
Bounded Suboptimal Search in Linear Space: New Results

Matthew Hatem and Wheeler Ruml
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA

mhatem and ruml at cs.unh.edu

Abstract

Bounded suboptimal search algorithms are usually faster than
optimal ones, but they can still run out of memory on large
problems. This paper makes three contributions. First, we
show how solution length estimates, used by the current state-
of-the-art linear-space bounded suboptimal search algorithm
Iterative Deepening EES, can be used to improve unbounded-
space suboptimal search. Second, we convert one of these
improved algorithms into a linear-space variant called Iter-
ative Deepening A∗

ε , resulting in a new state of the art in
linear-space bounded suboptimal search. Third, we show
how Recursive Best-First Search can be used to create ad-
ditional linear-space variants that have more stable perfor-
mance. Taken together, these results significantly expand our
armamentarium of bounded suboptimal search algorithms.

Introduction
Verifying that a solution to a heuristic search problem is
optimal requires expanding every node whose f value is
less than the optimal solution cost. For many problems of
practical interest, there are too many such nodes to allow
the search to complete within a reasonable amount of time
(Helmert and Röger 2008). Furthermore, algorithms like A*
(Hart, Nilsson, and Raphael 1968) maintain an open list,
containing nodes that have been generated but not yet ex-
panded, and a closed list, containing all generated states, in
order to prevent duplicated search effort. The memory re-
quirements to store the open and closed lists also make it
impractical for large problems.

Bounded suboptimal search algorithms trade solution cost
for solving time in a principled way. Given a subopti-
mality bound w, they return a solution whose cost is ≤
w · C∗, where C∗ is the optimal solution cost. Weighted
A* (WA*, Pohl (1973)) is a best-first bounded suboptimal
search that uses the evaluation function f ′(n) = g(n) + w ·
h(n) and is often able to solve problems faster than A* and
with less memory. While WA* uses an admissible heuristic,
it is well-known that an inadmissible but accurate heuris-
tic can be used effectively to guide search algorithms (Jab-
bari Arfaee, Zilles, and Holte 2011; Samadi, Felner, and
Schaeffer 2008). EES is a state-of-the-art bounded subopti-
mal search algorithm that improves on a previous algorithm,

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A∗ε (Pearl and Kim 1982), by incorporating an inadmissi-
ble heuristic as well as distances-to-go estimates (the num-
ber of edges separating a node from the goal) (Thayer and
Ruml 2011). The first contribution of this paper is to demon-
strate how using estimates of solution length (the depth of a
node plus its distance-to-go), rather than just distance-to-go
estimates, can improve A∗ε and EES. Our results show that
using solution length estimates result in state-of-the-art per-
formance, especially for A∗ε .

While bounded suboptimal search algorithms scale to
problems that A* cannot solve, for large problems or
tight suboptimality bounds, they can still overrun mem-
ory. Weighted IDA* (WIDA*), a bounded suboptimal vari-
ant of IDA*, requires only memory linear in the solution
length. Iterative Deepening EES (IDEES, Hatem, Stern, and
Ruml (2013)) is a recent state-of-the-art linear-space analog
of EES that incorporates an inadmissible heuristic as well
as solution length estimates and can solve problems faster
than WIDA*. The second contribution of this paper is a
linear-space variant of the improved A∗ε called IDA∗ε . This
new algorithm achieves a new state-of-the-art in linear-space
bounded suboptimal search, surpassing IDEES on some do-
mains.

Unlike WA* and EES, which converge to greedy search
as the suboptimality bound approaches infinity, WIDA* and
IDEES behave like depth-first search, resulting in more
costly solutions and in some cases, longer solving times than
WA*. Recursive Best-First Search (RBFS, Korf (1993)) on
the other hand, is a much better linear space analog of WA*.
It uses the same best-first search order of WA* and con-
verges to greedy search and returns cheaper solutions than
WIDA* and IDEES. The third contribution of this paper is
new linear space analogs for A∗ε and EES based on RBFS:
Recursive Best-First A∗ε (RBA∗ε) and Recursive Best-First
EES (RBEES). In contrast to IDEES and IDA∗ε , RBA∗ε and
RBEES use a best-first search order and are able to prior-
itize nodes with shorter estimates of solution length. Like
their progenitors, they converge to greedy search as the sub-
optimality bound increases. Experimental results show that
while the RBFS-based algorithms tend to be slower, they
provide more stable performance and find cheaper solutions
than the depth-first versions.

