cs.unh.edu

Abstract

In work on satisficing search, there has been substantial atten-
tion devoted to how to solve problems associated with local
minima or plateaus in the heuristic function. One technique
that has been shown to be quite promising is using an alterna-
tive heuristic function that does not estimate cost-to-go, but
rather estimates distance-to-go. Empirical results generally
favor using the distance-to-go heuristic over the cost-to-go
heuristic, but there is currently little beyond intuition to ex-
plain the difference. We begin by empirically showing that
the success of the distance-to-go heuristic appears related to
its having smaller local minima. We then discuss a reason-
able theoretical model of heuristics and show that, under this
model, the expected size of local minima is higher for a cost-
to-go heuristic than a distance-to-go heuristic, offering a pos-
sible explanation as to why distance-to-go heuristics tend to
outperform cost-to-go heuristics.

Introduction
Optimal algorithms such as A* (Hart, Nilsson, and Raphael
1968) require impractical amounts of time and/or memory
on many problems, creating a strong need for algorithms
that are able to overcome these difficulties. One of the most
popular techniques for this is greedy best-first search, which
attempts to sacrifice solution quality to achieve faster run-
time (Doran and Michie 1966).

Unfortunately, it is rarely the case that it is possible to fol-
low the heuristic directly to a goal due to local minima and
heuristic plateaus. We will say that a node n is in a local
minimum if all paths from n to a goal node include at least
one node n′ such that h(n′) > h(n). A local minimum is
a maximal connected region of nodes that are all in a local
minimum1. A heuristic plateau is a maximal connected re-
gion of nodes such that all nodes in the region have the same
heuristic value. Both of these phenomena pose problems for
greedy best-first search, but in this paper we focus on lo-
cal minima, because these regions are particularly problem-
atic for greedy best-first search, since a heuristic plateau can
sometimes be mitigated by tie breaking, but local minima
cannot be avoided by greedy best-first search.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1In a directed space, these definitions become more compli-
cated.

Recent work in suboptimal heuristic search and planning
has used two kinds of best-first search heuristics: cost-to-
go (h(n), “greedy search”) (Doran and Michie 1966), and
distance-to-go (d(n), “speedy search”) (Ruml and Do 2007).
h(n) is an approximation of h∗(n), which is the sum of the
costs of the edges along the cheapest path starting at n and
ending at a goal node. The function d(n) is an approxima-
tion of d∗(n), which is the count of edges along the short-
est path (measured in count of edges) between n and a goal
node.2

For minimizing solving time, empirical results strongly
favor using a best-first search on d(n) over h(n) (Thayer,
Ruml, and Kreis 2009; Cushing, Benton, and Kambhampati
2010; Richter and Westphal 2010; Richter, Westphal, and
Helmert 2011). However, there is currently a lack of un-
derstanding of the reasons behind this phenomenon. In this
paper, we first show that d is generally more effective for
guiding a heuristic search because d tends to have smaller
local minima. We also show examples of domains where h
has smaller local minima, and how in these domains, greedy
best-first search on h is more effective. Our results demon-
strate that, contrary to popular belief, the success of the d
heuristic is not because it is better at predicting search ef-
fort.

Second, we show that, using a random supergraph model
of heuristic functions, the expected number of nodes that
will be in a local minimum is higher the more the operator
costs in the domain vary. This neatly explains the superior-
ity of d, as distance heuristics treat all operators as having
the same cost. This work furthers our understanding of sub-
optimal heuristic search, one of the most scalable planning
and problem-solving techniques available.

The d heuristic (usually) finds solutions faster
We begin with a brief overview of the phenomenon we are
attempting to explain: the d heuristic employed by speedy
search is generally able to outperform the h heuristic em-
ployed by greedy best-first search. This phenomenon has
been implicitly acknowledged in a number of different con-
texts. For example, the state-of-the-art LAMA 2011 planner
(Richter, Westphal, and Helmert 2011; Richter and West-

2Some authors define a variant of d that estimates the number
of nodes in the cheapest path (Ruml and Do 2007).

184

Proceedings of the Seventh Annual Symposium on Combinatorial Search (SoCS 2014)

Dom Cost Max Local Expected Exp
Min Size Min Size

Tiles
Unit 392 2.01 801
Inverse 51,532 87.23 93,010
Rev Inv 2091 1.94 855

Robot Unit 351 8.48 156
Nonunit 341 7.27 153

Hanoi
Unit 7,587 1,892.41 36,023
Rev Sq 35,874 4,415.71 559,250
Square 2,034 200.82 4,663

TopSpin
Unit 296 250.00 933
Sum 922 2.65 749
Stripe 240 2.64 441

Table 1: Sizes of local minima and average expansions re-
quired of a greedy best-first search to find a solution.

phal 2010) begins searching by treating all actions as hav-
ing the same cost, which only makes sense if we expect to
solve the problem faster by treating all actions as having the
same cost. In another example, if we run the state-of-the-
art bounded suboptimal search algorithm Explicit Estima-
tion Search (Thayer and Ruml 2011) with a bound of infin-
ity, the algorithm is equivalent to greedy best-first search on
d.

We begin our analysis by performing experiments on four
benchmark domains, using both unit and non-unit cost func-
tions. For all problems we use greedy best-first search on
h, but the problems all have the same underlying graph with
the only difference being the edge costs, so a solution to the
unit-cost problem is a valid solution to the non-unit problem,
and vice-versa.

