
Max Is More than Min:
Solving Maximization Problems with Heuristic Search

Roni Stern
Dept. of ISE

Ben Gurion University
roni.stern@gmail.com

Scott Kiesel
Dept. of Computer Science

University of New Hampshire
skiesel@cs.unh.edu

Rami Puzis and Ariel Felner
Dept. of ISE

Ben Gurion University
puzis,felner@bgu.ac.il

Wheeler Ruml
Dept. of Computer Science

University of New Hampshire
ruml@cs.unh.edu

Abstract

Most work in heuristic search considers problems where a
low cost solution is preferred (MIN problems). In this paper,
we investigate the complementary setting where a solution of
high reward is preferred (MAX problems). Example MAX
problems include finding the longest simple path in a graph,
maximal coverage, and various constraint optimization prob-
lems. We examine several popular search algorithms for MIN
problems — optimal, suboptimal, and bounded suboptimal
— and discover the curious ways in which they misbehave
on MAX problems. We propose modifications that preserve
the original intentions behind the algorithms but allow them
to solve MAX problems, and compare them theoretically and
empirically. Interesting results include the failure of bidirec-
tional search and a discovered close relationships between Di-
jkstra’s algorithm, weighted A*, and depth-first search. This
work demonstrates that MAX problems demand their own
heuristic search algorithms, which are worthy objects of study
in their own right.

Introduction
One of the main attractions of the study of combinatorial
search algorithms is their generality. But while heuristic
search has long been used to solve shortest path problems,
in which one wishes to find a path of minimum cost, little
attention has been paid to its application in the converse set-
ting, where one wishes to find a path of maximum reward.
This paper explores the differences between minimization
and maximization search problems, denoted as MIN and
MAX problems, respectively.

To motivate the discussion on MAX problems, consider
the longest simple path problem (LSP). Given a graph G =
(V,E) and vertices s, t ∈ V , the task is to find a simple
path from s to t having maximal length. A path si called
simple if it does not include any vertex more than once. For
weighted graphs, the task in LSP is to find the simple path
with the highest “cost”. LSP has applications in peer-to-peer

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

information retreival (Wong, Lau, and King 2005), multi-
robot patrolling (Portugal and Rocha 2010), and VLSI de-
sign (Tseng, Chen, and Lee 2010).

LSP is known to be NP-Hard (Garey and Johnson 1979)
and even hard to approximate (Karger, Motwani, and
Ramkumar 1997). By contrast, its MIN variant – finding
the shortest path – is a well-known problem that can be
solved optimally in polynomial time using Dijkstra’s Algo-
rithm (Dijkstra 1959).

LSP can be formulated as a search problem as follows.
A state is a simple path in G. The start state is a path con-
taining only s. An operator extends a path by appending a
single edge e ∈ E. The reward of applying an operator is
the weight of the added edge.

Another class of MAX problems assigns rewards to states
rather than operations and the objective is to find a state
with maximal reward. Consider for example, the maximal
coverage problem, where we are given a collection of sets
S = {S1, ..., Sn} and an integer k. The task is to find a
subset S ′ ⊆ S such that |S ′| ≤ k and |

⋃
Si∈S′ Si| is max-

imized. This problem can be reduced to LSP as follows. A
state is a subset of S, where the start state is the empty set.
Applying an operator corresponds to adding a member of S,
and the reward of this this operator is equal to the difference
between rewards of respective states.

In this paper, we explore the fundamental differences be-
tween MIN and MAX problems and study how existing
algorithms, originally designed for MIN problems, can be
adapted to solve MAX problems. To our surprise, this topic
has received little attention.

Edelkamp et al.(2005) proposed cost algebras as a for-
malism for a wide range of cost optimality notions beyond
the standard additive cost minimization. They then showed
how common search algorithms can be applied to any prob-
lem formulated as a cost algebra. While cost algebras are
very general, MAX problems cannot be formulated as one.
This is because cost algebra problems must exhibit the “prin-
ciple of optimality” (Edelkamp, Jabbar, and Lluch-Lafuente
2005), and we show later in this paper that this principle

148

Proceedings of the Seventh Annual Symposium on Combinatorial Search (SoCS 2014)

does not hold in MAX problems.
Specific types of MAX problems, such as various con-

straint optimization problems (Dechter and Mateescu 2007),
oversubscription planning (Mirkis and Domshlak 2013), and
partial satisfaction planning (Benton, Do, and Kambhampati
2009) have been addressed in previous work. In some cases,
problem specific solutions were given and, in other cases,
MIN problem algorithms were adapted to the specific MAX
problem addressed. Nevertheless, to the best of our knowl-
edge, our work is the first to provide a comprehensive study
of uninformed and informed search algorithms for the MAX
problem setting.

In this paper, we propose a set of general-purpose search
algorithms for MAX problems. Optimal, bounded subopti-
mal, and unbounded MIN search algorithms are adapted to
the MAX problem settings, and their theoretical attributes
are discussed. The main contribution of this work is in lay-
ing the theoretical foundation of applying a range of com-
binatorial search algorithms for MAX problems. We show
that uninformed search algorithms must exhaustively search
the entire search space before halting with the optimal so-
lution. With an admissible heuristic, which overestimates
the marginal reward in MAX problems, classical heuristic
search algorithm can still substantially speedup the search.
Yet, in MAX problems, the search often cannot be stopped
when a goal is expanded. We report experimental results
for LSP over three types of graphs. These results show the
importance of using intelligent heuristics in MAX problems.

MAX and MIN Search Problems
MIN problems are defined over a search space, which is a
directed graph whose vertices are states and weighted edges
correspond to operators. The weight of an edge is the cost
of the corresponding operator. The task in a MIN problem
is to find a path from an initial state s to a goal state whose
sum of edge weights is minimal. MAX problems are defined
similarly, except that operators have rewards instead of costs
and the task is to find a path from s to a goal state whose sum
of edge weights is maximal. Non-additive costs/rewards are
not addressed in this paper.

