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Abstract

In this paper we introduce Stratified Sampling with Du-
plicate Detection (SSDD), an algorithm for estimating
the number of state expansions performed by heuris-
tic search algorithms seeking solutions in state spaces
represented by undirected graphs. SSDD is general and
can be applied to estimate other state-space properties.
We test SSDD on two tasks: (i) prediction of the num-
ber of A* expansions in a given f -layer when using a
consistent heuristic function, and (ii) prediction of the
state-space radius. SSDD has the asymptotic guarantee
of producing perfect estimates in both tasks. Our em-
pirical results show that in task (i) SSDD produces good
estimates in all four domains tested, being in most cases
orders of magnitude more accurate than a competing
scheme, and in task (ii) SSDD quickly produces accu-
rate estimates of the radii of the 4×4 Sliding-Tile Puz-
zle and the 3×3×3 Rubik’s Cube.

Introduction
State-space search algorithms, such as A* (Hart, Nilsson,
and Raphael 1968), are fundamental in many AI applica-
tions. A* uses the f(s) = g(s)+h(s) cost function to guide
its search. Here, g(s) is the cost of the path from the start
state to state s, and h(s) is the estimated cost-to-go from s
to a goal; h(·) is known as the heuristic function. Users of
search algorithms usually do not know a priori how long
it will take to solve a problem instance — some instances
could be solved quickly while others could take a long time.
One way of estimating the running time of a search algo-
rithm is by predicting the number of node expansions the
algorithm performs during search (Knuth 1975). Assum-
ing that the time required for expanding a node is constant
throughout the state space, an estimate of the number of ex-
pansions gives an estimate of the algorithm’s running time.

Predictions of the number of node expansions could have
other applications. For example, one could use the predic-
tions to decide which heuristic function or search algo-
rithm to use to solve a particular problem instance. Or, one
could use the predictions to fairly divide the search workload
among different computers in a parallel computing setting.
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Many search algorithms, such as IDA* (Korf 1985), ex-
pand a tree while searching the state space. By contrast, A*
using a consistent heuristic1 expands a graph while search-
ing the state space. The distinction between trees and graphs
is important: multiple nodes in a search tree might rep-
resent the same state in a search graph. As a result, the
tree might be substantially larger than the graph. For ex-
ample, in Figure 1 the graph is finite while the tree is
not. Several algorithms have been developed for estimating
the search tree size (Chen 1989; Knuth 1975; Korf, Reid,
and Edelkamp 2001; Kilby et al. 2006; Zahavi et al. 2010;
Burns and Ruml 2012; Lelis, Otten, and Dechter 2013;
Lelis 2013; Lelis, Otten, and Dechter 2014). In this paper
we introduce an algorithm for estimating the size of the ex-
panded graph. We use the word “state” to refer to a vertex in
the graph and the word “node” to refer to a vertex in the tree.
Throughout this paper we do parent pruning, i.e., the parent
of a given node is not generated among its children.

Contributions In this paper we introduce a novel algo-
rithm for estimating the size of undirected search graphs.
Our algorithm is based on Stratified Sampling (SS) (Chen
1989). SS samples the search tree and it does not account for
multiple nodes representing the same state. As a result, SS
usually produces gross overestimates when used to estimate
the size of a search graph. We equip SSwith a system for de-
tecting nodes in the search tree that represent the same state.
We name the resulting algorithm Stratified Sampling with
Duplicate Detection (SSDD). We build our system on top of
SS because Lelis et al. (2013) have shown that SS produces
much more accurate predictions of the search tree size than
competing schemes such as CDP (Zahavi et al. 2010).
SSDD is general and can be used to estimate other state-

space properties. We apply SSDD to two tasks: (i) prediction
of the number of A* expansions in a given f -layer when
using consistent heuristics, and (ii) prediction of the state-
space radius from the goal, i.e., the maximum shortest dis-
tance from any state to a goal. SSDD has the asymptotic
guarantee of producing perfect estimates in both tasks. Our
empirical results show that in task (i) SSDD produces predic-
tions that are up to several orders of magnitude more accu-

1A heuristic is said to be consistent iff h(s) ≤ c(s, t) + h(t)
for all states s and t, where c(s, t) is the cost of the cheapest path
from s to t.
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Figure 1: Search graph and the search tree generated when
s1 is the root. The label by the nodes in the search tree shows
the state each node represents.

rate than SS in four standard search benchmarks. In task (ii)
SSDD produces accurate estimates of the state-space radius
from the goal state for the (4×4) Sliding-Tile puzzle and the
3×3×3 Rubik’s Cube.

Problem Formulation
Let the underlying search tree (UST) be the full brute-force
tree created from a connected, undirected and implicitly-
defined underlying search graph (USG) describing a state
space. Some search algorithms expand a subtree of the UST
while searching for a solution (e.g., a portion of the UST
might not be expanded due to heuristic guidance); we call
this subtree the expanded search tree (EST). In this paper
we want to estimate the size of the subgraph expanded by
an algorithm searching the USG; we call this subgraph the
expanded search graph (ESG).

Let G = (N,E) be a graph representing an ESG where
N is its set of states and for each n ∈ N op(n) =
{opi|(n, ni) ∈ E} is its set of operators. We use the words
edges and operators interchangeably. The prediction task is
to estimate the size of N without fully generating the ESG.

Stratified Sampling
Knuth (1975) presented a method to estimate the size of the
EST of search algorithms such as IDA*. His method worked
by repeatedly performing a random walk from the root of
the tree. Under the assumption that all branches have the
same structure, performing a random walk down one branch
is enough to estimate the size of the entire tree. Knuth ob-
served that his method was not effective when the tree is un-
balanced. Chen (1992) addressed this problem with a strat-
ification of the search tree through a type system to reduce
the variance of the sampling process. We call Chen’s method
Stratified Sampling (SS).