In this analysis, we are only concerned with how long it
takes to find a solution, not how much the solution costs, so
the edge costs from the underlying problem are only rele-
vant insofar as they are relevant to creating the heuristic. We
return to discuss the cost of the resulting solutions later.

The first domain we consider is the 3x4 sliding tile puz-
zle. We used the 3x4 sliding tile puzzle to make it easier
to accurately measure the sizes of local minima. The first
variant is the standard unit cost function, where h and d are
the same, so speedy search and greedy best-first search are
the same. We also consider inverse costs, where the price of
moving tile n is 1

n , and reverse inverse, where the price of
moving tile n is 1

12−n . As we can see in Table 1, the unit-
cost problems are substantially easier to solve using greedy
best-first search as compared to the inverse cost problems,
and marginally easier to solve than the reverse inverse prob-
lems. This confirms previous results indicating that unit-cost
heuristics (d) enable faster search than non-unit (h) ones.

The second domain we consider is dynamic robot nav-
igation, where the objective is to navigate a robot from a
start configuration to a goal configuration while respecting
the limitations on the robot’s dynamic motion constraints
(Likhachev, Gordon, and Thrun 2003). In this domain, the
unit-cost heuristic and the weighted heuristic are virtually
identical, except that the unit-cost heuristic counts diagonal
moves as 1, whereas the weighted heuristic counts diagonal

moves as
√
2. As a result of this similarity, the performance

of greedy best-first search using h and speedy search using
d are virtually identical.

The third domain we consider is the Towers of Hanoi
problem with unit costs, but also with square costs (where
the cost of moving disk n is n2) and reverse square costs
(where the cost of moving disk n is n2, but the disks are
in reverse order, i.e., disk n is the smallest disk). We con-
sidered a set of 51 problems with 12 disks and 4 pegs, and
for a heuristic we used a disjoint pattern database, with the
first pattern database using the top 4 disks, and the second
pattern database using the bottom 8 disks. In this domain,
we can see two trends. When we compare greedy best-first
search solving the unit-cost problems and the reverse square
cost problems, we once again see that the unit-cost prob-
lem is easier to solve, as evidenced by it requiring an order
of magnitude fewer expansions. If we compare greedy best-
first search solving the unit-cost problem and the square cost
problem, however, we can see the opposite trend, providing
us with our first concrete example of a unit-cost problem that
is more difficult to solve than a nonunit-cost problem.

We also consider variants of the popular TopSpin puzzle.
We considered 100 problems with 12 disks, and a turnstile
that swaps the order of 4 disks. In the unit cost problem, the
cost of using the turnstile is 1. With the sum cost function,
each disk has an id, and the cost of using the turnstile is the
sum of the ids of the disks that are in the turnstile. With the
stripe cost function, each disk costs either 1 or 10, depending
on whether its id is even or odd, and the cost of using the
turnstile is the sum of the costs of the disks that are in the
turnstile. We can see in Table 1 that the unit cost problem
is once again not the fastest, and in this case, greedy best-
first search on the unit-cost problem is slower than greedy
best-first search on either kind of non-unit problem.

Cushing, Benton, and Khabhampati (2010; 2011) argue
that searching using a cost-based heuristic function, like h,
yields higher runtimes than searching using a distance-based
heuristic function, like d. They go so far as to state “as a rule,
cost-based search is harmful”. While we have observed that
this can be true, we have just presented exceptions to this
trend as well.

d has smaller local minima
We propose that the expected size of a local minimum using
the d heuristic is lower, and that this allows best-first search
on d to outperform best-first search on h. There is a clear
benefit to greedy best-first search of having small local min-
ima. Unless the initial state is located in a global minimum
(a local minimum that contains a goal node), greedy best-
first search will begin by expanding all of the nodes in the
current local minimum, and will then proceed to look for
the goal outside the local minimum. We can formalize this
concept by saying that the state space contains N regions,
each region corresponding to a single minimum. The root
in one of the regions, and the likelihood of the root being
in a particular region is proportional to the size of the re-
gion. When doing greedy best-first search, the first thing
that happens is greedy best-first search completely explores
its current region, discovering the goal if the region contains

185

a goal, or exhausting the region if it does not contain a goal.
At this point, greedy best-first search looks for a new region,
and we assume that the next region is once again selected
from the remaining unexplored regions with the probabil-
ity of selection proportional to region size, with the added
restriction that previously selected regions are not allowed
to be selected again, because the nodes in those regions are
on the closed list, and will not be expanded again. We can
model this process by treating it as an urn problem with-
out replacement, and calculate the expected amount of work
greedy best-first search will do prior to discovering a goal
region.

The amount of work that we expect greedy best-first
search to do is a function of the proportion of the space
that is contained in non-goal regions, and the total num-
ber of non-goal regions there are, and the distribution of
nodes across the non-goal regions. We calculated the ex-
pected amount of work that greedy best-first search will do
in a given setup, and the results suggest some trends. First,
having a larger proportion of the space be a goal is help-
ful, which is reasonable, since this gives greedy best-first
search a larger target global minimum. The second trend
that we observed was that if we hold the number of local
minima constant, it was best to have the local minima be
as close to one another in size as possible. The third trend
that we observed was that increasing the number of equally
sized regions further decreased the amount of work we ex-
pect greedy best-first search to do. The results of this simple
model suggest that smaller local minima are better.