Taken together, the results presented in this paper signif-
icantly expand our armamentarium of bounded suboptimal

89

Proceedings of the Seventh Annual Symposium on Combinatorial Search (SoCS 2014)

search algorithms in both the unbounded and linear-space
settings.

Previous Work
Bounded suboptimal search attempts to find solutions that
satisfy the user specified bound on solution cost as quickly
as possible. Solving time is directly related to the number
of nodes that are expanded during search. Finding shorter
solutions, as opposed to cheaper (lower cost) solutions, typ-
ically requires fewer node expansions. Intuitively, we can
speed up search by prioritizing nodes that are estimated to
have shorter paths to the goal.

A∗
ε

Like A*, A∗ε orders the open list using an admissible evalu-
ation function f(n). A second priority queue, the focal list,
contains a prefix of the open list: those nodes n for which
f(n) ≤ w · f(bestf), where bestf is the node at the front
of the open list. The focal list is ordered by a potentially
inadmissible estimate of distance-to-go d̂(n) and is used to
prioritize nodes that are estimated to have shorter paths to
the goal. The node at the front of focal is denoted by bestd̂.

With an admissible heuristic, the value f(n) will tend to
increase along a path. Newly generated nodes, including
those where d̂ has gone down, will not qualify for entry into
the focal list and shallower nodes with f(n) = f(bestf)
will tend to have higher estimates of distance-to-go and be
pushed to the back of the focal list. As a result A∗ε suffers
from a thrashing effect where the focal list is required to
empty almost completely before bestf is expanded, finally
raising the value of f(bestf) and refilling focal (Thayer,
Ruml, and Kreis 2009). While A∗ε has been shown to per-
form better than WA* in some domains, it is often worse,
and it is also unable to take advantage of accurate but inad-
missible heuristics for search guidance.

EES
Explicit Estimation Search (EES) is a recent state-of-the-art
bounded suboptimal search algorithm that explicitly uses an
inadmissible estimate of cost-to-go ĥ and an inadmissible
distance-to-go estimate d̂. To incorporate multiple heuris-
tics, EES needs to maintain three different orderings of the
search frontier. The open list is ordered using an inadmis-
sible estimate of solution cost f̂(n) = g(n) + ĥ(n). A
focal list containing all nodes n for which f̂(n) ≤ w ·
f̂(bestf̂) is ordered using a potentially inadmissible esti-

mate of distance-to-go d̂(n). The node at the front of fo-
cal is denoted by bestf̂ . EES usually expands the node that
appears to have the shortest estimated distance to the goal,
however, to preserve w-admissibility EES also maintains a
cleanup list, containing all open nodes, ordered using an
admissible estimate of solution cost f(n) = g(n) + h(n).
The pseudocode for the function used by EES to determine
which node to select for expansion is given in Figure 1.

EES pursues nodes that appear to be near the goal by
checking the focal list first. If the front of the focal list can-
not guarantee w-admissibility then EES tries to expand the

1. if f̂(bestd̂) ≤ w · f(bestf) then bestd̂
2. else if f̂(bestf̂) ≤ w · f(bestf) then bestf̂
3. else bestf

Figure 1: Pseudocode for node selection in EES.

node that appears to be on a cheapest path to the goal accord-
ing to the accurate but potentially inadmissible heuristic by
checking the front of the open list. If this node cannot guar-
antee w-admissibility then EES falls back to just expanding
the node on the frontier with the lowest estimate of cost-to-
go f .

Iterative Deepening A*
Unfortunately WA*, A∗ε and EES are all limited by the mem-
ory required to store the search frontier. For large prob-
lems, even these algorithms can exhaust the available mem-
ory. This motivates the development of linear-space search.
Iterative-deepening A* (IDA*, Korf (1985)) is a heuris-
tic search that requires memory only linear in the maxi-
mum depth of the search. This reduced memory complex-
ity comes at the cost of repeated search effort. IDA* per-
forms iterations of a bounded depth-first search where a
path is pruned if f(n) becomes greater than the threshold
for the current iteration. After each unsuccessful iteration,
the threshold is increased to the minimum f value among
the nodes that were generated but not expanded during the
previous iteration. This value is denoted by minf . If f is
monotonic, then IDA* is guaranteed to expand all nodes in
best-first order; the same search order as A*, ignoring ties.
However, if f is non-monotonic, then IDA* expands nodes
in depth-first order (Korf 1993).