Algorithm 1 SS, a single probe
Input: root n∗ of a tree and a type system T
Output: an array of sets A, where A[i] is the set of pairs
〈n,w〉 for the nodes n expanded at level i.

1: A[0]← {〈n∗, 1〉}
2: i← 0
3: while stopping condition is false do
4: for each element 〈n,w〉 in A[i] do
5: for each child n̂ of n do
6: if A[i + 1] contains an element 〈n′, w′〉 with

T (n′) = T (n̂) then
7: w′ ← w′ + w
8: with probability w/w′, replace 〈n′, w′〉 in

A[i+ 1] by 〈n̂, w′〉
9: else

10: insert new element 〈n̂, w〉 in A[i+ 1]
11: i← i+ 1

Definition 1 (Type System). Let S = (N,E) be a UST.
T = {t1, . . . , tn} is a type system for S if it is a disjoint
partitioning of N . If n ∈ N and t ∈ T with n ∈ t, we write
T (n) = t.
SS is a general method for approximating any function of

the form

ϕ(n∗) =
∑

n∈S(n∗)

z(n) ,

where S(n∗) is a tree rooted at n∗ and z is any function
assigning a numerical value to a node. ϕ(n∗) represents a
numerical property of the search tree rooted at n∗. For in-
stance, if z(n) is the cost of processing node n, then ϕ(n∗) is
the cost of traversing the tree. If z(n) = 1 for all n ∈ S(n∗),
then ϕ(n∗) is the size of the tree.

Instead of traversing the entire tree and summing all z-
values, SS assumes subtrees rooted at nodes of the same
type have equal values of ϕ and so only one node of each
type, chosen randomly, is expanded. This is the key to SS’s
efficiency since search trees of practical interest have far too
many nodes to be examined exhaustively.

Given a node n∗ and a type system T , SS estimates ϕ(n∗)
as follows. First, it samples the tree rooted at n∗ and returns
a setA of representative-weight pairs, with one such pair for
every unique type seen during sampling. In the pair 〈n,w〉
in A for type t ∈ T , n is the unique node of type t that
was expanded during sampling and w is an estimate of the
number of nodes of type t in the tree rooted at n∗. ϕ(n∗) is
then approximated by ϕ̂(n∗, T ), defined as

ϕ̂(n∗, T ) =
∑

〈n,w〉∈A

w · z(n) , (1)

Algorithm 1 shows SS in detail. The set A is divided into
subsets, one for every level in the search tree; A[i] is the set
of representative-weight pairs for the types encountered at
level i. In SS the types are required to be partially ordered
such that a node’s type must be strictly greater than the type
of its parent. Chen suggests that this can always be guaran-
teed by adding the depth of a node to the type system and
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then sorting the types lexicographically. In our implemen-
tation of SS, types at one level are treated separately from
types at another level by the division of A into the A[i]. If
the same type occurs on different levels, the occurrences will
be treated as though they were different types — the depth
of search is implicitly added to the type system.
A[0] is initialized to contain only the root of the tree to

be probed, with weight 1 (line 1). In each iteration (lines 4
through 10), all the nodes fromA[i] are expanded to get rep-
resentative nodes for A[i+1] as follows. Every node in A[i]
is expanded and its children are considered for inclusion in
A[i+ 1]. If a child n̂ has a type t that is already represented
in A[i+1] by another node n′, then a merge action on n̂ and
n′ is performed. In a merge action we increase the weight
in the corresponding representative-weight pair of type t by
the weight w(n) of n̂’s parent n (from level i) since there
were w(n) nodes at level i that are assumed to have chil-
dren of type t at level i + 1. n̂ will replace the n′ according
to the probability shown in line 8. Chen (1992) proved that
this probability reduces the variance of the estimation. Once
all the states in A[i] are expanded, we expand the nodes in
A[i + 1]. This process continues until reaching a level i∗
where A[i∗] is empty.

One run of the SS algorithm is called a probe, and we
denote as ϕ̂(p)(n∗, T ) the p-th probing result of SS. SS is
unbiased, i.e., the average of the ϕ̂(n∗, T )-values converges
to ϕ(n∗) in the limit as the number of probes goes to infinity.
Theorem 1. (Chen 1992) Given a partially-ordered
type system T and a set of p independent probes
ϕ̂(1)(n∗, T ), · · · , ϕ̂(p)(n∗, T ) from a search tree S(n∗),
1
p

∑p
j=1 ϕ̂

(j)(n∗, T ) converges to ϕ(S).

While SS is unbiased when estimating the size of the
search tree, it is not unbiased for estimating the size of the
search graph. During sampling SS accounts for multiple
nodes representing the same state in the graph. As a result,
SS’s estimation converges to the size of the tree, not to the
size of the graph. As shown in Figure 1, the size of the tree
can be a gross overestimate of the size of the graph.

Predicting the Size of the Search Graph
We now introduce Stratified Sampling with Duplicate De-
tection (SSDD), an algorithm for estimating properties of the
USG such as the ESG size of heuristic search algorithms.

A path π in the UST is a sequence of operators applied
to the root node n∗. Applying an operator incurs a cost, and
the cost of a path is the sum of the costs of its constituent
operators.
Definition 2 (Cost-lexicographic order). A cost-
lexicographic order over paths is based on a total
order of the operators o1 < o2 < · · · < on. For arbitrary
paths A and B, a cost-lexicographic order would order A
before B iff either the cost of A is lower than the cost of B,
or their costs are equal and oa < ob where oa and ob are
the left-most operators where A and B differ (oa is in A and
ob is in the corresponding position in B).