Note that for graph problems like LSP, the problem graph
(e.g.,the graph where we would like to find the longest path
in) can be substantially different from the graph represent-
ing the search space. In LSP, for example, the search space
can be exponentially larger than the underlying graph. For
example, the number of simple paths in an empty N ×M
grid from the lower left corner to the upper right one is ex-
ponential in N and M , while the number of vertices in such
a gris is N ×M .

It is possible to reduce a MAX problem to a MIN prob-
lem by represeting costs with negative or reciprocal rewards.
Later, we show that such reduction affects the monotonicity
of the search space, causing many search algorithms to fail.

Uninformed Search for MAX Problems
First, we discuss several “uninformed search” algorithms
that do not require a heuristic function: Dijkstra’s algorithm,
depth-first branch and bound, and bidirectional search.

s

a
b

c

t

3

3
1

7

1 s

a b

t

1

3 1

2

s t
Forward

search
Backward
search

s

a

t

b

c

(a) DA fails

s

a
b

c

t

3

3
1

7

1 s

a b

t

1

3 1

2

s t
Forward

search
Backward
search

s

a

t

b

c

(b) BDS fails

s

a
b

c

t

3

3
1

7

1 s

a b

t

1

3 1

2

s t
Forward

search
Backward
search

s

a

t

b

c

(c) hCC example

Figure 1: Example of different LSP instances

Dijksra’s algorithm
BFS in general is an iterative algorithm, choosing to expand
a single state in every iteration. Expanding a state v consists
of generating all the states that can be reached from v by
applying a single operator. Generated states are stored in a
list of states called OPEN. OPEN initially contains only s.
As the search progresses, generated states enter OPEN and
expanded states are removed from it. BFS algorithms differ
in how they choose which state to expand.

Dijksra’s algorithm (DA) (for MIN problems) can be im-
plemented and explained as a best-first search (BFS) that
chooses to expand the state with the lowest g-value in
OPEN (Felner 2011). The g value of the start state is set
to zero, while the g value of all other states is initially set
to be∞ (this initialization can also be done lazily, as states
are generated). When a state u is expanded and a state v is
generated, g(v) is updated to be min{g(v), g(u) + c(u, v)},
where c(u, v) is the cost of the edge from u to v. In DA,
the g-value of a state u is guaranteed to be the lowest cost
path found so far from the initial state s to u. When a goal
node is expanded, the search halts and the best path to it is
guaranteed to be optimal, i.e., having the lowest cost.

How do we apply DA to MAX problems? For MAX prob-
lems, the g value as computed above corresponds to the re-
ward collected so far. Expanding the state with the lowest
g-value would return the path with the lowest reward. Intu-
itively, we could define DA for MAX problems to be a BFS
that expands the state with the highest g-value. This way
DA expands the next best state in both MAX and MIN prob-
lems — state with the lowest g-value (cost) in MIN problems
and the with the highest g-value (reward) in MAX problems.
Unfortunately, this variant of DA for MAX problems does
not necessarily find the optimal highest reward path. For
example, in the graph depicted in Figure 1a, expanding the
state with highest g would result in expanding b and then t.
The returned path would then be 〈s, b, t〉 while the weighted
longest path is 〈s, a, t〉.

In order to find an optimal solution, DA for MAX prob-
lems is required to continue expanding states even after the
goal has been expanded, as better (higher reward) paths to
a goal may still exist. One way to ensure that an optimal
solution has been found is by continuing to expand states
until OPEN is empty. When OPEN is empty, all paths from
s to a goal had been considered and the optimal solution is
guaranteed. For the remainder of the paper we thus define
DA for MAX problems to be a best-first search on larger
g-values with this simple stopping condition. We note that
other sophisticated reachability mechanisms may exist that
avoid this exhaustive exploration.

149

Search Space Monotonicity
To gain a deeper understanding of why DA is not particularly
effective in MAX problems, we analyze the relation between
the objective function (MAX/MIN) and the search space of a
given search problem. Let GS and s be the the search space
graph and the initial state, respectively.

Definition 1 (Search Space Monotonicity1). A search
space is said to be monotone w.r.t a state s if for any path
P in GS starting from s it holds that P is not better than
any of its prefixes, where better is defined w.r.t the objective
function.

In MIN problems, a better path is a path with a lower cost,
while in MAX problems, a better path is a path with a higher
reward. It is easy to see that MIN problems have search
spaces that are monotone, while MAX problems have search
spaces that are not monotone.

Next, we establish the relation between search space
monotonicity and the performance of BFS in general and
DA in particular. In BFS, OPEN contains a set of generated
states. Each such state v represents a prefix of a possible
path from s to a goal. This prefix is the best path found so
far from s to v, and its cost is g(v). OPEN in a BFS contains
the best prefixes found so far to all possible paths to a goal.

When DA expands the best node on OPEN and it is a
goal, search space monotonicity implies that its cost is not
worse than the optimal solution cost. Thus, when DA ex-
pands a goal, it must be optimal and the search can halt.
By contrast, in a search space that is not monotone, a prefix
P ′ of a path P may be worse than P itself. Thus, the best
g-value in OPEN is not necessarily better than the best solu-
tion. In such a case, DA may need to expand all the states in
the search space that are on a path to a goal before halting.
Moreover, some states may be expanded several times, as
better paths to them are found.