Simply weighting the heuristic in IDA* results in
Weighted IDA* (WIDA*): a bounded suboptimal linear-
space search algorithm using the same non-monotonic cost
function f ′(n) = g(n) + w · h(n) as WA*. As w increases,
WIDA* prunes large portions of the search space and is of-
ten able to find w-admissible solutions quickly. However the
remaining paths are searched in depth-first order, resulting
in significantly longer solutions and in some cases, longer
solving times. In contrast, WA* performs more like greedy
search as the bound increases and finds cheaper solutions.
Thus WIDA* is not an ideal linear-space analog for WA*.

Recursive Best-First Search
Recursive Best-First Search (RBFS) is a best-first search
with linear space complexity. Unlike IDA*, RBFS expands
nodes in best-first order even with a non-monotonic cost
function. RBFS recursively expands nodes, ordering child
nodes by cost and expanding the least cost children first.
Each recursive call uses a local threshold that is the mini-
mum cost of a node generated so far but not yet expanded.
If all child costs exceed the local threshold, the search back-
tracks until it reaches a sub-tree with child nodes that have
a cost less than or equal to the local threshold. Each time
RBFS backtracks from a parent node, it backs up the cost of
the best child that exceeded the local threshold. This allows
the search to quickly pick up where it left off when revisiting

90

a sub-tree. WRBFS (Hansen and Zhou 2007) improves on
RBFS by expanding nodes on the stack frontier (nodes con-
nected to the current search path that are stored in memory)
in best-first order rather than the virtual frontier (all nodes
generated but not yet expanded, which may not be in mem-
ory and need to be regenerated). This speeds up search by
tie breaking in favor of leaf nodes stored in memory, avoid-
ing having to regenerate subtrees below the other nodes with
the same f values.

Like IDA*, RBFS suffers from node re-generation over-
head. In the worst case, IDA* and RBFS expand O(N2)
nodes where N is the number of nodes expanded by A*, ig-
noring ties. While the node re-generation overhead of IDA*
is easily characterized in terms of the heuristic branching
factor, the overhead of RBFS depends on how widely sepa-
rated promising nodes are located in the search tree. While
RBFS has been shown to dominate WIDA* in terms of node
expansions (Korf 1993), it is often slower because it has
more overhead. However, RBFS finds cheaper solutions,
matching the best-first search order and the cost of solutions
returned by WA*, making it a better WA* analog.

Unfortunately, linear-space bounded suboptimal search
algorithms such as WIDA* and RBFS are unable to directly
use distance-to-go estimates to guide the search. WIDA* in-
creases the upper bound at each iteration to explore deeper
parts of the search tree. It is not possible to perform iter-
ative deepening using just a distance-to-go estimate since
this estimate will tend to decrease along a path. RBFS, on
the other hand, uses a virtual frontier ordered by increasing
f to perform a best-first search. One could imagine incor-
porating distance-to-go estimates by ordering the frontier by
increasing d̂. Unfortunately, this results in poor performance
because of excessive backtracking overhead.

Iterative Deepening EES
RBFS and WIDA* use only a single admissible heuristic for
search guidance. Iterative Deepening EES (IDEES) is a re-
cent linear-space bounded suboptimal search that is able to
incorporate accurate, inadmissible heuristics and distance-
to-go estimates. IDEES is based on the same iterative deep-
ening depth-first search of WIDA*. Like WIDA*, it runs
a sequence of limited depth-first search iterations, but in-
stead of maintaining a single threshold of minf , it maintains
two thresholds: tl̂ and tf̂ . By l̂(n) we denote the length

analogue of f̂(n): the potentially inadmissible estimate of
the total number of edges from the root to the nearest so-
lution under n, depth(n) + d̂(n). The threshold tf̂ is a
cost-based threshold, pruning nodes on the basis of an ac-
curate, but potentially inadmissible heuristic. Thus, in an
IDEES iteration, a node n is pruned (not expanded) if it ei-
ther leads to a goal that is too far away or too expansive, i.e.,
l̂(n) > tl̂ or f̂(n) > tf̂ .