Cost-lexicographic order is similar to the length-
lexicographic operator sequence order defined by Burch and

Algorithm 2 SSDD, a single probe
Input: root n∗ of a tree, a type system T , number of random

walks for duplicate detection k
Output: an array of sets A, where A[i] is the set of pairs
〈n,w〉 for the nodes n expanded at level i.

1: A[0]← {〈n∗, 1〉}
2: i← 0
3: while stopping condition is false do
4: for each element 〈n,w〉 in A[i] do
5: if SDD(n, k) then
6: remove n from A[i]
7: continue to the next pair in A[i]
8: for each child n̂ of n do
9: if A[i + 1] contains an element 〈n′, w′〉 with

T (n′) = T (n̂) then
10: w′ ← w′ + w
11: with probability w/w′, replace 〈n′, w′〉 in

A[i+ 1] by 〈n̂, w′〉
12: else
13: insert new element 〈n̂, w〉 in A[i+ 1]
14: i← i+ 1

Holte (2012). LetO be a cost-lexicographic order over paths
in the UST. Since the UST is a tree rooted at n∗, every node
n in it corresponds to a path, and thusO also defines an order
over nodes. For ease of notation, when a node n is smaller
than n′ according to O we write n < n′.

Let state(n) denote the state in the USG represented by
node n in the UST, and let π(n) denote a path from the root
n∗ to n in the UST. A cycle is a non-empty path π in the
UST from n1 to node n2 such that state(n1) = state(n2).
Because the USG is undirected, for any node n in a cycle π,
there are two paths π1 ⊆ π from n to n1 and π2 ⊆ π from
n to n2 in the USG with π1 ∪ π2 = π. Since we do parent
pruning, then π1 6= π2.

Definition 3 (Canonical and Duplicate Nodes). A node n
in the UST is called a duplicate node if there exists another
node n′ in the UST such that state(n) = state(n′) and
n′ < n according to O. A node that is not a duplicate is
called a canonical node.

Clearly, there is exactly one canonical node in the UST for
each state in the USG.

Stratified Sampling with Duplicate Detection
SSDD combines SS, which samples the UST, with a stochas-
tic duplicate detection algorithm for pruning duplicate
nodes. If the duplicate detection algorithm correctly iden-
tifies all duplicate nodes, then SS considers only canonical
nodes, de facto sampling the USG, as required.

Algorithm 2 shows SSDD’s pseudocode. As can be seen,
it is very similar to SS (Algorithm 1). In fact, the only dif-
ference between SS and SSDD is that SSDD uses our dupli-
cate detection algorithm (called SDD and described next) for
pruning duplicate nodes (lines 5 to 7 in Algorithm 2).

Sampling-based Duplicate Detection (SDD) Let n be a
duplicate node. This means that there exists an alternative
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Algorithm 3 SDD
Input: node n, number of random walks k
Output: boolean indicating whether n is a duplicate node

1: Put all states in π(n) in HashTable
2: for 1 to k do
3: m← n, cost← 0
4: while cost ≤ g(n) do
5: c← random child of m
6: if c is the same state as c′ in HashTable then
7: if path from c to n is cost-lexicographically

smaller than path from c′ to n then
8: return true
9: m← c ; cost← cost+ cost(m, c)

10: return false

path from n∗ to state(n) that is smaller (according to O)
than the original path π(n) from n∗ to n. Since the USG
is undirected, all alternative paths between n∗ and state(n)
are reachable from n. SDD exploits this, and checks if n is a
duplicate by searching the subtree below n for a path back
to n∗ that is smaller than π(n).

Full exploration of the subtree below n is too costly to be
practical. As an alternative, SDD performs k random walks
from n. If one of these random walks finds a path from n to
n∗ that is smaller than π(n), then n is declared a duplicate.
Otherwise, n is assumed to be canonical.

Each of these random walks is cost bounded by g(n), due
to the following lemma.

Lemma 1. If n is a duplicate node, then there exists a path
π′ from n to the root n∗ with cost of g(n) or less.

Proof. Since n is a duplicate, there exists a node n′ such
that n′ < n and state(n′) = state(n). As O is a cost-
lexicographic order, n′ < n entails that g(n′) ≤ g(n). Since
the USG is undirected, this means that there is a path from n
to the root n∗ with cost g(n) or lower, as required.

The pseudocode for SDD is given in Algorithm 3. SDD ac-
cepts two parameters: node n and number of random walks
k. First, all states in π(n) are added to a hash table (line 1).
Then, k random walks are performed starting from n. Af-
ter every step in the random walk, SDD checks if the state
reached, denoted c, is in π(n) (line 6). If c is not in π(n),
then the random walk continues to perform another step, un-
less the cost bound g(n) is reached. If c is in π(n), then the
alternative path found to c by the random walk is compared
against the original path to c in π(n). If the alternative path
is smaller (according to O), then n is declared a duplicate
and SDD returns true (line 8). If after using k or fewer ran-
dom walks no better path to n∗ or any other state in π(n)
from n is found, then n is assumed to be a canonical node
and SDD returns false (line 10).

To demonstrate how SSDD and SDD work, consider the
following example.

Example 1. Consider the graph and the tree shown in Fig-
ure 1. Here all operators have unit cost, the type system
accounts only for the depth of the node in the tree (i.e.,

nodes at the same depth have the same type), and the cost-
lexicographic order O uses the trivial operator ordering
op1 < op2. Both n4 and n5 in the tree represent state s4
in the USG. According to O, n4 is a duplicate as the paths
π(n4) = {op2, op1} and π(n5) = {op1, op2} have the same
cost, but the former is lexicographically larger.