We can also examine minima in real search spaces. It is
possible to calculate the size of every local minimum in an
entire search space by searching backwards from the goal
states, expanding nodes in increasing h order. Any node
whose h value is less than the highest h value seen thus far is
inside a local minimum, since nodes were reverse expanded
preferring nodes with low h. The results of this analysis are
shown in Table 1. Recall that if the initial state is inside a
local minimum, greedy best-first search will expand every
single node in the local minimum prior to exiting the local
minimum and attempting to find a path to the goal. As we
can see in Table 1, as both the expected size of a local min-
imum and the maximum size of a local minimum increase,
the average number of expansions required by a best-first
search increases. If we assume the number of local min-
ima encountered by a search is constant, clearly the domain
which has larger local minima will be more difficult.

We have just seen that while it is often the case that the
unit-cost problems are easier to solve for greedy best-first
search, it can also be the case that the unit-cost problems
are more difficult to solve, but in either case, greedy best-
first search is more effective when the heuristic, whether it
is measuring cost or distance, has smaller local minima.

Solution Quality
For non-unit cost domains, one way we can try to speed
up search is to use speedy search instead of greedy best-
first search. As we have seen this does not always speed up
search, but it is often helpful. This brings up the question of
whether or not speedy search is sacrificing solution quality

Domain Cost Speedy Greedy
Tiles Inverse 31.98 27.03
Tiles Rev Inv 26.30 25.73
Robot Standard 454.43 380.08
Hanoi Rev Sq 17,016.49 27,109.00
Hanoi Square 4,333.54 2,334.64
TopSpin Sum 394.80 324.34
TopSpin Stripe 466.40 534.88

Table 2: Comparison of the solution cost of greedy best-first
search and speedy search.

to achieve its speedup. In Table 2 we have the solution costs
for the problems shown in Table 1. As we can see in Table
2, speedy search generally provides solutions that are com-
parable to greedy best-first search, and sometimes provides
solutions that are outright better.

Does d better predict search effort?
One alternative hypothesis that might explain why greedy
best-first search using d tends to be faster was advanced by
Thayer (2012). He argues that expanding nodes with small d
(which is the same as h in a unit-cost problem) is the fastest
way to get to a goal. Thayer writes, “d̂ (an inadmissible esti-
mate of d) is a proxy for search effort, and is used to ensure
EES (Explicit Estimation Search) pursues solutions that can
be found quickly.” Another algorithm, A∗ε , uses d∗, the true
distance to go, as a way to estimate, “the computational ef-
fort required to complete the search starting from n” (Pearl
and Kim 1982). If it is indeed possible to use d∗ as a proxy
for remaining search effort, then the d heuristic should be a
better predictor of the remaining search effort as compared
to the h heuristic.

If it is true that for nodes with a low d, the amount of work
necessary to find a goal is low, and for high d nodes, the
amount of work necessary to find a goal is high, the correla-
tion between the d value of the initial state and the number
of nodes required to solve the problem should be strong. If
the d heuristic is a better predictor of remaining search ef-
fort, this correlation should be stronger for d as compared to
h.

To test this hypothesis, we considered three different
ways to quantify the relationship between two variables:
Kendall’s τ (Kendall 1938) and Spearman’s ρ, two measures
of rank correlation, as well as the standard linear correlation
statistic, Pearson’s r. We considered a number of standard
benchmark domains with a variety of edge costs. For each
domain, we considered a unit-cost variant, where the d and h
are the same, and at least one non-unit cost variant. For each
problem, we calculated the correlation between the heuristic
of the initial state and the number of nodes required to solve
the problem using greedy best-first search with that heuris-
tic. Once again, the nodes and edges in the graph are exactly
the same under all cost functions; the only difference is the
weight associated with each edge.

The overall results can be seen in Table 3. The first section
of the table shows the results for the Towers of Hanoi using
the same cost functions and heuristics as before. With this

186

Domain (cost) Heuristic τ ρ r
3x4 Tiles (unit) d -0.03 -0.08 0.14
3x4 Tiles (inverse) h 0.06 0.14 0.14
3x4 Tiles (rev inv) h 0.01 0.06 0.14
Robot (unit) d 0.95 0.99 0.99
Robot (nonunit) h 0.96 1.00 0.99
Hanoi 12/4 (unit) d 0.46 0.43 0.62
Hanoi 12/4 (rev sq) h 0.08 0.05 0.14
Hanoi 12/4 (square) h 0.51 0.61 0.69
TopSpin 10/4 (unit) d -0.00 0.00 0.00
TopSpin 10/4 (sum) h 0.08 0.13 0.12
TopSpin 10/4 (stripe) h 0.18 0.25 0.26
13 Pancake (unit) d -0.03 -0.04 -0.08
13 Pancake (nonunit) h 0.11 0.16 0.15

Table 3: Correlation of heuristic with search effort in various
domains using Kendall’s τ , Spearman’s ρ, and Pearson’s r

problem, we can see that the h heuristic (using square costs)
is a better predictor of remaining search effort as compared
to the d heuristic (unit costs). h is not always better than
d for predicting remaining search effort, as the h heuristic
(using reverse square costs) is a very poor predictor of re-
maining search effort.