The focal list of EES affords a Speedy search (greedy
search on distance-to-go (Ruml and Do 2007)). However,
because IDEES is a depth-first search, it can only approx-
imate the search strategy of EES by using solution length
estimates. This puts IDEES at a disadvantage when there

is little error in distance-to-go estimates. EES can converge
to Speedy search sooner than IDEES in this case. However,
when the distance-to-go estimates have high error, using so-
lution length will provide for a more robust search strategy.
As we show below, using solution length estimates can ac-
tually improve existing algorithms that incorporate Speedy
search like A∗ε and EES.

Using Solution Length Estimates
A∗ε can be viewed as an algorithm that performs a Speedy
search with an adaptive upper bound on solution cost. Nodes
that are estimated to be closer to a goal are expanded first.
These nodes also tend to be the nodes with the highest esti-
mate of solution cost f and are more likely to lead to inad-
missible solutions, resulting in the thrashing behavior that is
often observed in A∗ε . EES explicitly tries to avoid inadmis-
sible solutions by using f̂ to shape the focal list. However,
if f̂ does not compensate enough for the error in f , then it is
possible even for EES to be lead down unfruitful paths.

Intuitively, shorter paths will tend to be cheaper and more
likely to lead to admissible solutions. By prioritizing nodes
that are estimated to have shorter estimated overall solution
length rather than least distance-to-go we can achieve faster
search by avoiding many paths that are estimated to lead to
inadmissible solutions.

We can view Speedy search as a special case of a weighted
search using solution length. We define the solution length
estimate of a node n as follows:

l̂′(n) = (1−Wd) · depth(n) +Wd · d̂(n)
As the value for Wd increases, the search acts more like

Speedy search, converging to Speedy search as Wd ap-
proaches 1. The evaluation function used to order the focal
list in EES and A∗ε is a special case of l̂′ with Wd = 1. As
we will see in the experiments, we can improve the search
behavior of A∗ε and EES by having a non-zero weight on
the depth component, thus informing these algorithms of the
depth of potential solutions. Paths that are estimated to be
long will fall to the back of the focal list and paths that are
estimated to be shorter will be expanded first. In our experi-
ments we use a slightly different, but equivalent, evaluation
function where weight is only applied to the distance com-
ponent d̂(n) and takes on values higher than 1.

Experiments
To determine the effectiveness of using solution length es-
timates, we implemented A∗ε and EES and compared them
using solution length and distance-to-go estimates. For all
experiments we used path-based single step error correction
of the admissible heuristic h to construct a more accurate but
potentially inadmissible heuristic ĥ, as described by Thayer
and Ruml (2011). For simplicity, we used the same value
used for the upper bound on solution cost W to set the value
for Wd. All algorithms were written in Java using the opti-
mizations suggested by Hatem, Burns, and Ruml (2013) and
compiled with OpenJDK 1.6.0.24. All of our experiments
were run on a machine with a CoreDuo 3.16 GHz processor
and 8 GB of RAM running Linux.

91

Sliding Tiles Inverse Tiles Vacuum World
To

ta
lC

PU
Ti

m
e

L
og

1
0

Figure 2: Total CPU time (in log10) for A∗ε and EES using estimates of total length vs. estimates of distance-to-go.

15-Puzzle
We first consider a simple unit-cost domain: Korf’s 100
15-puzzles (Korf 1985). We used the Manhattan distance
heuristic for both heuristic and distance-to-go estimates.
The first plot of Figure 2 summarizes the results for unit
cost 15-puzzle. This plot shows the total CPU time in log10
for solving all 100 instances. Algorithms that use solution
length estimates have suffix of l. This plot shows that A∗ε
is much faster using solution length estimates at lower sub-
optimality bounds. A∗ε cannot even solve all instances with
suboptimality bounds less than 2 when using distance-to-
go estimates because it exceeds the limit of 8 GB of avail-
able memory. EES using length estimates is the fastest al-
gorithm overall and is faster than EES using distance-to-go
estimates, however the improvement is small compared to
the difference observed in A∗ε . This may be explained by
considering solution length to be a proxy for f̂ . Since EES
is already guided by f̂ , the additional guidance from solution
length is not as beneficial.