Assume that in a given probe SS samples the left branch
of the search tree (i.e., n2 and n3 have the same type and
SS randomly chooses to expand n2). SS accounts for n4 in
its prediction because it does not know that n4 is a dupli-
cate. When facing the same scenario, before expanding n4,
SSDD applies SDD to search in the subtree rooted at n4 to
check if n4 is a duplicate. During this search SDD encoun-
ters the cycle π(n8) where both n1 and n8 represent state
s1. Cycle π(n8) contains two paths in the graph from s1
to s4: π(n4) = {op2, op1} and π′ = π(n5) = {op1, op2}.
SDD then finds n4 to be a duplicate because the path π′ SDD
encountered during its sampling is cost-lexicographically
smaller than π(n4). Thus, SSDD correctly prunes n4.

Theoretical Guarantee For sufficiently large k, SSDD’s
estimation eventually converges to the correct size of the
graph. This is because SSDD correctly identifies and prunes
duplicate nodes in the search tree and the prediction con-
verges to the size of the tree without the duplicates, which is
the size of the graph.

Lemma 2. Let P (n, k) be the probability that SDD correctly
identifies a node n as a duplicate or a canonical node using
k or less random walks. We have that lim

k→∞
P (n, k) = 1.

Proof. A given node n is either canonical or a duplicate. If
n is canonical, then there is no smaller path (according toO)
from n∗ to state(n) than π(n) and thus SDD will always re-
turn that n is canonical. If n is a duplicate, then there exists
a path which is smaller than π(n) in the subtree bounded by
g(n) rooted at state(n). Thus, there exists a non-zero prob-
ability of finding this path by one of SDD’s random walks.
Therefore, the probability of at least one of these k random
walks finding this alternative path, proving n to be a dupli-
cate, converges to one as k →∞.

Let ϕ̂(m)
k be the result of the mth SSDD probe, where k is

the parameter given to SDD.

Theorem 2. For a given partially-ordered type sys-
tem T and a set of m SSDD independent probes
ϕ̂
(1)
k (n∗, T ), · · · , ϕ̂(m)

k (n∗, T ) from a tree S(n∗), the prob-
ability of 1

m

∑m
j=1 ϕ̂

(j)
k (n∗, T ) converging to the size of

S(n∗)’s underlying graph approaches one as both k → ∞
and m→∞.

Proof. SSDD detects and prunes duplicates in the UST dur-
ing sampling with probability one as k → ∞ (Lemma 2).
From Theorem 1 we have that 1

m

∑m
j=1 ϕ̂

(j)
k (n∗, T ) con-

verges to the size of the tree without the duplicates, which is
the size of the graph, as m→∞.
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Applications of SSDD
SSDD is a general framework for estimating state-space
properties. Next, we describe two applications of SSDD to
predict concrete properties.

A* Prediction
We use SSDD to estimate the number of states expanded by
A* using a consistent heuristic for a given f -value. This
is the number of states s expanded by A* with f(s) ≤ x,
for some x. We call this set of states the f -layer of x. Korf
et al. (2001) performed similar experiments to evaluate the
number of nodes expanded by IDA*.

A* has the following properties when using a consistent
heuristic: (i) it never expands a state more than once; (ii) it
expands all states with f -value of x before expanding states
with f -value of y for x < y. Property (i) emphasizes the
importance of detecting duplicates while sampling the UST
for estimating the number A* expansions with f -value of
x. Property (ii) allows one to account only for states with
f -value no greater than x when estimating the size of the f -
layer of x. SSDD is already equipped with a system for de-
tecting duplicate nodes. However, we have to make a mod-
ification in SSDD to accommodate (ii). Namely, SSDD only
expands node n if f(n) ≤ x.

We do not expect SSDD to produce good predictions of
the number of nodes expanded by A* when using an in-
consistent heuristic. This is because A* might re-expand the
same state multiple times when using inconsistent heuris-
tics (Martelli 1977; Felner et al. 2011) and SSDD assumes
that each state in the state-space is expanded at most once.

State-Space Radius Prediction
SSDD can also be used to estimate the radius of a state s.
The radius of s is the maximum shortest distance of any state
from s (Korf 2008). We use SSDD to predict the state space
radius from s in two different ways, which we call the MAX
(maximum) scheme and the AVG (average) scheme.

The MAX Scheme In the MAX scheme we run m probes
of SSDD starting from s, and, in contrast with the A* predic-
tions, we do not bound the paths expanded during sampling
(for A* predictions we bound the paths by the f -value). Ev-
ery SSDD probe finishes when the structure A[i] (line 4 in
Algorithm 2) is empty, which happens when all expanded
paths reach a duplicate or a leaf node. Let r1, · · · , rm be the
largest g-value observed in Algorithm 2 in each of the m
probes from s. The MAX estimate of the radius is given by
rmax = max(r1, · · · , rm).

The MAX scheme has the asymptotic guarantee of pro-
ducing perfect estimates of the state-space radius as the
number of probes m and the number of random walks k
grow large. For very large k SSDD correctly detects dupli-
cates during sampling (Lemma 2). As the number of probes
m grows large, the probability of one of the probes reach-
ing the states with the maximum shortest distance from s
approaches one. A practical implication of this is that one
will tend to get more accurate estimates by simultaneously
increasing the values of m and k.