Search space monotonicity is related to the “principle of
optimality”, also known as the “optimal substructure” prop-
erty. The “optimal substructure” property holds in problems
where an optimal solution is composed of optimal solutions
to its subproblems (Cormen et al. 2001). This property is
needed for various dynamic programming algorithms. The
shortest path problem has the optimal substructure property
as prefixes of a shortest path are also shortest paths. LSP, on
the other hand, does not have the optimal substructure prop-
erty as prefixes of the longest path are not necessarily longest
paths. For example, consider LSP for the graph depicted in
Figure 1a. The longest path from s to t passes through a and
its cost is 4. The longest path from s to a, however, passes
through b and t, and its cost is 6.

Depth First Branch and Bound
As an alternative to DA, one can use any complete graph
search algorithm. For example, one might prefer to run a
depth-first search (DFS) to exhaustively expand all states on
paths to a goal, as it does not need a priority queue (OPEN)

1This differs from monotonicity as proposed by Dechter and
Pearl (1985), as their notion is between the BFS evaluation function
f and the solution cost function.

as DA requires. Branch and bound is a popular enhancement
to DFS that continues the DFS after a path to a goal is found,
pruning paths with cost worse than the incumbent solution
(best solution found so far) (Zhang and Korf 1995). DFBnB
is an “anytime” algorithm, i.e., it produces a sequence of
solutions of improving quality. When the state space has
been completely searched (or pruned), the search halts and
the optimal solution is returned.

However, applying DFBnB on MAX problems is prob-
lematic. In MIN problems, paths with cost higher than the
cost of the incumbent solution are pruned. In MAX prob-
lems, paths with reward higher than the incumbent are pre-
ferred. Pruning paths with a reward lower than the reward of
the incumbent solution is also not possible, as these pruned
paths may be prefixes of paths with much higher reward, po-
tentially higher than the incumbent solution.

More generally, DFBnB can only prune paths if the search
space is monotone. A path can be pruned if one knows that
it is not a prefix of a path to a goal that is better than the
incumbent. Thus, path pruning is possible if a path can
only be a prefix to an equal or worse path. Thus, in unin-
formed search, pruning with DFBnB only applies to mono-
tone search spaces. Without pruning any paths, DFBnB is
plain depth-first search, exhaustively iterating over all paths
in the search space. Thus, DFBnB in MAX problem would
perform very similarly to DA in MAX problem. In fact, the
only difference is the ordering by which paths are traversed
and the overhead DA incurs by maintaining OPEN. Since
all paths are traversed by both algorithms anyhow, a simple
DFS would likely provide an easier and faster (due to less
overhead per state) alternative to DA.

Bidirectional search
When there is a single goal state, another popular unin-
formed search method is bidirectional search, denoted here
as BDS. For domains with uniform edge costs, BDS runs a
breadth-first search from both start and goal states. When
the search frontiers meet, i.e., when a state in the forward
search generates a state in the backward search or vise versa,
the search can halt and the min-cost path from start to goal
is found. For MIN problems with uniform edge costs, the
potential saving of using BDS is large, expanding the square
root of the number of states expanded by regular breadth-
first search (or DA).

With some modification, BDS can be applied to problems
with non-uniform edge costs. DA is executed from the start
and goal states. Whenever the search frontiers meet, a so-
lution is found. The incumbent solution is guaranteed to
be optimal when the state expanded by the forward search
was already expanded by the backward search, or vice versa.
Goldberg et al. (2005) provided the following, improved
stopping condition. Let minf and minb denote the lowest
g-value in OPEN of the forward and backward search, re-
spectively. The incumbent solution is guaranteed to be opti-
mal when its cost is less than or equal to minf +minb .

Applying BDS to MAX problems poses several chal-
lenges. Consider running BDS on the graph in Figure 1b,
searching for the LSP from s to t. For this example assume
that the forward and backward searches alternate after state

150

expansion and both sides use DA for MAX (i.e., expand the
state with the highest g). Vertex a is the first vertex expanded
by both searches, finding a solution with a reward of 6, while
the optimal reward is 9 (following 〈s, b, c, t〉).

Thus, unlike MIN problems, the optimal solution is not
necessarily found when a state is expanded by both sides.
Even if both sides used DA for MIN (expanding states with
low g) the optimal solution would still not be returned.

The optimality of BDS for MIN problems depends on two
related properties that do not hold in MAX problems. First,
when a state is expanded, the best path to it has been found.
As discussed above, this does not hold for MAX problems,
and in general for non monotone search spaces. The second
property which BDS is implicitly based on is that the lowest
cost path from s to t is composed of the optimal path from s
to some state x, concatenated with the optimal path from x
to t. This is exactly the optimal substructure property, which
as mentioned earlier does not hold for MAX problems.

In summary, in contrast to the MIN setting, DA for MAX
problems cannot stop at the first goal, DFBnB offers no ad-
vantage over plain DFS, and BDS appears problematic. We
are not familiar with a uninformed search algorithm that is
able to find optimal solutions to MAX problems without
enumerating all the paths in the search space.

Heuristic Search for MAX
In many domains, information about the search space can
help guide the search. We assume such information is given
in the form of a heuristic function h(·), where h(v) estimates
the remaining cost/reward of the optimal path from v to a
goal. For many MIN problems, search algorithms that use
such a heuristic function run orders of magnitude faster than
uninformed search algorithms. Next, we discuss heuristic
search algorithms for MAX problems.

DFBnB
In MIN problems, h(v) is called admissible if for every v,
h(v) is a lower bound on the true remaining cost of an opti-
mal path from the start to a goal via v. Given an admissible
heuristic, DFBnB can prune every state whose g + h cost is
greater than or equal to the cost of the incumbent solution.
This results in more pruning than DFBnB without h.