Next, we change the domain slightly by modifying the
cost function. We set the cost to move a tile to the inverse of
the number on the face of the tile. We use the inverse cost
Manhattan distance for the heuristic and a unit cost Man-
hattan distance for the distance-to-go estimate. This simple
change makes the Manhattan distance heuristic less effec-
tive in guiding the search, making the problems harder to
solve. Moreover, distance-to-go estimates provide a signif-
icant advantage over using the Manhattan distance heuristic
alone. The second plot in Figure 2 summarizes the results
for inverse cost 15-puzzle. This plot echos the results seen in
the plot for unit tiles: A∗ε improves with solution length es-
timates for lower suboptimality bounds and EES is slightly
improved.

Vacuum World
Next we compared these algorithms on the Vacuum World
domain, the first state space introduced in Russell and
Norvig (2010). In this domain a vacuum robot must clean
up dirt distributed across a grid world. In the original de-
scription of this problem, each action in the world, 4-way

movement and vacuuming, costs the same. In a more realis-
tic setting, actions would have different costs depending on
how much dirt the robot is carrying. This variant is called
the Heavy Vacuum World.

In our experiments we used the same heuristic and dis-
tance estimates used by Thayer and Ruml (2011). The ad-
missible heuristic is computed by finding a minimum span-
ning tree for all remaining dirt piles, ignoring blocked lo-
cations in the grid world. The edges of the tree are sorted
longest to shortest. We take the sum of the product of each
edge and the weight of the robot. The weight of the robot is
the number of dirt piles cleaned so far. For the distance-to-
go estimate we use a greedy traversal of all remaining dirt.
Like inverse tiles, the distance-to-go estimates provide a sig-
nificant advantage over using just the heuristic for search
guidance. We used 150 randomly generated instances. Each
instance has 10 piles of dirt and 40,000 possible locations on
a 200x200 grid with 35% of the locations being blocked.

The third plot of Figure 2 summarizes the results for the
heavy vacuum world. This plot shows the total CPU time
in log10 for solving all 150 instances. In this plot we see
again that using estimates of solution length improves the
performance of A∗ε and EES with the difference in A∗ε be-
ing much greater. A∗ε and EES with distance-to-go estimates
cannot even solve all instances with a suboptimality bound
less than 2.5 because they exceed the limit of 8 GB of avail-
able memory.

Taken together, these results suggest that using estimates
of solution length to guide bounded suboptimal search algo-
rithms like EES and A∗ε is a simple and promising alterna-
tive to using just distance-to-go estimates. It is so effective
that A∗ε becomes a viable option for state-of-the-art bounded
suboptimal search.

We now turn our attention to how solution length esti-
mates provide an alternative that can be exploited in linear-
space bounded suboptimal search.

Iterative Deepening A∗
ε

A∗ε normally performs a Speedy search with an adaptive up-
per bound on solution cost. The upper bound ensures w-

92

IDA∗ε (init)
1. minf ← f(init); tl̂ ← l̂(init)
2. while minf <∞
3. minfnext ← min lnext ←∞
4. if DFS(init) break
5. minf ← minfnext ; tl̂ ← min lnext
6. return solution

DFS(n)
7. if n is a goal
8. solution ← n; return true
9. else if (f(n) > w ·minf) or (l̂(n) > tl̂)

10. minfnext ← min(minfnext , f(n))

11. min lnext ← min(min lnext , l̂(n))
12. else
13. for child ∈ expand(n)
14. if DFS(child), return true
15. return false

Figure 3: Pseudocode for IDA∗ε using l̂.

admissibility while the Speedy search prioritizes nodes that
appear to be closer to the goal. By replacing Speedy search
with a weighted search on solution length, we can formu-
late a depth-first, linear-space approximation of A∗ε using the
same iterative deepening framework of IDA* (IDA∗ε). The
open list of A∗ε is replaced by iterative deepening on f and
the focal list is replaced by iterative deepening on l̂. IDA∗ε
simulates the search strategy of A∗ε by expanding nodes that
are estimated to have shorter paths to the goal first and uses
an upper bound on solution cost f to prune nodes that do not
guarantee w-admissibility.

The pseudocode for IDA∗ε is given by Figure 3. IDA∗ε be-
gins by initializing the minimum f and l̂ threshold to that of
the initial state (line 1). Then it performs iterations of depth-
first search, increasing the threshold on l̂ and tracking the
minimum f of all pruned nodes (lines 3-5, 10, 11) for each
iteration. A node is pruned (not expanded) if it cannot guar-
antee w-admissibility or if its estimate of solution length is
greater than the current threshold (line 9). Since only nodes
that guarantee w-admissibility are expanded, IDA∗ε can ter-
minate as soon as it expands a goal (lines 4, 7, 8, 14).