The AVG Scheme When applied to radius prediction,
SSDD has two sources of error. In the first type of error, the
longest shortest path may not be found by a given probe,
resulting in an underestimate. In the second type of error, a
duplicate node may not be identified as such, which might
result in an overestimate. By taking the maximum value of
multiple probes the MAX scheme tries to address the errors
of the first type, but it ignores errors of the second type.

The AVG scheme attempts to remedy this by averaging
multiple runs of the MAX scheme. Namely, for given values
of m and k, we execute the MAX scheme d times produc-
ing estimates rmax,1, · · · , rmax,d. Then, the AVG estimate
of the radius is given by 1

d (rmax,1+ rmax,2+ · · ·+ rmax,d).
Clearly, the AVG scheme reduces to the MAX scheme when
d = 1. The reasoning behind the AVG scheme is that it
allows SSDD errors of the first and second types to cancel
out. Intuitively, due to the cancellation of under and overes-
timates, the AVG scheme will tend to produce more accurate
predictions than the MAX scheme.

Because the MAX scheme has the asymptotic guarantee
of producing perfect estimates, the AVG scheme also has the
same guarantee when the values of m and k grow large. We
note, however, that such guarantee of perfect estimates of the
AVG scheme does not relate to the increase of the d-value.

Empirical Results
We first present experiments on estimating the number of A*
expansions, and then present experiments on estimating the
state-space radius.

Experiments on Estimating A* Expansions
We test SSDD in four domains: (17,4)-Topspin, 12-disks 4-
pegs Towers of Hanoi, 15-Pancake, and 20-Gripper. These
domains were chosen to ensure experimentation in domains
both with and without a significant number of duplicates.

For comparison, we also experiment with SS. We imple-
mented SSDD and SS in PSVN (Hernadvolgyi and Holte
1999). Pattern databases (PDBs) (Culberson and Schaeffer
1998) are used to generate consistent heuristics. The PDBs
are produced by using the standard PSVN system for cre-
ating abstractions of the original state spaces. We chose the
abstractions used to create our PDBs arbitrarily. In the type
system we use in this experiment nodes n1 and n2 have the
same type if h(n1) = h(n2) (Zahavi et al. 2010).

We run experiments on a set of f -layer prediction tasks.
An f -layer prediction task is a pair (s, x), where s is a start
state and x is an f -layer A* searches starting from s. The
prediction tasks are collected by having A* solving 1,000
different start states in each domain with a memory limit
of 8GB. We use two error measures in this experiment: the
signed error and the absolute error. The signed error is com-
puted as PRED

SEARCH , where PRED is the total number of
predicted expansions in all tasks, and SEARCH is the to-
tal number of actual expansions in all tasks. The signed er-
ror measures a system’s accuracy in a set of tasks. A per-
fect score according to this error measure is 1.0. The abso-
lute error is computed as |pred−search|search , where pred is the
number of predicted expansions and search is the number
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(17,4)-Topspin
SS SSDD (m = 1) Parallel SSDD (m = 100)

p mean. median sign. % k mean. median sign. % k mean. median sign. %
3,000 873.97 1,329.21 1,065.07 8.55 3,000 2.62 0.95 2.71 1.76 3,000 1.52 1.03 2.58 3.68
5,000 873.58 1,406.36 1,065.54 14.07 7,000 2.72 0.96 2.35 3.72 7,000 1.00 0.50 1.97 8.08
6,000 873.75 1,461.14 1,065.42 17.18 10,000 2.07 0.96 1.89 5.15 10,000 0.84 0.41 1.77 11.39
7,000 873.61 1,398.75 1,065.4 19.68 11,000 1.90 0.95 1.59 5.59 11,000 0.86 0.44 1.77 12.45

12-disks 4-pegs Towers of Hanoi
SS SSDD (m = 1) Parallel SSDD (m = 100)

p mean. median sign. % k mean. median sign. % k mean. median sign. %
300 4.00e+36 1.13e+40 8.37e+36 15.50 3,000 6,146.39 0.99 7,817.65 4.32 3,000 2.25 0.95 1.54 6.03
400 4.05e+36 1.16e+40 8.48e+36 20.65 7,000 185.45 0.99 234.70 9.01 7,000 1.07 0.97 0.26 12.35
500 3.83e+36 9.61e+39 8.03e+36 25.76 10,000 98.63 0.99 65.74 12.55 10,000 1.57 0.98 0.64 17.28

1,000 3.97e+36 1.08e+40 8.31e+36 51.89 11,000 52.91 0.99 41.55 13.74 11,000 1.74 0.98 0.80 18.59
15-Pancake

SS SSDD (m = 1) Parallel SSDD (m = 100)
p mean. median sign. % k mean. median sign. % k mean. median sign. %

3,000 7.74 7.80 10.27 12.09 3,000 7.92 2.94 12.36 4.70 3,000 6.07 5.44 8.35 4.89
5,000 7.76 7.54 10.27 19.79 7,000 6.18 2.35 8.63 10.80 7,000 5.41 4.90 7.55 11.30
6,000 7.75 7.64 10.29 23.22 10,000 5.22 2.20 6.80 15.50 10,000 5.31 4.73 7.33 16.12
7,000 7.79 7.43 10.34 23.09 11,000 5.33 2.02 7.09 16.98 11,000 5.05 4.54 7.03 17.75