For the TopSpin, Pancake, and sliding tiles problems, we
can see that there is very little relationship between either
h or d and the number of expansions required to solve the
problem using either greedy or speedy search. The last do-
main we consider is dynamic robot path planning. In this
domain, both h and d are very strongly correlated to the
number of expansions required to solve the problem using
greedy or speedy search, but it is worth noting that h is never
worse than d at predicting remaining search effort.

To summarize, our examples do not provide support for
the hypothesis that d better predicts remaining search effort
than h. The experimental results suggest that the size of
local minima is a key factor. We turn now to an investigation
of local minima from a more theoretical perspective.

Heuristic Gradients

In this section, we describe the general requirements that
greedy search places on the gradient induced by the heuris-
tic function, and why that requirement is often better met
by heuristics that assume all edges have the same cost. If
we view the search graph as a two dimensional topological
space, we can conceptualize the greedy search algorithm as
pouring water onto the root node where the water attempts
to run downhill one node at a time, following the heuristic
gradient (Cushing, Benton, and Kambhampati 2011). If it is
not possible for the water to run downhill, it will pool up,
attempting to fill in a local minimum and eventually find a
new place to continue flowing downhill. The only counter-
intuitive aspect of this analogy is that a best-first search will
simultaneously fill all minima that it has visited, as all their
nodes share the same open list. With this metaphor in mind,
we know that greedy search needs the heuristic to provide a
gradient that is amenable to flooding by rolling downhill.

High Water Mark Pruning
For every node n, there is a minimum h value, which we
denote as hhw, such that all paths from n to a goal include
at least one node whose h value is at least hhw. Note that
if there are no paths to a goal from n, this value should be
infinity. Formally, this quantity is defined as

hhw(n) = min
paths to a goal

(max
p∈path

h(p))

In order to find a path to a goal from node n, it is necessary
to expand at least one node with an h value of hhw(n) and
sufficient to expand all nodes x with h(x) ≤ hhw(n).

On problems where there is a solution, greedy search
takes advantage of this by never expanding any nodes whose
h value is greater than hhw(root). Greedy best-first search
terminates when it discovers a path from the start to the
goal. Because of this, nodes on the open list whose h value
is higher than the hhw(root) will never be expanded. As
greedy search expands nodes, the minimum hhw of all nodes
on the open list either stays the same or decreases, thereby
decreasing the maximum h of nodes that will be expanded
from that point onwards.

Theorem 1. On problems for which greedy best-first search
terminates, greedy best-first search will expand at least one
node with h(n) = hhw(root). Greedy best-first search will
not expand any nodes with h > hhw(root).

Proof. All paths from the root to a goal node contain at least
one node n with h(n) ≥ hhw(root), per the definition of the
high water mark of a node. This means that greedy best-first
search must expand at least one such node. At least one such
path must exist by hypothesis in order for greedy best-first
search to find a solution. Prior to expanding any nodes with
h > hhw(root), greedy search will expand at least one node
with h = hhw(root). By the definition of hhw(root), there
exists a path starting at the root that goes to the goal con-
taining only nodes with h ≤ hhw(root). Since greedy best-
first search first expands nodes with low h, the entire path
to the goal is guaranteed to be discovered before any nodes
whose h is higher than hhw(root) will be considered. Since
greedy best-first search terminates when it finds a goal, the
nodes whose h value is higher than hhw(root) will not be
expanded.

The effectiveness of high water mark pruning is driven
largely by the relationship between hhw(n) and h(n). For
example, suppose ∀n : h(n) = hhw(n). If this is the case,
greedy search will be able to expand nodes along a single
path leading directly to a goal, assuming optimal tie break-
ing.

If we return to the original analogy of flowing water, the
high water mark is analogous to a dam that the water must
flow over. As the difference between h(root) and hhw(root)
increases we expect the number of nodes that greedy best-
first search will have to expand to simply get over the first
heuristic dam (the number of nodes in the local minimum)
increases. Thus, it would be beneficial to assess this error in
heuristics.

187

Figure 1: The minimum h value on open as the search pro-
gresses, using a disjoint PDB.

Heuristic Error
Figure 1 shows the h value of the head of the open list of
a greedy best-first search as the search progresses solving a
Towers of Hanoi problem with 12 disks, 4 pegs, and a dis-
joint pattern database, with one part of the disjoint PDB con-
taining 8 disks, and the other containing 4 disks. From this
figure, we can see that the h value of the head of the open
list of greedy search can fluctuate significantly. These fluc-
tuations can be used to assess inaccuracies in the heuristic
function. For example, at about 1,000 expansions the search
encounters a node nbad with a heuristic value that is 14, but
we can show that the true h value of nbad is at least 20.

After expanding nbad, greedy search then expands a node
with an h value of 20 at roughly 7,500 expansions. This
allows us to establish that it costs at least 20 to get from
nbad to a goal because h is admissible. The general case is
expressed as:

Theorem 2. Consider a node nbad that was expanded by
greedy search, and nhigh, the node with the highest h value
that was expanded after nbad, then h∗(nbad) ≥ h(nhigh) if
h is admissible.

Proof. If there was a path from nbad to a goal containing
only nodes with h < h(nhigh), greedy search would have
expanded all nodes along this path prior to expanding nhigh.
Since all paths from nbad to a goal contain at least one node
with h ≥ h(nhigh), we know that nbad is at least as far away
from a goal as nhigh, by the admissibility of h.