While the original A∗ε uses distance-to-go estimates alone
to order the focal list, IDA∗ε uses estimates of solution length
and is thus an approximation to the original. However, as
our experiments have shown, A∗ε performs better using esti-
mates of solution length. Moreover, IDA∗ε has less overhead
per node expansion and enjoys many of the same optimiza-
tions of IDA* such as in place state modification (Burns et
al. 2012) and does not require any complex data structures to
synchronize the focal list (Thayer, Ruml, and Kreis 2009).
The algorithm is similar to IDEES except that it doesn’t use
an additional inadmissible heuristic for pruning. IDEES im-
proves on IDA∗ε by incorporating an accurate but potentially
inadmissible heuristic to prune additional nodes from the
search.

RBFS(n, B)
1. if n is a goal
2. solution← n; return∞
3. C ← expand(n)
4. if C is empty return∞
5. for each child ni in C
6. if f(n) < F (n) then F (ni)←max(F (n), f(ni))
7. else F (ni)← f(ni)
8. sort C in increasing order of F
9. if |C| = 1 then F (C[2])←∞

10. while (F (C[1]) ≤ B and F (C[1]) <∞)
11. F (C[1])← RBFS(C[1], min(B,F (C[2])))
12. resort C
13. return F (C[1])

Figure 4: Pseudocode for RBFS.

Recursive Best-First Search
IDA∗ε and IDEES are simpler to implement than their best-
first progenitors. However, like WIDA*, they are both based
on depth-first search and their performance advantage can
degrade as the upper bound loosens. They also return higher
cost solutions on average when compared to best-first algo-
rithms like WA* and RBFS. RBFS follows the same best-
first search order of WA*, even with a non-monotonic cost
function, resulting in stable performance and cheaper solu-
tions. This motivates the development of RBFS-based vari-
ants of these algorithms (RBA∗ε and RBEES). We will begin
by reviewing the original RBFS and then introduce the new
algorithms.

The pseudocode for RBFS is shown in Figure 4. RBFS
recursively expands nodes (line 3 and 11), ordering child
nodes by cost (line 8) and expanding the least cost children
first. Each recursive call uses a local threshold B that is
the minimum cost of a node generated so far but not yet
expanded. If all child costs exceed the local threshold, the
search backtracks (lines 10 and 13).

Each time RBFS backtracks from a node, it backs up the
cost of the best child that exceeded the local threshold (lines
11 and 13). The backed up value of a node is denoted by the
function F which is initialized to f . If there is no second
child, the evaluation F (C[2]) simply returns infinity.

RBFS stores all of the fringe nodes connected to the cur-
rent search path, the stack frontier. The nodes on the stack
frontier store backed up values for the portions of the search
that have been generated so far, the virtual frontier. The vir-
tual frontier is explored in best-first order by always expand-
ing the best local node first while keeping track of the F
value of the second best node which may be elsewhere on
the virtual frontier. Because RBFS is best-first it can termi-
nate when it expands a goal (lines 1 and 2).

Each time RBFS expands a node it sorts all the newly gen-
erated nodes according to F . While RBFS has been shown
to dominate WIDA* in terms of node expansions (Korf
1993), the overhead from sorting often results in slower
solving times. However, if node expansion is slow then
RBFS can perform better than IDA*.

93

RBA∗ε or RBEES (init)
1. solution←∞
2. minf ← f(init); [tf̂ ← f̂(init)]

3. while minf <∞ and solution =∞
4. minfnext [← min f̂next]←∞
5. if RBFS(init ,∞) break
6. minf ← minfnext ; [tf̂ ← min f̂next]

7. return solution

RBFS(n, B)
8. if n is a goal
9. solution ← n; return∞

10. else if (f(n) > w ·minf) [or f̂(n) > w ·min f̂]
11. minfnext ← min(minfnext , f(n))

12. [min f̂next ← min(min f̂next , f̂(n))]
13. return∞
14. C ← expand(n)
15. if C is empty return∞
16. for each child ni in C

17. if l̂(n) < L(n) then L(ni)←max(L(n), l̂(ni))

18. else L(ni)← l̂(ni)
19. sort C in increasing order of L
20. if only one child in C then L(C[2])←∞
21. while (L(C[1]) ≤ B and L(C[1]) <∞)
22. L(C[1])← RBFS(C[1], min(B,L(C[2])))
23. resort C
24. return L(C[1])

Figure 5: Pseudocode for RBA∗ε (excluding the bracketed
portions) and RBEES (including the bracketed portions).