20-Gripper
SS SSDD (m = 1) Parallel SSDD (m = 100)

p mean. median sign. % k mean. median sign. % k mean. median sign. %
3,000 4.88e+12 5.50e+12 1.62e+13 12.80 3,000 654,236.54 1.00 672,015.38 0.86 3,000 308,132.55 93,446.62 315,641.81 2.17
5,000 4.91e+12 5.37e+12 1.63e+13 21.20 5,000 184,995.55 0.99 199,937.87 1.08 5,000 71,951.11 13,132.61 74,350.97 3.09
7,000 5.06e+12 5.64e+12 1.68e+13 29.58 100,000 1,036.63 0.99 1,168.51 8.06 100,000 1.53 0.90 1.11 20.33
8,000 4.93e+12 5.26e+12 1.63e+13 33.76 140,000 6.95 0.99 5.80 10.35 140,000 1.24 0.93 0.64 26.98

Table 1: SS, SSDD (m = 1), and Parallel SSDD (m = 100) prediction errors for the number of A* expansions for different
number of SS probes p, and SSDD random walks k. % shows the average percentage of the A* runtime covered by the prediction
algorithm.

of actual expansions in a specific task. The absolute error
measures a system’s accuracy in individual tasks. A perfect
score according to this measure is 0.0. We report the mean
and median values of the absolute error. In addition to the
error measures, we show the average percentage of the A*
search time covered by the prediction algorithm (denoted as
%). For instance, a %-value of 30 means that the prediction
was produced in 30% of the A* running time.

Comparison of SSDD with SS The prediction results for
SS and SSDD are shown in Table 1 (the results under “Paral-
lel SSDD” will be discussed later and should be ignored for
now). The columns “mean”, “median”, “sign.”, and “%” cor-
respond to the mean absolute error, median absolute error,
signed error, and percentage of the A* running time covered
by the prediction.
SSDD is not able to correctly detect duplicate nodes if us-

ing a small value of k. In this case, increasing the number of
probes m alone will not improve its accuracy. In this experi-
ment we fixm to 1 to allow larger values of k while still pro-
ducing predictions quickly (relatively to A*). The SS value
of p and the SSDD value of k were chosen so we would have
results with different %-values. We allow SS more compu-
tation time (larger %-values) in each row of Table 1, thereby
giving it some advantage.

As shown in Table 1, SSDD tends to be orders of mag-
nitude more accurate than SS in almost all domains and
k values. For instance, on Gripper, SSDD (k = 140, 000)

produces predictions with mean absolute error of 6.95 in
10.35% of the A* running time, while SS (p = 8, 000) pro-
duces predictions with mean absolute error of 4.93×1012 in
33.76% of the A* running time. The only domain where SS
have reasonable performance compared to SSDD is the 15-
pancake. This is because the USTs in this domain have fewer
duplicates. For all other domains, even when increasing the
number of probes p, SS does not produce better predictions.
This is reasonable as SS’s estimate converges to the size of
the search tree and not to the size of the search graph. By
contrast, if allowed more computation time by setting larger
values of k, SSDD tends to produce more accurate predic-
tions since it has better chances of detecting duplicates. The
only domain in which we do not see SSDD improving its
prediction by increasing the value of k is the 15-pancake.
We conjecture that on the 15-pancake the cycles that prove
the duplicate nodes to be duplicates are hard to be found
by the SDD random walks. The 15-pancake’s relatively large
branching factor (=14) could be one explanation for SDD not
being able to accurately detect the duplicates. Intuitively, it
is more likely that SDD’s random walks will find cycles in a
UST with small branching factor than cycles in a UST with
large branching factor.

Parallelizing SSDD We now explain how we improve our
system’s prediction accuracy by taking advantage of the fact
that SSDD is easily parallelizable.

The SSDDmedian absolute error tends to be much smaller
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than its mean absolute error (see Table 1). This is because
in very few cases SSDD fails to detect duplicates and, as
a result, it samples a larger portion of the state space thus
producing substantial overestimates of the actual number of
states expanded. These cases overly skew the SSDD mean
absolute error. We note that, when SSDD fails to detect du-
plicates, its running time tends to be larger than normal,
which is explained by the fact that it samples a larger portion
of the state space. With the goal of producing more accurate
predictions by avoiding the cases in which SSDD produces
substantial overestimates, we run multiple SSDD probes in
parallel, and we disregard the slowest ones. Namely, we run
m SSDD independent probes in parallel and we account for
the probing result of only the first 95% probes to finish. As
explained, the slowest probes tend to produce large overes-
timates. (An orthogonal way of parallelizing SSDD is to run
the SDD’s random walks in parallel, a direction we have not
explored in this paper.) The value of 95% was chosen ex-
perimentally; values between 95% and 97% yielded good
results. We call this SSDD variant Parallel SSDD.2

The results for Parallel SSDD are also shown in Table 1
(on the righthand side). For Parallel SSDD we run 100
probes (m = 100) in parallel and compute the prediction re-
sult by averaging the probing result of the first 95 probes to
finish. We observe that Parallel SSDD tends to produce more
accurate predictions than SSDD at the cost of increasing
the prediction running time. The improvement in accuracy
mainly occurs because we avoid the cases in which SSDD
substantially overestimates the actual number of nodes ex-
panded. The increase in running time occurs because it is
likely that the slowest of the 95 probes is slower than the
single probe used with SSDD. Once again the 15-pancake is
the exception: we observe a consistent increase in the me-
dian absolute error when using Parallel SSDD. We believe
this is due to the fact that SDD is not able to correctly detect
duplicates on the 15-pancake. This result suggests that in-
creasing the number of probes m might actually degrade the
prediction accuracy when SDD is not able to correctly detect
the duplicates.