The genesis of this problem is the fact that nbad is in a lo-
cal minimum. As discussed earlier, greedy best-first search
will expand all nodes in a local minimum in which it ex-
pands one node, so clearly larger local minima pose a prob-
lem for greedy best-first search.

Heuristic error, defined as deviation from h∗, is not the
root cause of the phenomenon visible in Figure 1. For ex-
ample, h(n) = h∗(n)× 1000 and h(n) = h∗(n)/1000 both
have massive heuristic error, but either of these heuristics
would be very effective for guiding a best-first search. The
problem is the fact that to actually find a goal after expand-
ing nbad, all nodes with h < h(nhigh), and the descendants
of those nodes that meet the same criterion, must be cleared

from the open list. It is the unproductive expansion of these
nodes that causes greedy search to perform poorly.

From the perspective of greedy search, the core of the
problem is the difference between h(nhigh) and h(nbad),
independent of h∗(n). Bringing h(nbad) closer to its true
value could make it so that nbad is not expanded, but there
is another possibility: lowering h(nhigh). This illustrates
the importance of the gradient formed by the heuristic when
doing greedy best-first search. If the gradient is amenable
to following to a goal, greedy best-first search will perform
well, but if the gradient is not amenable to following, greedy
best-first search will perform poorly.

Heuristic Gradient Requirements
High water mark pruning and the nature of heuristic error
are very closely related, as both describe things that can go
wrong with the heuristic for greedy search. In both cases,
the problem is that high h nodes should not separate regions
of nodes with lower h.

In the context of high water pruning, it means that for
every node, it is best if the node with the highest h value
on the path to a goal is the first node on the path. In terms
of heuristic error, nodes that have a high error according to
Theorem 2 require traversing through a high h region to get
to a goal. In either case, the low h nodes on the wrong side
of the high h nodes are in a local minimum, which causes
inefficiency in greedy best-first search.

Put in an alternative light, this means that if we eliminate
all high h nodes from the state space, each separate region
of the subgraph should contain at least one goal node. If this
is not the case, greedy search may enter one of the low h re-
gions with no goal, and expand all of the nodes in that region
prior to ever considering a different low h region to expand
nodes in. If greedy best-first happens to be expanding nodes
in more than one low h region, the nodes in the incorrect low
h region only serve to distract the algorithm from the nodes
in the correct low h region, which is also undesirable.

From the perspective of greedy best-first search, it is best
if clusters of low h nodes are all connected to goal nodes via
low h nodes. If low h clusters are separated from goals by
high h regions, greedy best-first search will have to raise h
high enough to get over the high h dam, which is inefficient.

Why d is better than h
We now turn to the crucial question raised by these results:
why d tends to produce smaller local minima as compared
to h, leading it to be a more effective satisficing heuristic.

Local Minima are More Likely using h We begin this
analysis by introducing a model of how heuristics are con-
structed which can be applied to any admissible heuristic.
The model was originally created by Gaschnig (1979). We
call this model the shortcut model of heuristic construction.

In any graph g, a node’s h∗ value is defined as the cost of
a cheapest path through the graph from the node to a goal
node. In calculating the h value of the node, the shortcut
model stipulates that the heuristic constructs a shortest path
on a supergraph g′ which is the same as the original graph,
with the exception that additional edges have been added

188

Figure 2: Example of how to remove extra nodes from a
supergraph (L) and a search tree with a local minimum (R)

to the graph. The heuristic sometimes includes these edges
from the supergraph in its path, which is why it is not always
possible to follow the heuristic directly to a goal in the orig-
inal graph. Any admissible heuristic can be modeled using a
supergraph using the degenerate mapping of connecting ev-
ery node n directly to the goal via an edge with cost h(n).
In the context of a pattern database, all nodes that map to
the same abstract state are connected to one another by zero
cost edges in the supergraph.

In some domains, it is easiest to conceptualize how the
supergraph creates the heuristic by adding both nodes and
edges. For example, in grid path planning, the Manhat-
tan Distance heuristic adds nodes for all blocked cells, and
edges connecting all of the blocked cells the way these cells
would be connected if the cell was not blocked. This same
general principle can be applied to the Manhattan Distance
heuristic for the sliding tile puzzle where we add nodes that
represent states where tiles share the same location.

If desired, we can then remove the additional nodes one at
a time by replacing all length 2 simple paths that go through
the node being removed with single edges whose cost is
the sum of the edges in the length 2 simple path. At this
point, we can remove the node and all edges that go through
the node in question, without changing the length of simple
paths in the original graph. An example of this can be seen
in the left part of Figure 2. In this example, we are in the
process of removing node X . If node X is removed, we
eliminate paths that go through node X . In order to allow
the original graph to maintain the connectivity it would have
had if nodeX had been present, we consider all simple paths
of length 2 that go through node X , and replace each path
with a new edge with the same start and end point as the
simple path and the same cost as the simple path. In Figure
2 the edges that would get added to connect nodeA to nodes
B, C, and D are shown in green. Note that to reduce clutter,
the edges that would connect B, C, and D are not shown,
but they are analogous to the edges involving node A.

Now, we will introduce a special kind of tree which we
will use to model heuristic search trees, called a shortcut
tree, an example of which is shown in Figure 3. A short-
cut tree has edge costs assigned uniformly at random from a
categorical distribution opset such that the lowest cost edge
costs ε and the highest cost edge costs 1. Each edge in the
shortcut tree is assigned a weight independently from opset.