Similar pruning can be achieved for MAX problems, by
adjusting the definition of admissibility.
Definition 2 (Admissibility in MAX problems). A func-
tion h is said to be admissible for MAX problems if for every
state v in the search space it holds that h(v) upper bounds
the remaining reward of the optimal (i.e., the highest reward)
solution from the start to a goal via v.
Given an admissible h for a MAX problem, DFBnB can
safely prune a state v if g(v)+h(v) ≤ C where C is the cost
of the incumbent solution. DFBnB with this pruning is very
effective for some MAX problems (Kask and Dechter 2001;
Marinescu and Dechter 2009).

A∗

A∗ is probably the most well-known heuristic search algo-
rithm (Hart, Nilsson, and Raphael 1968). It is a BFS that

uses an evaluation function f(·) = g(·) + h(·). By the
minimal f -value in OPEN, we refer to the f -value of the
state in OPEN with the lowest f -value (we define maximal
f -value in OPEN similarly). For MIN problems, in every
iteration, the state with the lowest f -value in OPEN is ex-
panded. When a goal is expanded, the search halts and the
best path found to so far that goal is returned. If h is ad-
missible, then the minimal f -value in OPEN is guaranteed
to lower bound all solution costs. Thus, when A∗ expands a
goal state, that goal has the minimal f -value in OPEN and
is therefore optimal.

With some minor modification, A∗ can be successfully
applied to MAX problems. In MAX problems, the opti-
mal solution upper bounds all other solutions. Therefore,
we wish to define the f -values of states such that the max-
imal f -value in OPEN upper bounds all solution costs. To
do this, we assume h is admissible for MAX problems (Def-
inition 2) and we define A∗ for MAX problem to expand the
node with the highest f -value in OPEN. Let maxf denote
the highest f value in OPEN.
Lemma 1. If h is admissible for MAX problems, then for
any BFS that stores all generated states in OPEN, maxf
upper bounds the reward of the optimal solution.

The proof is completely analogous to the MIN case and is
omited due to space limitations.

The first significant difference between A∗ for MAX and
for MIN arises when considering goals. In MIN problems,
an admissible h function must return zero for a goal state.
Thus for any goal state t, f(t) = g(t). This is not the case
for MAX problems as h(t) may be larger than 0. This can be
a result of an overestimating h function. Alternatively, h(t)
can be accurate and t is on a path to another goal state with
a higher reward. Therefore, while the f(t) upper bounds the
optimal solution (Lemma 1), g(t) may not, since h(t) may
be larger than 0. Thus, unlike A∗for MIN problems, expand-
ing a goal with A∗in MAX problems does not guarantee that
the optimal solution has been found.

To preserve the optimality of A∗for MAX problems, its
stopping condition can be modified as follows: A∗will halt
either when OPEN is empty, or when maxf is not larger
than the reward of the incumbent solution. A similar vari-
ant of A∗was proposed under the names Anytime A* or
Best First Branch and Bound (BFBB) in the context of par-
tial satisfaction planning (Benton, Do, and Kambhampati
2009) and over subscription planning (Mirkis and Domsh-
lak 2013).

Trivial Heuristic Another difference between A∗ for
MAX and MIN problems arising from the definition of ad-
missibility is how the trivial heuristic is defined. The triv-
ial heuristic, which is mostly used as a theoretical and ped-
agogical construct, is an admissible heuristic function that
ignores the state it evaluates. It is usually denoted by h0, be-
cause in MIN problems, h0 simply maps every state to zero.
This lower bounds the cost of all paths to a goal, and is thus
admissible. A∗ with this heuristic is equivalent to DA.

In MAX problems, h0 would be ∞, upper bounding the
cost of all paths to a goal. Alternatively, if an upper bound U
on the reward of the optimal solution is known, then a more

151

accurate trivial heuristic would be h0(n) = U−g(n). A∗ us-
ing these trivial heuristics would end up assigning all states
with the same f value (either ∞ or U). As a result states
could be expanded in any order (depending on tie breaking),
unlike DA for MAX. Moreover, goal states would also re-
cieve the same f value. Thus, A∗ would continue to expand
states exhaustively until OPEN is empty or, for h0 = U − g,
until all paths with reward U are expanded. Thus, A∗ with
the trivial heuristic ultimately expands the same states as DA
for both MIN and MAX problems.

Consistency In MIN problems, a heuristic h is said to be
consistent if, for any two states x and y with a path be-
tween them, it holds that h(x) ≤ cmin(x, y) + h(y) where
cmin(x, y) is the cost of the least-cost path from x to y (Hart,
Nilsson, and Raphael 1968). Running A∗ with a consistent
heuristic causes the f values of states to be monotonic non-
decreasing along any path in the search space. When a state
v is expanded by A∗ with a monotonic f function, then it
is guaranteed that g(v) is the lowest-cost path from the start
to v. This has the positive impact of not needing to reopen
states that have already been expanded, causing the worst-
case time complexity of A∗ to be linear in the number of
states in the state space.

An equivalent definition exists for MAX problems:

Definition 3 (Consistency in MAX problems). A heuristic
function h is said to be consistent in MAX problems if, for
any two states x and y with a path from x to y it holds that
h(x) ≥ rmax(x, y) + h(y), where rmax(x, y) is the reward
of the maximum-reward path from x to y.