RBA∗
ε and RBEES

RBA∗ε combines iterative deepening with RBFS. Like IDA∗ε ,
RBA∗ε performs iterative deepening on solution cost esti-
mates f and within each iteration it performs a bounded
RBFS search, ordering nodes according to solution length
estimates and pruning all nodes that exceed the upper bound.
RBEES is similar, except that it incorporates an additional
upper bound on solution cost using an accurate but inadmis-
sible heuristic ĥ. RBEES prunes a node n if it exceeds either
upper bound.

The pseudocode for RBA∗ε and RBEES is given by Fig-
ure 5, ignoring the code in square brackets for RBA∗ε . The
function RBFS is a straight forward adaptation of the orig-
inal to use solution length estimates l̂ and L in place of f
and F . Like IDA∗ε , the search begins by initializing the up-
per bound on solution cost to be the estimated solution cost
of the initial state (line 2). The search proceeds by perform-
ing a series of RBFS searches (lines 3, 5, 8-24) expanding
nodes in increasing order of solution length estimates l̂ (line
19) and pruning any node that exceeds the upper bound(s)
(lines 10-13). The search can terminate as soon as it expands
a goal and guarantee that the solution cost is w-admissible
since it only expands nodes that do not exceed the upper
bound w ·minf and are thus w-admissible (line 10).

Experiments
To determine the effectiveness of IDA∗ε , RBA∗ε and RBEES,
we compare them to WIDA*, WRBFS and IDEES on 3 dif-
ferent domains. We used the same path-based single step
error correction to construct ĥ, and the same machines and
memory limits as in the previous experiments.

15-Puzzle
The first column in Figure 6 summarizes the results for unit
tiles. The top plot shows the mean CPU time for solving all
100 instances with error bars that show a 95% confidence
interval about the mean. In this plot we see that both RBA∗ε
and RBEES improve on the performance of WRBFS and
perform about the same with bounds greater than 2. RBA∗ε is
not able to solve all instances with smaller bounds. IDEES
is slightly faster and IDA∗ε is the fastest algorithm overall.
The bottom plot in the first column shows the mean solution
costs for all 100 instances. As expected, the RBFS-based
algorithms are slower but, like RBFS, they return better so-
lutions than depth-first algorithms.

Next, we change the domain slightly by modifying the
costs to be the sqrt of the number on the face of the tile. This
provides a wide range of edge costs in a simple, well under-
stood domain without making the problem much harder to
solve optimally than the original. The original WIDA* is
not able to solve these problems because of the wide range
of edge costs. We use WIDA*CRinstead. The second column
in Figure 6 summarizes the results for sqrt tiles. These plots
echo the same results from unit tiles: the RBFS-based algo-
rithms are slower overall but provide significantly cheaper
solutions. Because of the wide range of f values, WRBFS
suffers from excessive node re-expansion overhead and is
not able to solve all instances at any of the suboptimality
bounds. RBEES and RBA∗ε are guided by d which has a
much narrower distribution.

Next, we compared our algorithms using the inverse cost
function. The third column in Figure 6 summarizes the re-
sults for inverse tiles. In this domain the Manhattan distance
heuristic alone is less effective. The RBFS-based algorithms
are only able to solve all instances at suboptimality bounds
of 3 or larger. Again, WRBFS was not able to solve all in-
stances at any of the suboptimality bounds. The depth-first
search algorithms are much faster but again we see that for
the cases where the RBFS-based algorithms could solve all
instances, they return significantly cheaper solutions.