Figure 3: An example of a shortcut tree.

We require that the count of edges in all paths from a leaf
to the goal be at least 1

ε . This means that all paths from a leaf
to the root have a cost of at least 1. We model the heuristic
of a shortcut tree as a supergraph heuristic that adds edges
uniformly at random to the shortcut tree. With some fixed
probability 0 ≤ p ≤ 1 the supergraph edges have zero cost,
but if edges do not have zero cost, they are assigned a cost
which is the sum of n ∈ [1, N] costs drawn from opset. A
simple example can be seen in Figure 3, where opset only
has two possible edge costs, ε, and 1. The star represents the
goal, which is also the root of the tree.

In Figure 3, all paths from the node b to a goal go through
node d, but node d has a heuristic value of 1, while node b
has a heuristic value of 2ε, so node b is inside a local min-
imum, because going from b to a goal requires at least one
node n with h(n) > h(b). The local minimum was caused
because node b is connected to node c via a zero cost edge.
If node c had a heuristic value greater than 1, the zero cost
edge between b and c would not cause a local minimum.
Thus, the question of whether or not node b will be in a local
minimum is equivalent to asking what the likelihood is that
node b is connected to a node whose heuristic value is less
than 1.

Shortcut trees have their edge weights and supergraph
edges assigned randomly based upon opset and the prob-
ability that a supergraph edge is assigned zero cost. As a
result, it is impossible to predict exactly what will happen
with a particular shortcut tree. It is meaningful, however, to
discuss the expected value over all possible assignments of
edge weights and supergraph edges. Theorem 3 discusses
how the expected probability of a local minimum forming
changes as opset changes.
Theorem 3. Let T be a shortcut tree of fixed height H with
edge weight distribution opset. As the average value of the
items in opset approaches 1

H , the expected value of the prob-
ability that a node whose parent’s h value (parent is the
neighbor closer to the goal) is at least 1 is inside a local
minimum increases. As we increase the prevalence of op-
erators whose cost is not 1, we also increase the expected
value of the probability that a node whose parent’s h value
is at least 1 is inside a local minimum.

Proof. We need to figure out what the expected probability
is that a node whose parent’s h value is at least 1 is con-
nected to a node whose h value is less than 1. By the defini-
tion of shortcut trees, supergraph edges are added uniformly
at random to the space, we simply need to figure out how

189

the expected number of nodes whose h value is less than 1
changes.

For every node, the supergraph heuristic is constructed
from a combination of some number of regular edges and
some number of supergraph edges (including zero of either).
The expected contribution from all nonzero edges decreases,
because the expected cost of a single edge has decreased be-
cause of the changes made to opset and because different
edges will be taken only if they lower the heuristic value.
Thus, the expected value of h for every node must decrease
for all nodes whose h value is not zero. The expected num-
ber of nodes with h = 0 remains constant no matter how
opset is changed because the number of h = 0 nodes de-
pends only on how prevalent zero cost supergraph edges are.

The expected h value of a node is a function of the ex-
pected number of nodes with h = 0, and the expected h
value for nodes that are not 0. Since the number of nodes
with h = 0 remains constant, the number of nodes with
h 6= 0 must also be constant, since the number of nodes in
T is constant. Thus, the expected heuristic of all nodes de-
creases, because the expected heuristic of h 6= 0 decreases,
while the proportion of h 6= 0 nodes remains constant.

Every node in the tree needs to have an h value that is
higher than its parent, otherwise the node will be inside of
a local minimum. In particular, nodes whose parents have
h values that are higher than 1 that receive h values that are
smaller than 1 will be in a local minimum. Theorem 3 shows
that two factors contribute to creating local minima in this
way: a wide range of operator costs, and an overabundance
of low cost operators. Both of these factors make sense.
When the cheap edges are relatively less expensive, there
are going to be more nodes in the tree whose cost is smaller
than 1. This increases the likelihood that a node that needs a
high heuristic value is connected in the supergraph to a node
with a low heuristic value because there are more nodes with
low heuristic values. Likewise, when the prevalence of low
cost edges increases, there are more parts of the tree with
deceptively low heuristic values that look promising for a
best-first search to explore.

Another natural question to ask is if increasing the preva-
lence of low cost operators will decrease the prevalence of
nodes with high h∗ to the point that Theorem 3 does not
matter, because there are very few nodes with h∗ ≥ 1, there-
fore there are very few nodes with h ≥ 1. Fortunately, this
is not a problem, as long as the tree has reasonable height.
In the extreme case, there are 2 costs: 1 and ε, and the only
way to get h∗ larger than 1 is to include at least one edge of
cost 1. As the depth of the tree increases, the proportion of
nodes with h∗ ≥ 1 increases exponentially. For example, if
90% of the edges have cost ε, at depth 10, only 34.9% of the
nodes will be reached by only cost ε edges.

To the extent that shortcut trees model a given heuristic,
Theorem 3 offers an explanation of why guiding a best-first
search with d is likely to be faster than guiding a best-first
search with h. With d, the heuristic pretends that opset only
contains the value 1. Thus, as we morph d into h by lowering
the average value in opset, and increasing the prevalence of
operators whose cost is not 1 we increase the probability that

low h nodes are inside a local minimum.
Theorem 3 also tells us that when doing best-first search,

one possible source of inefficiency is the presence of many
low cost edges either in the original graph or the supergraph,
because these edges cause local minima. Low cost edges
increase the probability that the h is computed from a su-
pergraph path that bypasses a high h region, causing a local
minimum, which best-first search on h will have to fill in.