Experiments on Estimating the State-Space Radius
We use the MAX and AVG schemes to estimate the radius
of the 3×3×3 Rubik’s Cube and the (4×4) Sliding-Tile Puz-
zle (15-puzzle) from their goal states. The Rubik’s Cube’s
state space has approximately 4.3 × 1019 states and the 15-
puzzle approximately 1013. Although both problems have
fairly large state spaces, their radius from the goal state is
known: 20 for the Rubik’s Cube (Rokicki et al. 2013) and
80 for the 15-puzzle (Korf 2008). Thus, when using these
two domains we can measure the prediction errors exactly.
SS cannot be used in this experiment because the problems’
USTs are not finite and an SS probe would never finish.

The task in this set of experiments is to predict the radius
of a specific state — the goal state. We experiment with m
values of 5, 10, 20, 30, and 40, and k values of 50, 1000,

2In our experiments we ran a sequential implementation of
SSDD and from different probing results we emulated Parallel
SSDD.

2000, 3000, 4000, and 5000. Results for both schemes are
averages of 10 runs. For the AVG scheme we set d to 20, i.e.,
20 runs of the MAX scheme. In Table 2, in addition to the
average and standard deviation of the predicted values, we
present the running time in minutes for both schemes. The
type system we use in this experiment partitions the nodes
according to their level in the UST: two nodes have the same
type if they are at the same level of the UST.

Discussion Consider first the results of the MAX scheme
at the top of Table 2. We observe that increasing them-value
does not necessarily improve the prediction accuracy when
k is small (e.g., k equals 50). This is because SSDD does
not correctly detect duplicates when k is small. However,
we improve SSDD’s accuracy by increasing m and k simul-
taneously. For m = 40 and k = 5, 000 SSDD produces an
average estimate of the Rubik’s Cube radius of 18.7 ± 5.9
in 0.1 minute (6 seconds). Similar trend is observed on the
15-puzzle: as we simultaneously increase the values of m
and k, SSDD tends to produce better estimates. For m = 40
and k = 5, 000 SSDD produces an average estimate of the
15-puzzle radius of 86.1± 18.6 in 5 minutes.

The results for SSDD using the AVG scheme are shown
at the bottom of Table 2. In general we observe the same
trend observed in the MAX scheme results: predictions tend
to be more accurate for larger values of m and k. We no-
tice, however, that the AVG scheme can produce estimates
with lower variance than the MAX scheme. This is because
the AVG scheme averages the results of multiple runs of the
MAX scheme and under and overestimations may cancel
each other out, reducing the variance and potentially yield-
ing more accurate estimates (albeit requiring more time).

One way of computing the radius exactly is by running
a complete uniform-cost search from the goal. Korf’s disk-
based search took 28 days and 8 hours to enumerate the 15-
puzzle states (Korf 2008). One of the byproducts of such
computation is the 15-puzzle radius. Although not perfect,
SSDD using the AVG scheme was able to quickly produce
accurate estimates of both the Rubik’s Cube and the 15-
puzzle radii.

Related Work
Thayer et al. (2012) presented methods that also rely on the
accuracy of the heuristic to estimate search progress of best-
first search variants. By contrast, SSDD is more general in
the sense that it does not depend on a heuristic and is able
to measure other state-space properties such as state space
radius and number of nodes expanded in a single f -layer.
Breyer and Korf (2008) predicted the number of nodes ex-
panded by A* for the 15-puzzle, but they used the informa-
tion learned from a complete breadth-first search in the state
space; see also Breyer’s PhD thesis (Breyer 2010). Hernad-
volgyi and Holte (2004) also made estimations for the num-
ber of nodes expanded by A*, but they ignored the trans-
position detection the algorithm does. Similarly to SS, their
method will produce overestimates of the actual number of
A* expansions in problem domains with a large number of
duplicates.
SSDD could also be used to enhance other prediction
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MAX Scheme
3x3x3 Rubik’s Cube Radius = 20

m / k 50 1,000 2,000 3,000 4,000 5,000
prediction time prediction time prediction time prediction time prediction time prediction time

5 14.8 ± 7.5 0.0 8.7 ± 4.6 0.0 10.0 ± 5.0 0.0 9.0 ± 4.1 0.0 8.2 ± 3.7 0.0 7.8 ± 3.8 0.0
10 18.1 ± 7.5 0.0 10.7 ± 4.3 0.0 11.5 ± 5.1 0.0 11.2 ± 4.6 0.0 11.2 ± 5.1 0.0 11.5 ± 4.8 0.0
20 23.1 ± 8.2 0.0 13.7 ± 4.5 0.0 15.3 ± 5.0 0.0 14.3 ± 4.8 0.0 14.9 ± 5.0 0.0 15.3 ± 5.0 0.0
30 26.3 ± 7.9 0.0 16.4 ± 4.9 0.0 16.8 ± 5.4 0.0 17.4 ± 5.3 0.0 17.4 ± 5.6 0.1 17.2 ± 5.6 0.1
40 28.3 ± 8.3 0.0 18.1 ± 5.3 0.0 18.5 ± 4.9 0.0 18.4 ± 5.2 0.1 18.5 ± 5.2 0.1 18.7 ± 5.9 0.1

4x4 Sliding-Tile Puzzle Radius = 80

m / k 50 1,000 2,000 3,000 4,000 5,000
prediction time prediction time prediction time prediction time prediction time prediction time