This definition preserves the usual properties of A∗

Theorem 1. The following properties are guaranteed when
running A∗with a consistent heuristic in a MAX problem:

• f is monotonically non-increasing, i.e., generated states
always have f values not greater than their parent..
• When a state v is expanded by A∗ g(v) is the highest-

reward path from the start to v.
• After a state is expanded, it is never reopened, resulting

in a linear time complexity for A∗

Proof. Let v′ and v be states such that v′ generated v and
let r(v′, v) denote the reward on the edge from v′ to v. By
definition rmax(v′, v) ≥ r(v′, v) and thus

f(v′) = g(v′) + h(v′) ≥ g(v′) + rmax(v
′, v) + h(v)

≥ g(v) + h(v) = f(v),

establishing that f is monotonic.
Next, we prove that if v is expanded by A∗ then g(v) is

optimal, i.e,. no better path exists to v. By contradiction,
assume that there exists a path π from start to v with reward
higher than g(v). This means that there exists a state v′ in
OPEN through which π passes on the way to v. As v was
expanded by A∗ we have that f(v) ≥ f(v′). Also, since
g(v) is not optimal and the optimal path to v passes through
v′, it holds that g(v′) + rmax > g(v). Therefore,

f(v) ≥ f(v′) = g(v′) + h(v′)

> g(v)− rmax(v
′, v) + rmax(v

′, v) + h(v) = f(v),

resulting in the contradicting f(v) > f(v).
The last part of the theorem is a direct consequence of

g(v) being optimal when expanded – no better path to it will
ever be expanded.

The last part of Theorem 1 states that the complexity of
A∗is linear in the size of the search space if h is consistent.
Note that for LSP on a graph G , the size of the search space
may be exponential in the size of G, as the search space
consists of all the possible paths in G.

In the experimental results given later in the paper, we
also observe that the heuristic search algorithms preserve
their substantial advantage over uninformed search.

Suboptimal Search for MAX
So far, we have discussed optimal search algorithms, i.e., al-
gorithms that are guaranteed to return optimal (maximal, in
MAX problems) solutions. As solving problems optimally
is often infeasible, suboptimal algorithms are often used in
practice. Next, we investigate how classic suboptimal search
algorithms can be adapted to MAX problems.

Greedy Best First Search
Greedy BFS (GBFS), also known as pure heuristic search, is
a BFS that expands the state with the lowest h value in every
iteration. In some MIN problem domains, GBFS quickly re-
turns a solution of reasonable quality. Can GBFS be adapted
to MAX problems?

First, we analyze why GBFS is often effective for MIN
problems. In MIN problems, h is expected to decrease as we
advance towards the goal. Thus, expanding first states with
low h value is expected to lead the search quickly towards
a goal. In addition, states with low h value are estimated to
have less remaining cost to reach the goal. Thus choosing
(especially at the beginning of the search) to expand states
with low h values is somewhat related to finding better lower
cost solution. Therefore, in MIN problems, by expanding
the state with the lowest h value, GBFS attempts to both
reach a high quality goal, and also to reach it quickly, as
desired for a suboptimal search algorithm. But what would
be a proper equivalent in MAX problems?

In MAX problems, GBFS does not have this dual positive
effect. For admissible h values it is reasonable to expect that
as the search advances towards a goal, the h value would de-
crease as the upper bound on future rewards should decrease
as the sum of future possible rewards decreases. However,
unlike in MIN problems low h values suggest low quality
solutions – solutions with a low reward.

Thus, in MAX problems expanding the state with the low-
est h value would lead to a goal supposedly quickly, but that
would also lead to extremely low solution quality. How-
ever, the alternative of expanding the state with the high-
est h value would result in a breadth-first search behavior.
Even if goal states had h = 0 (not necessarily true in MAX
problems), then they would be expanded last, after all other
states. That would make GBFS extremely slow, and much
slower than A∗ This was also supported in a set of prelimi-
nary experiments we performed, where a GBFS that expands
the highest hwas extremely inefficient. We thus use the term

152

GBFS for both MAX and MIN problems to denote a BFS
that always expands the state with lowest h in OPEN.

Domains with Non-Unit Edge Costs
In domains with non-unit edge costs, it can be the case
that the length of a path to a goal is not equal to the
cost of that path. This occurs if the edges in the state
space have different costs. In such cases, one can define
two additional heuristic functions: dnearest or dcheapest
Both heuristics estimate the shortests path (in edges, rather
than as a sum of costs) to goal, but dcheapest estimate the
shortest path to the lowest-cost goal, while dcheapest esti-
mate to the shortest path to the closest (in terms of num-
ber of edges, not cost) goal. Previous work showed that
dnearest and dcheapest can be used to find solutions quickly
in problems with non-unit costs (Thayer and Ruml 2009;
2011). In particular, Speedy search, a best-first search on
dnearest, was proposed as an alternative to GBFS when the
task is to find a goal as fast as possible (Ruml and Do 2007).2
Note that the solution quality of Speedy search is often lower
than GBFS. Speedy search is well suited to MAX problems.
dnearest is defined in MAX problems exactly like in MIN
problems. Furthermore, because the search algorithm is de-
fined without respect to cost, it remains exactly the same for
MIN and MAX problems: always search first the state with
the lowest dnearest In the experimental section given later in
this paper, we show that Speedy search in MAX problems is
substantially faster than GBFS, which uses h.

Bounded Suboptimal Search for MAX
Bounded suboptimal search algorithms are a special class of
suboptimal algorithms in which the algorithm accepts a pa-
rameter w and guarantees to return a solution whose cost
is bounded by w times the cost of the optimal solution. For-
mally, letC denote the cost of the solution returned by a sub-
optimal search algorithm and let C∗ denote the cost of the
optimal solution. A bounded suboptimal search algorithm
for MIN problems guarantees that C ≤ w · C∗. Since C∗
is the lowest-cost solution, bounded suboptimal algorithms
can only find a solution for w ≥ 1. We define a bounded
suboptimal search algorithm for MAX problems similarly,
as an algorithm that is guaranteed to return a solution whose
reward is at least w times the highest-reward solution, i.e.,
that C ≥ w · C∗, where 0 ≤ w ≤ 1. Next, we investigate
how common bounded suboptimal search algorithms can be
adapted to MAX problems.

Weighted A∗

Weighted A∗ (Pohl 1970) is perhaps the first and most well-
known bounded suboptimal search algorithm. It is a best-
first search, expanding in every iteration the state in OPEN
with the lowest fw(·) = g(·) + w · h(·). When a goal is
expanded, the search halts and the cost of the found solution
is guaranteed to be at most w · C∗.