One limitation of the analysis of Theorem 3 is that it con-
siders only trees, while most problems are better represented
by graphs. Fortunately, the analysis done in Theorem 3 is
also relevant to graphs. The difference between a graph and
a tree is the fact that duplicate nodes that are allowed to ex-
ist in a graph. These duplicate nodes can be modeled using
zero cost edges between the nodes in the tree that represent
the same node in the graph. This makes it so that there are
two kinds of zero cost edges: ones that were added because
the problem is a graph, and zero cost edges from the super-
graph. If we assume that the zero cost edges that convert the
tree to a graph are also uniformly and randomly distributed
throughout the space just like the zero cost edges from the
supergraph, we arrive at precisely the same conclusion from
Theorem 3.

If we consider a supergraph heuristic for an arbitrary
graph, the edges involved in h∗ form a tree, as long as we
break ties. The complication with this approach is the fact
that if a node has a high h value (say greater than 1), it
may be possible to construct a path that bypasses the node
in the graph, something that is not possible in a tree. This
can cause problems with Theorem 3 because a single high h
node is not enough to cause a local minimum - one needs a
surrounding “dam” on all sides of the minimum. In this case,
we can generalize Theorem 3 by specifying that the high h
node is not simply a single node, but rather a collection of
nodes that all have high h with the additional restriction that
one of the nodes must be included in any path to the goal.

Theorem 3 assumes the edge costs and shortcut edges
are uniformly distributed throughout the space, but the edge
costs and shortcut edges may not be uniformly distributed
throughout the space. If we do not know anything about a
particular heuristic, applying Theorem 3, which discusses
the expected properties of a random distribution of edge
costs and supergraph edges, may be the best we can do. To
the extend that the shortcut model is relevant, it suggests that
h has more local minima.

Local Minima can be costly for Greedy Best-First
Search
In the previous section, we saw that local minima were more
likely to form when the difference in size between the large
and small operators increased dramatically. We also saw
that, as the low cost operators increased in prevalence, lo-
cal minima also became more likely to form. In this section
we address the consequences of the local minima, and how
those consequences are exacerbated by increasing the size
difference between the large and small operators and the in-
creased prevalence of low cost operators.

We begin by assuming that the change in h between two
adjacent nodes n1 and n2 is often bounded by the cost of the

190

edge between n1 and n2.3
Consider the tree in the right part of Figure 2. In this tree,

we have to expand all of the nodes whose heuristic value is
less than 1, because the only goal in the space is a descendant
of a node whose h value is 1. The core of the problem is the
fact that node N was assigned a heuristic value that is way
too low. If we restrict the change in h to be smaller than the
operator cost, in order to go from 1 to ε the operator must
have a cost of at least 1− ε. If the operator’s cost is less than
1 − ε, the heuristic on N would have to be higher than ε.
The tree rooted at N continues infinitely, but if h increases
by ε at each transition, it will take 1/ε transitions before h
is at least 1. This means the subtree contains 21/ε nodes, all
of which would be expanded by a greedy best-first search.
The tree in Figure 2 represents the best possible outcome for
greedy best-first search, where the heuristic climbs back up
from an error as fast as it can. In a more antagonistic case,
h could either fall or stay the same, which would exacerbate
the problem, adding even more nodes to the local minimum.

If we substitute d for h, the ε edges change to cost 1,
which makes it so the subtree expanded by greedy best-
first search only contains 1 node. The number of nodes
that can fit in a local minimum caused by a single error is
much larger if the low cost edges in the graph have very low
cost. The idea here is very similar to Corollary 1 of Wilt and
Ruml (2011) except in this case, g is not contributing to es-
caping the local minimum, because greedy best-first search
does not consider g when evaluating nodes. In this way, we
see how local minima can be much more severe for h than
for d, further explaining the superiority of d.

Summary
Theorem 3 discusses how likely a local minimum is to form,
and shows that as we increase the prevalence of low cost
edges or decrease the cost of the low cost edges, the likeli-
hood of creating a local minimum increases. The local min-
ima created have high water marks that are determined by
the high cost edges in the graph. We then showed that if
we have a local minimum whose height is the same as the
high cost edge, the number of nodes that can fit inside of the
local minimum can be exponential in the ratio of the high
cost edge to the low cost edge, demonstrating that the per-
formance penalty associated with even a single error in the
heuristic is very severe, and grows exponentially as the low
cost edges decrease in cost. Using the d heuristic instead of
h mitigates these problems, because there are no high cost
edges or low cost edges.

While it is generally true that the d heuristic is more useful
than h, note that some heuristics do not follow this general
trend. For example, the h heuristic for the Towers of Hanoi
using the square cost function is faster than the d heuristic.
The reason behind this trend is the fact that Theorem 3 only
discusses the expected value across all possible heuristics
that add the same number of zero cost edges to the graph.
Which zero cost edges get added clearly has a major effect
on how well a particular heuristic will work.

3Wilt and Ruml (2011) showed that this is a reasonable restric-
tion, and that many heuristics obey this property.