Heavy Pancakes
We also evaluated the performance of these algorithms on
the heavy pancake puzzle using the gap heuristic. In this do-
main we must order a permutation of {1, ..., N}, where N
is the number of pancakes, by reversing a contiguous prefix.
The gap heuristic is a type of landmark heuristic that counts
the number of non adjacent pancakes or “gaps” for each pan-
cake in the stack (Helmert 2010). This heuristic has been
shown to be very accurate, outperforming abstraction based
heuristics. In heavy pancakes, the cost to flip a pancake is
the value of its id. This produces a wide range of integer
edge costs and distance-to-go estimates provide additional

94

Unit Tiles Sqrt Tiles Invr Tiles Heavy Pancakes
M

ea
n

C
PU

Ti
m

e
L

og
1
0

M
ea

n
So

lu
tio

n
C

os
tL

og
1
0

Figure 6: Mean CPU time and solution cost for the linear-space algorithms (in log10).

search guidance over using the heuristic alone. In our ex-
periments we used 100 random instances with 14 pancakes.
For the admissible heuristic, we adapted the gap heuristic
and we used the basic unit cost form of the gap heuristic
for the distance-to-go estimate. The last column in Figure 6
summarizes the results for heavy pancakes. In these plots
we see that RBEES is significantly faster than the depth-first
algorithms at lower suboptimality bounds while IDA∗ε is the
fastest algorithm at higher bounds.

In summary, these results suggest that, like RBFS, RBA∗ε
and RBEES return significantly cheaper solutions than the
depth-first-based algorithms, even with non-monotonic cost
functions. While IDA∗ε achieves new state-of-the-art results
in the three sliding tiles domains, the new RBEES algorithm
surpasses all other algorithms in the heavy pancakes domain
at lower suboptimality bounds.

Conclusion
In this paper, we first demonstrated how using estimates of
solution length can improve EES and transform A∗ε into a
highly competitive algorithm. We then showed how solu-
tion length estimates enable iterative deepening depth-first
variant of A∗ε and presented two new linear-space best-first
bounded suboptimal search algorithms, RBA∗ε and RBEES.
Our experiments showed that IDA∗ε achieves a new state of
the art in the sliding-tiles domains while the RBFS-based al-
gorithms provide significantly better solution cost in all do-

mains as the bound loosens and also surpass previous work
on the heavy pancake domain. Taken together, the results
presented in this paper significantly expand our armamen-
tarium of bounded suboptimal search algorithms in both the
unbounded and linear-space settings.

Acknowledgments
We gratefully acknowledge support from the NSF (grants
0812141 and 1150068) and DARPA (grant N10AP20029).

References
Burns, E.; Hatem, M.; Leighton, M. J.; and Ruml, W. 2012.
Implementing fast heuristic search code. In Proceedings of
SoCS-12.
Hansen, E. A., and Zhou, R. 2007. Anytime heuristic search.
Journal of Artificial Intelligence Research 28:267–297.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions of Systems Science and Cybernet-
ics SSC-4(2):100–107.
Hatem, M.; Burns, E.; and Ruml, W. 2013. Faster problem
solving in Java with heuristic search. IBM developerWorks.
Hatem, M.; Stern, R.; and Ruml, W. 2013. Bounded sub-
optimal heuristic search in linear space. In Proceedings of
SoCS-13.

95

Helmert, M., and Röger, G. 2008. How good is almost
perfect? In Proceedings of AAAI-08.
Helmert, M. 2010. Landmark heuristics for the pancake
problem. In Proceedings of SoCS-10.
Jabbari Arfaee, S.; Zilles, S.; and Holte, R. C. 2011. Learn-
ing heuristic functions for large state spaces. Artificial Intel-
ligence 175(16-17):2075–2098.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence 27(1):97–
109.
Korf, R. E. 1993. Linear-space best-first search. Artificial
Intelligence 62(1):41–78.
Pearl, J., and Kim, J. H. 1982. Studies in semi-admissible
heuristics. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence PAMI-4(4):391–399.
Pohl, I. 1973. The avoidance of (relative) catastrophe,
heuristic competence, genuine dynamic weighting and com-
putation issues in heuristic problem solving. In Proceedings
of IJCAI-73, 12–17.
Ruml, W., and Do, M. B. 2007. Best-first utility-guided
search. In Proceedings of IJCAI-07, 2378–2384.
Russell, S., and Norvig, P. 2010. Artificial Intelligence: A
Modern Approach. Prentice Hall, third edition.
Samadi, M.; Felner, A.; and Schaeffer, J. 2008. Learning
from multiple heuristics. In Proceedings of AAAI-08.
Thayer, J. T., and Ruml, W. 2011. Bounded suboptimal
search: A direct approach using inadmissible estimates. In
Proceedings of IJCAI-11.
Thayer, J. T.; Ruml, W.; and Kreis, J. 2009. Using distance
estimates in heuristic search: A re-evaluation. In Proceed-
ings of SoCS-09.

96