2It is not clear from previous work whether Speedy was defind
on dnearest or dcheapest We assume here dnearest as it follows best
the logic behind Speedy: find a goal as fast as possible.

Problem MIN MAX
w=0 DA DA that halts early

= DFS
0<w<1 N/A Worse quality,

faster search
w=1 A∗ A∗

1<w<∞ Worse quality, N/A
faster search

w=∞ GBFS N/A

Table 1: Weighted A∗in MAX and MIN problems

To achieve a similar guarantee for MAX problems, we
modify WA* in two ways. First, WA* for MAX problems
expands the state with the highest fw in OPEN. Second, in-
stead of halting when a goal is expanded, WA* for MAX
problems halts only when the maximal fw in OPEN is not
greater than the reward of the incumbent solution.
Theorem 2 (w-Admissibility of WA* in MAX problems).
For any 0 ≤ w ≤ 1, when the maximal fw value in OPEN
is less than or equal to the reward of the incumbent solution
C, then it is guaranteed that C ≥ w · C∗.

Proof is omitted due to lack of space, and is basically sim-
ilar to the equivalent proof in MIN problems.

Consider the behavior of WA* as w changes. When w =
1, WA* is equivalent to A∗ In MIN problems, increasing w
means that the evaluation function fw depends more on h
than on g. In general (Wilt and Ruml 2012), this results in
finding solutions faster but with lower quality (i.e., higher
cost). In the limit, w =∞ and WA* becomes GBFS.

To analyze the behavior of WA* in MAX problems, con-
sider first the special case where w = 0. Note that this the
equivalent of w =∞ in MIN problems. When w = 0 WA*
becomes a best-first search expanding the node with highest
g. Thus WA* with w = 0 expands states in the same or-
der as DA (as appose to GBFS in WA* for MIN problem).
There is, however a key difference between DA and WA*
with w = 0. DA is intended to find optimal solutions and
thus it halts only when OPEN is empty (as discussed ear-
lier). By contrast, WA* for MAX problems halts when the
incumbent is larger than or equal to the highest fw value in
OPEN. As a result, WA* for MAX problems with w = 0,
assuming a reasonable tie-breaking policy, is exactly depth-
first search that halts when the first solution is found! We
explain this in more detail next.

Since w = 0, then for every state v, we have fw(v) =
g(v). Let v be the most recent state expanded. By defini-
tion, v had the highest g value in OPEN. Its children have g
values that are the same or higher and, therefore, one of these
children will be expanded next. This continues until either a
goal is expanded, having the highest g value in OPEN, and
thus the search halts, or alternatively, a dead-end is reached,
and then the best state in OPEN would be one of its imme-
diate predecessors. An earlier predecessor cannot be better
than one further along the path as long as edge weights are
non-negative. Note that this is exactly the backtracking done
by DFS. DFS is known to find solutions quickly in MAX
problems. Thus, WA* is fast for MAX problems, as it is for
MIN problems, but for a very different reason.

153

More generally, decreasing w from one to zero has two
effects. First, WA* behaves more similar to DFS (convergin
to it when w = 0). This in general results in finding a solu-
tion faster. Second, as in MAX problems, loweringw allows
lower quality solutions to be returned. The behavior of WA*
for MIN and MAX problems is summarized in Table 1.

Focal Search
There are many bounded suboptimal BFS algorithms. The
A∗ε algorithm uses a different approach to bound the returned
solution (Pearl and Kim 1982). In addition to OPEN, A∗ε
maintains another list, called FOCAL. FOCAL contains a
subset of states from OPEN, specifically, those states with
g + h ≤ w · minf , where minf is the smallest f -value
in OPEN. While states in OPEN are ordered according to
their f -value, as in A∗, the states in FOCAL are ordered ac-
cording to the estimated number of operators to reach the
nearest goal (e.g., using dnearest or dcheapest). This general
approach of using OPEN and FOCAL lists was taken fur-
ther by Thayer et al. (2011) in their EES algorithm, which
uses an additional third ordering according to an inadmissi-
ble heuristic. We denote by focal search the general search
algorithm framework where one ordering function is used
to select FOCAL, and another ordering function is to select
which node to expand from FOCAL. A∗ε and EES are thus
instances of focal search.

Adapting focal search to MAX problems is relatively
straightforward. First, the states in FOCAL are now those
states with f values greater than or equal tow ·maxf , where
maxf is the largest f value in OPEN. Second, the stopping
condition is different. As in WA* for MAX problems, find-
ing a goal is not sufficient to guarantee that the incumbent
solution is w-admissible.
Lemma 2. In any search that maintains all generated
states in OPEN, and for any 0≤w≤1, if w·maxf≤C then
w·C∗≤C.
Lemma 2 is a simple derivation from Lemma 1.

The practical application of Lemma 2 is that focal search
algorithms can halt when the cost of the incumbent solution
is greater than or equal to w ·maxf . Note that w ·maxf is
smaller than fw(bestfw), so the stopping condition for focal
searches is stronger than for WA*.

An alternative to the previously discussed BFS-based
frameworks is to apply DFBnB and prune states that cannot
lead to a solution that would improve on the incumbent solu-
tion by more than a factor of 1

w . The corresopnding pruning
rule is that a state v can be pruned if fw(v) ≤ C. We omit a
formal proof due to space limitations.

Empirical Evaluation
As a preliminary study of how the algorithms discussed in
this paper behave, we performed a set of experiments on
the LSP domain. Three types of LSP domains were used:
(1) uniform grids, are 4-connected N ×N grids with 25%
random obstacles, where traversing each edge costs one, (2)
life grids, are the same grids but traversing an edge into a
grid cell (x, y) costs y+1 (Thayer and Ruml 2008), and (3)
roads, are subgraphs of the US road network graph. From

this relatively large graph (approx. 20 million vertices), we
chose a random vertex and performed a breadth-first search
around it up to a predefined number of vertices.