Related Work
A number of algorithms make use of a distance-based
heuristic. For example, Explicit Estimation Search (Thayer
and Ruml 2011) uses a distance-based heuristic to try and
find a goal quickly. Deadline Aware Search (Dionne,
Thayer, and Ruml 2011) is an algorithm that uses distance
estimates to help find a solution within a specified dead-
line. The LAMA 2011 planner (Richter, Westphal, and
Helmert 2011; Richter and Westphal 2010), winner of the
2011 International Planning Competition, uses a distance-
based heuristic to form its first plan.

Chenoweth and Davis (1991) discuss a way to bring A*
within polynomial runtime by multiplying the heuristic by
a constant. With a greedy best-first search, the constant is
effectively infinite, because we completely ignore g. One
limitation of this analysis is that it leaves open the question
of what h should measure. Moreover, it is unclear from their
analysis if it is possible to put too much weight on h, which
is what a best-first search on either d or h does.

Cushing, Benton, and Khabhampati (2010; 2011) argue
that cost-based search (using h), is harmful because search
that is based on cost is not interruptible. They argue that the
superiority of distance-based search stems from the fact that
the distance-based searches can provide solutions sooner,
which is critical if cost-based search cannot solve the prob-
lem, or requires too much time or memory to do so. This
work, however, does not directly address the more funda-
mental question of when cost-based search is harmful, and
more importantly, when cost-based search is helpful.

Wilt and Ruml (2011) demonstrated that when doing best-
first search with a wide variety of operator costs, the penalty
for a heuristic error can introduce an exponential number
of nodes into the search. They then proceed to show that
this exponential blowup can cause problems for algorithms
that use h exclusively, rendering the algorithms unable to
find a solution. Last, they show that algorithms that use d
are still able to find solutions. This work shows the general
utility of d, but leaves open the question of precisely why
the algorithms that use d are able to perform so well.

Conclusion
It is well known that searching on distance can be faster than
searching on cost. We provide evidence that the root cause
of this is the fact that the d heuristic tends to produce smaller
local minima compared to the h heuristic. We also saw that
greedy best-first search on h can outperform greedy best-
first search on d if h has smaller local minima than d.

This naturally leads to the question as to why the d heuris-
tic tends to have smaller local minima as compared to the h
heuristic. We showed that if we model the search space us-
ing a tree and use a random supergraph heuristic, we expect
that the d heuristic will have smaller local minima compared
to the h heuristic, which explains why researchers have ob-
served that searching on d tends to be faster than searching
on h. Given the ubiquity of large state spaces and tight dead-
lines, we hope that this work spurs further investigation into
the behavior of suboptimal search algorithms.

191

References
Chenoweth, S. V., and Davis, H. W. 1991. High-
performance A* search using rapidly growing heuristics. In
Proceedings of the Twelfth International Joint Conference
on Articial Intelligence, 198–203.
Cushing, W.; Benton, J.; and Kambhampati, S. 2010. Cost
based search considered harmful. In Proceedings of the
Third Symposium on Combinatorial Search.
Cushing, W.; Benton, J.; and Kambhampati, S.
2011. Cost based search considered harmful.
http://arxiv.org/abs/1103.3687.
Dionne, A.; Thayer, J. T.; and Ruml, W. 2011. Deadline-
aware search using on-line measures of behavior. In Pro-
ceedings of the Fourth Annual Symposium on Combinatorial
Search.
Doran, J. E., and Michie, D. 1966. Experiments with the
graph traverser program. In Proceedings of the Royal So-
ciety of London. Series A, Mathematical and Physical Sci-
ences, 235–259.
Gaschnig, J. 1979. A problem similarity approach to
devising heuristics: First results. In Proceedings of the
Sixth International Joint Conference on Articial Intelligence
(IJCAI-79).
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics SSC-4(2):100–107.
Kendall, M. G. 1938. A new measure of rank correlation.
Biometrika 30(1/2):81–93.
Likhachev, M.; Gordon, G.; and Thrun, S. 2003. ARA*:
Anytime A* with provable bounds on sub-optimality. In
Proceedings of the Seventeenth Annual Conference on Neu-
ral Information Processing Systems.
Pearl, J., and Kim, J. H. 1982. Studies in semi-admissible
heuristics. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence PAMI-4(4):391–399.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artifial Intelligence Research 39:127–177.
Richter, S.; Westphal, M.; and Helmert, M. 2011. LAMA
2008 and 2011. In International Planning Competition 2011
Deterministic Track, 117–124.
Ruml, W., and Do, M. B. 2007. Best-first utility-guided
search. In Proceedings of the Twenty Second h International
Joint Conference on Articial Intelligence (IJCAI-07), 2378–
2384.
Thayer, J. T., and Ruml, W. 2011. Bounded suboptimal
search: A direct approach using inadmissible estimates. In
Proceedings of the Twenty Sixth International Joint Confer-
ence on Articial Intelligence (IJCAI-11), 674–679.
Thayer, J. T.; Ruml, W.; and Kreis, J. 2009. Using distance
estimates in heuristic search: A re-evaluation. In Proceed-
ings of the Second Symposium on Combinatorial Search.
Thayer, J. T. 2012. Heuristic Search Under Time and Qual-
ity Bounds. Ph.D. Dissertation, University of New Hamp-
shire.

Wilt, C., and Ruml, W. 2011. Cost-based heuristic search is
sensitive to the ratio of operator costs. In Proceedings of the
Fourth Symposium on Combinatorial Search.

192