5 132.9 ± 67.4 0.1 66.8 ± 32.9 0.3 57.1 ± 26.0 0.4 54.4 ± 23.9 0.5 52.9 ± 22.5 0.6 52.6 ± 22.4 0.7
10 165.4 ± 71.9 0.2 82.5 ± 34.6 0.6 70.2 ± 26.2 0.7 65.6 ± 23.8 0.9 68.8 ± 25.6 1.3 63.8 ± 24.4 1.3
20 203.8 ± 68.7 0.4 95.5 ± 31.4 1.0 87.9 ± 27.4 1.5 78.8 ± 23.1 1.8 77.5 ± 22.9 2.2 75.5 ± 24.1 2.7
30 228.6 ± 71.2 0.6 107.9 ± 33.4 1.6 97.7 ± 28.1 2.4 91.9 ± 27.1 3.0 86.6 ± 24.1 3.5 82.9 ± 21.6 3.9
40 243.6 ± 74.2 0.9 112.6 ± 27.5 2.0 101.3 ± 27.1 3.0 93.3 ± 24.3 3.7 88.1 ± 21.2 4.3 86.1 ± 18.6 5.0

AVG Scheme
3×3×3 Rubik’s Cube Radius = 20

m / k 50 1,000 2,000 3,000 4,000 5,000
prediction time prediction time prediction time prediction time prediction time prediction time

5 14.8 ± 2.1 0.0 8.7 ± 1.0 0.0 10.0 ± 1.2 0.0 9.1 ± 0.8 0.0 8.0 ± 0.6 0.0 7.7 ± 0.5 0.0
10 18.1 ± 2.4 0.0 10.7 ± 1.1 0.0 11.6 ± 1.1 0.0 11.2 ± 0.7 0.1 11.2 ± 1.1 0.2 11.5 ± 1.4 0.2
20 23.1 ± 2.4 0.0 13.6 ± 0.9 0.0 15.2 ± 1.0 0.2 14.3 ± 0.9 0.3 14.8 ± 1.1 0.6 15.5 ± 0.9 0.8
30 26.3 ± 2.4 0.0 16.5 ± 1.0 0.1 16.9 ± 1.2 0.4 17.4 ± 1.2 0.8 17.4 ± 1.4 1.1 17.4 ± 1.3 1.3
40 28.3 ± 2.3 0.0 18.1 ± 1.1 0.2 18.5 ± 0.7 0.7 18.5 ± 1.2 1.0 18.6 ± 1.3 1.5 18.8 ± 1.1 1.9

4×4 Sliding-Tile Puzzle Radius = 80

m / k 50 1,000 2,000 3,000 4,000 5,000
prediction time prediction time prediction time prediction time prediction time prediction time

5 132.9 ± 15.8 2.0 66.8 ± 7.7 5.7 57.1 ± 5.3 7.1 54.4 ± 6.3 9.3 52.9 ± 5.1 11.3 52.6 ± 5.8 13.8
10 165.4 ± 16.6 4.0 82.5 ± 6.1 11.4 70.2 ± 6.2 14.0 65.6 ± 6.6 17.5 68.8 ± 6.1 25.9 63.8 ± 4.7 26.5
20 203.8 ± 12.9 8.2 95.5 ± 6.7 19.9 87.9 ± 6.5 30.8 78.9 ± 6.1 36.2 77.7 ± 5.2 45.2 75.7 ± 5.7 53.9
30 228.6 ± 15.8 12.9 108.0 ± 6.7 31.1 97.9 ± 8.3 48.0 92.2 ± 5.4 60.8 86.4 ± 4.4 68.7 82.6 ± 5.0 76.8
40 243.6 ± 15.2 17.4 112.6 ± 5.7 39.7 101.2 ± 6.5 59.7 93.4 ± 5.8 73.5 88.2 ± 4.9 86.5 86.1 ± 5.5 99.8

Table 2: The MAX and AVG average results over 10 independent runs of the schemes. We experiment with m =
{5, 10, 20, 30, 40} and k = {50, 1000, 2000, 3000, 4000, 5000} for both schemes and use d = 20 for the AVG scheme. We
present the average and standard deviation of the predicted values, and the average running time in minutes for both schemes.
The actual radius of the 4x4 Sliding-Tile Puzzle is 80 and of the 3×3×3 Rubik’s Cube is 20.

methods such as KRE (Korf, Reid, and Edelkamp 2001) and
CDP (Zahavi et al. 2010). For example, one could use SSDD
to estimate the size of the search graph without a heuristic
function (i.e., A* with h = 0), and then apply the KRE and
CDP formulas to estimate the number of A* expansions. In
this paper we chose to build on SS because Lelis et al. (2013)
showed that SS is the current state of the art for tree size pre-
diction. Nevertheless, we intent to pursue in the future the
application of SSDD to KRE and CDP.

Burch and Holte (2011; 2012) presented a move pruning
system for preventing duplicates from being expanded dur-
ing search. While it is plausible to use this approach for de-
tecting duplicates in SSDD and SS, preliminary results on
the 4-pegs Towers of Hanoi showed that the results were
not substantially better. We conjecture that the duplicates de-
tected by move pruning are not enough for producing accu-
rate estimates of the ESG size.

Conclusion

We presented Stratified Sampling with Duplicate Detec-
tion (SSDD), an algorithm for estimating properties of state
spaces represented by undirected graphs. We tested SSDD on
two tasks: (i) prediction of the number of states expanded by
A* when using a consistent heuristic in a given f -layer, and
(ii) prediction of the state space radius from the goal state.
SSDD has the asymptotic guarantee of producing perfect es-
timates in both tasks. In our empirical evaluation of task (i)
a parallel version of SSDD produced accurate predictions in
all four domains tested, being in most cases several orders of
magnitude more accurate than SS and consistently more ac-
curate than SSDD itself; in task (ii) SSDDwas able to quickly
produce accurate predictions of the state space radii of the
(4×4) Sliding-Tile Puzzle and the 3×3×3 Rubik’s Cube.
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