Heuristics For uniform grids, we used the following ad-
missible heuristic, denoted by hCC . Let v = 〈v1, v2, .., vk〉
be a state, where v1, .., vk are the vertices on the path in
G it represents. Let Gv be the subgraph containing exactly
those nodes on any path from vk to the target that do not
pass through any other vertex in v. Gv can be easily discov-
ered with a DFS from vk. hCC returns |Gv| − 1. It is easy
to see that hCC is admissible. As an example, consider the
Figure 1c. hCC(〈s〉) = 4 while hCC(〈s, a, c〉) = 1.

The complexity of computing hCC for a given state v =
〈v1, .., vk〉 is mostly affected by the complexity of construct-
ing Gv . We implemented this by performing a depth-first
search from the goal vertex, adding to Gv all states except
those on the path to vk. The worst case complexity is thus
the number of edges in the underlying graph G. Note that G
can be exponentially smaller than the state space, and thus
computing this heuristic can be worthwhile. Improvements
to hCC are discussed below under future work, as our focus
here is not to propose a state-of-the-art LSP solver.

A similar heuristic was used for life grids. The heuristic
computes Gv and count every vertex (x, y) as y + 1. For
roads, we used the maximal weight spanning tree for Gv .
This is the spanning tree that has the highest weight and cov-
ers all the states in Gv . This heuristic is admissible as every
path can be covered by a spanning tree.

Optimal Algorithms First, we experimented with algo-
rithms that return optimal solutions. We experimented with
A∗, DFBnB with pruning using an admissible heuristic, and
plain DFS that enumerates all paths in the search space. DFS
was chosen to represent uninformed search algorithms, as
its computational overhead is very small and all uninformed
search algorithms we discussed had to search through all
paths in the search space to guarantee optimality.

Figure 2a show the average runtime as a function of the
domain size in roads. As expected, exhaustive DFS per-
forms poorly compared to A∗ and DFBnB. The differences
between A∗ and DFBnB is very small, where DFBnB show-
ing a slight advantage. When considering the number of
nodes expanded (not shown), A∗ and DFBnB expand almost
exactly the same number of nodes in this domain. Thus, the
slight advantage of DFBnB in runtime is due to the over-
head of A∗ such as the need to maintain OPEN. Very similar
trends were observed for uniform and life grids.

Suboptimal Algorithms Next, we experimented with un-
bounded suboptimal search algorithms. We implemented
GBFS (denoted as “Greedy”) and Speedy search. In LSP,
we can easily compute prefect dnearest , which is the short-
est path to a goal. dnearest was computed once for all states
at the beginning of the search. Both Speedy and Greedy halt
when the first goal was found. We also compared DFBnB
with the same stopping condition, which is effectively DFS
(with node ordering), as DFBnB only prunes states after the
first solution is found.

We experimented on different sizes of road networks and

154

CPU Time

Graph Size
30 40 50 60 70 80

C
PU

 T
im

e
(s

ec
)

0

4

8

12

DFS (exhaustive)
A*
DFBnB

(a) Optimal, roads, CPU time

Reward

Graph Size
300 600 900

R
ew

ar
d

100000

200000

300000

400000

DFS
Greedy
Speedy

(b) Unbounded, roads, reward

CPU Time

Suboptimality
10 20 30

C
PU

 T
im

e
(l

og
10

 s
ec

)

-6

-4

-2

0

2 EES
A*eps

wA*
DFBnB

(c) Bounded, life grids, CPU time

Figure 2: Optimal, bounded, and unbounded LSP solvers

Network size
Algorithm 100 300 500 700 1000
Speedy 100 100 100 100 100
DFS 100 83 78 73 64
GBFS 100 81 65 52 52

Table 2: Solved LSP instances on roads

counted the number of instances, out of a hundred, solved by
each algorithm under 5 minutes. The results are given in Ta-
ble 2. As can be seen, as the graph grows larger, Speedy
is able to solve many more instances than both DFS and
Greedy, as its heuristic perfectly estimates the shortests dis-
tance to a goal. The poor performance of GBFS emphasizes
that its heuristic (hCC) is ill-suited to guide a search quickly
to the goal. Furthermore, the computation of hCC is more
costly than the one-time computation of the shortest path re-
quired for computing dnearest .

Complementing the view above, Figure 2b shows the re-
ward achieved by each algorithm (averaged over the in-
stances solved by all). Interestingly, DFS finds better so-
lutions. This is because DFS does not aim to find a solution
of low or high reward. By contrast, both Speedy and Greedy
aim to find a solution quickly, which in LSP results in a short
solution with small reward. Speedy finds worse solutions
compared to Greedy, because it uses a perfect dnearest , lead-
ing it to the shortest path to a goal. By contrast, Greedy uses
hCC , which is not focussed on short paths, and thus the so-
lutions it finds are better than those found by Speedy. The
same trends observed for both success rate and achieved re-
ward were also observed in uniform and life grids.

Bounded Suboptimal Algorithms Our final category is
bounded suboptimal search algorithms. We experimented
with the bounded suboptimal variant of DFBnB presented
earlier, WA*, A*ε, and EES. Following recent work, we im-
plemented simplified versions of A*ε and EES which per-
form iterative deepening instead of maintaining OPEN and
FOCAL (Hatem and Ruml 2014). These simplified version
were shown to be more effiecient in most cases than the orig-
inal versions of the algorithms.

Figure 2c presents performance on 13x13 life grids. The
x-axis represents the desired suboptimality bound and the

y-axis depicts runtime in seconds (in log scale, to better dif-
ferentiate the algorithms). DFBnB and WA* performs best
with some small advantage to DFBnB. The focal searches
perform worse. Similar trends were shown in roads and
uniform grids, where the advantage of DFBnB and WA*
over the focal searches was slightly larger. The relatively
poor performance of the focal search algorithms is caused
by the overhead of maintaining FOCAL (even with the it-
erative deepening scheme mentioned earlier), and the poor
accuracy of the additional dcheapest heuristic. Devising bet-
ter focal searches for MAX is left for future work.

Concluding, we observed from the results the expected
benefit of heuristic search algorithms for MAX problems. If
the task is to find a soultion as fast as possible, Speedy search
is the algorithm of choice. For finding optimal solutions DF-
BnB with a heuristic performs best, with A* close behind,
and for bounded suboptimal the best performing algorithms
were DFBnB with a suitable heuristic (w·h) and WA*, while
focal searches performed worse. The good performance of
DFBnB in our domain (LSP) is understandable, as the search
space has no duplicates (since a state is a path). Additionally,
finding an initial solution in LSP is easy and the proposed
heuristics were relatively accurate for the tested domain. All
of these are known weak points of DFBnB: it does not detect
duplicates, it performs no pruning until the first solution is
found, and a bad heuristic may cause it to commit early to
an unpromising branch. Evaluating the performance of DF-
BnB against the other heuristic algorithms on MAX problem
domains without these properties is left for future work.

Conclusion and Future Work
In this work we explored a range of uninformed and heuris-
tic search algorithms for solving MAX problems. Using the
notion of search space monotonicity, we showed how classi-
cal uninformed search algorithm for MIN problems cannot
be applied efficiently to MAX problems, often requiring ex-
haustive search of the entire search space. Heuristic search
algorithms, however, can be effective in MAX problems.
We resetablish several key properties of searching in MAX
problems, and show theoretically and empirically how these
algorithms speed up the search. This work demonstrates
the potential of heuristic search methods in MAX problems.
Thus, applying advanced search techniques such as pattern

155

databases and heirarchical search would be an exciting di-
rection for future work.

Acknowledgments
This research was supported by the Israel Science Founda-
tion (ISF) under grant #417/13 to Ariel Felner.

References
Benton, J.; Do, M.; and Kambhampati, S. 2009. Anytime
heuristic search for partial satisfaction planning. Artificial
Intelligence 173(5):562–592.
Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; and Stein, C.
2001. Introduction to Algorithms. The MIT Press, 2 edition.
Dechter, R., and Mateescu, R. 2007. And/or search spaces
for graphical models. Artificial intelligence 171(2):73–106.
Dechter, R., and Pearl, J. 1985. Generalized best-first search
strategies and the optimality of a*. Journal of the ACM
(JACM) 32(3):505–536.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische mathematik 1(1):269–271.
Edelkamp, S.; Jabbar, S.; and Lluch-Lafuente, A. 2005.
Cost-algebraic heuristic search. In AAAI, 1362–1367.
Felner, A. 2011. Position paper: Dijkstra’s algorithm versus
uniform cost search or a case against dijkstra’s algorithm. In
SOCS, 47–51.
Garey, M. R., and Johnson, D. S. 1979. Computers and
intractability, volume 174. Freeman San Francisco.
Goldberg, A. V., and Werneck, R. F. F. 2005. Comput-
ing point-to-point shortest paths from external memory. In
ALENEX/ANALCO, 26–40.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics SSC-4(2):100–107.
Hatem, M., and Ruml, W. 2014. Simpler bounded subopti-
mal search. In AAAI (to appear).
Karger, D.; Motwani, R.; and Ramkumar, G. 1997. On
approximating the longest path in a graph. Algorithmica
18(1):82–98.
Kask, K., and Dechter, R. 2001. A general scheme for
automatic generation of search heuristics from specification
dependencies. Artificial Intelligence 129(1):91–131.
Marinescu, R., and Dechter, R. 2009. And/or branch-and-
bound search for combinatorial optimization in graphical
models. Artificial Intelligence 173(16):1457–1491.
Mirkis, V., and Domshlak, C. 2013. Abstractions for over-
subscription planning.
Pearl, J., and Kim, J. 1982. Studies in semi-admissible
heuristics. IEEE Trans. on PAMI 4(4):392–400.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial Intelligence 1(3–4):193–204.
Portugal, D., and Rocha, R. 2010. Msp algorithm: multi-
robot patrolling based on territory allocation using balanced
graph partitioning. In ACM Symposium on Applied Comput-
ing, 1271–1276. ACM.

Ruml, W., and Do, M. B. 2007. Best-First Utility-Guided
Search. In IJCAI, 2378–2384.
Thayer, J. T., and Ruml, W. 2008. Faster than weighted A*:
An optimistic approach to bounded suboptimal search. In
ICAPS, 355–362.
Thayer, J. T., and Ruml, W. 2009. Using distance estimates
in heuristic search. In ICAPS, 382–385.
Thayer, J. T., and Ruml, W. 2011. Bounded suboptimal
search: A direct approach using inadmissible estimates. In
AAAI, 674–679.
Tseng, I.-L.; Chen, H.-W.; and Lee, C.-I. 2010. Obstacle-
aware longest-path routing with parallel milp solvers. In
World Congress on Engineering and Computer Science
(WCECS), volume 2.
Wilt, C. M., and Ruml, W. 2012. When does weighted A*
fail? In SOCS, 137–144.
Wong, W. Y.; Lau, T. P.; and King, I. 2005. Information
retrieval in p2p networks using genetic algorithm. In WWW
(Special interest tracks and posters), 922–923.
Zhang, W., and Korf, R. E. 1995. Performance of linear-
space search algorithms. Artificial Intelligence 79(2):241–
292.

156

