
Evaluating Weighted DFS Branch and Bound over Graphical Models

Natalia Flerova
University of California

Irvine

Radu Marinescu
IBM Research
Dublin, Ireland

Rina Dechter
University of California

Irvine

Abstract

Weighted search was explored significantly in re-
cent years for path-finding problems, but until now
was barely considered for optimization tasks such as
MPE/MAP and Weighted CSPs. An important virtue of
weighted search schemes, especially in the context of
anytime search, is that they are w-optimal, i.e. when ter-
minated, they return a weight w, and a solution cost C,
such that C ≤ w · C∗, where C∗ is the optimal cost.
In this paper we introduce Weighted Branch and Bound
(WBB) for graphical models and provide a broad em-
pirical evaluation of its performance compared with
one of the best unweighted anytime search scheme,
BRAOBB (won Pascal 2011 competition). We also
compare against weighted best-first (WBF). Our results
show that WBB can be superior to both un-weighted
BB and to weighted BF on a significant number of in-
stances. We also illustrate the benefit of weighted search
in providing suboptimality relative error bounds.

Introduction
Depth-first Branch-and-Bound is the most commonly used
scheme for combinatorial optimization tasks, such as
MAP/MPE or Weighted CSP, and it was extensively stud-
ied in recent years (Kask and Dechter 2001; Marinescu and
Dechter 2009b; Otten and Dechter 2011; de Givry, Schiex,
and Verfaillie 2006). In contrast, in path-finding domains,
e.g., planning, best-first search and, especially, its variant
A* (Hart, Nilsson, and Raphael 1968) are far more popu-
lar, and for good, well-known reasons. Yet, A*’s exponen-
tial memory and lack of anytime performance lead to exten-
sions into more flexible anytime schemes based on Weighted
A* (WA*) (Pohl 1970). The idea is to inflate the heuristic
function guiding the search by a constant factor of w > 1,
making the heuristic inadmissible, and the overall search
more greedy-like (depending on the magnitude of w). It typ-
ically yields faster and less memory intensive search, while
still guaranteeing a solution cost within a factor of w from
the optimal. If the (non-optimal) solution is found quickly,
the search for a better solution may continue with a smaller
weight.

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In our exploration of the weighted search approach
for graphical models we focused first on weighted best-
first search (Flerova, Marinescu, and Dechter 2014b). We
adapted weighted best-first to graphical models and evalu-
ated the resulting schemes’ performance as anytime algo-
rithms on some graphical models domains. We illustrated
the effectiveness of these schemes on some benchmarks and,
moreover, the value of their w-optimality. A summary of
the extensive evaluation we carried out is presented here for
completeness. Yet, the notorious memory issues of best-first
search often persisted and debilitated its potential.

Therefore, our contribution in this paper is in extending
weighted search to depth-first Branch and Bound, known
for its memory efficiency, yielding yet another new anytime
scheme which is accompanied with suboptimality guaran-
tees. We provide an extensive comparative empirical evalu-
ation demonstrating the power of this approach.

As a basis we use AND/OR Branch and Bound search
(AOBB (Marinescu and Dechter 2009a)), a depth-first
Branch and Bound algorithm developed for graphical mod-
els. AOBB explores the context minimal AND/OR graph
and is guided by an admissible and consistent mini-bucket
heuristic (Dechter and Rish 2003; Kask and Dechter 2001;
Dechter and Mateescu 2007). Since AOBB does not have
good anytime behaviour due to the underlying AND/OR
search space, it was extended into an algorithm called
Breadth-Rotating AND/OR Branch and Bound (BRAOBB
(Otten and Dechter 2011)). BRAOBB won the 2011 Proba-
bilistic Inference Challenge1 in all optimization categories.
We therefore extended both AOBB and BRAOBB into
weighted anytime schemes.

The two resulting anytime algorithms: Weighted AOBB
(wAOBB) and Weighted BRAOBB (wBRAOBB) run itera-
tively using weighted heuristic. After each iteration a (possi-
bly suboptimal) solution and the weight is reported and the
weight is decreased according to a fixed weight schedule.
We report on a comprehensive empirical evaluation on over
100 instances from 4 benchmarks.

Our empirical analysis shows that the weighted Branch
and Bound schemes often exhibit anytime performance
superior to the state-of-the-art BRAOBB and anytime
weighted best-first search. In particular, on two of the four

1http://www.cs.huji.ac.il/project/PASCAL/realBoard.php

71

Proceedings of the Seventh Annual Symposium on Combinatorial Search (SoCS 2014)

benchmarks used (Pedigrees and Type4) for some i-bounds
and time limits wAOBB and wBRAOBB report solutions of
better quality than BRAOBB on more than half of the in-
stances.

Overall, the results vary significantly across benchmarks,
with no single algorithm being superior for all domains.
However, combined in a portfolio this collection of schemes
can potentially yield a powerful and efficient anytime solver
(Huberman, Lukose, and Hogg 1997).

Background
Weighted best-first search exploits the idea of making an
admissible evaluation function (i.e. one that never overes-
timates a cost to the goal, assuming minimization) inadmis-
sible, by multiplying it by some weight w > 1. In particular,
the most well-known variant of Weighted best-first search,
WA*, uses evaluation function f(n) = g(n) + w · h(n),
where w > 1, g(n) is the current minimal cost from
the root to n, and h(n) is the heuristic function that es-
timates the optimal cost to go. Higher values of w typ-
ically yield greedier behaviour, finding a solution earlier
during search and with less memory. WA* is guaranteed
to be w-optimal, namely to terminate with a solution cost
C such that C ≤ w · C∗, where C∗ is the optimal solu-
tion’s cost (Pohl 1970). In the past decade, several anytime
weighted Best-First search schemes were proposed in the
context of path-finding problems (Hansen and Zhou 2007;
Likhachev, Gordon, and Thrun 2003; van den Berg et al.
2011; Richter, Thayer, and Ruml 2010).
A Graphical model is a tupleM = (X,D,F,

∏
), where F

is a set of real-valued local functions over subsets of dis-
crete variables X, called scopes, with finite domains D. The
scopes of F define a primal graph G with certain induced
width and a pseudo tree T of G that guides an AND/OR
search space (Dechter and Mateescu 2007). The common
optimization task is to find maxX

∏
i fi called MAP or MPE

or Weighted CSP problem: minX
∑

i fi. These two tasks are
equivalent and are easily transformed into one another. In
our discussion we assume the min-sum task.
A context minimal AND/OR search graph ST , which is
guided by a pseudo-tree T and whose identical subprob-
lems are merged, has size O(nkw

∗
), where w∗ is the induced

width of G along a depth-first order of T , n is the number
of variables and k bounds the domain sizes.

AND/OR Best First search (AOBF) (Marinescu and
Dechter 2009b) and AND/OR Branch and Bound (AOBB)
(Marinescu and Dechter 2009a) are search algorithms
traversing AND/OR search space. They are guided by the
mini-bucket heuristic which is admissible and consistent
(Kask and Dechter 1999). The accuracy of the heuristic is
controlled by a parameter i-bound (higher i-bounds typically
yield more accurate heuristics and take more time and space
(exp(i)) to compute).
AND/OR Best First Search (AOBF) (Marinescu and Dechter
2009a). AOBF is a state-of-the-art version of A* for the
AND/OR search space for graphical models. AOBF is a
variant of AO* [(Nillson 1980)] that explores the AND/OR

Algorithm 1: wAOBF(w0, hi)
Input: A graphical modelM = 〈X,D,F〉; heuristic hi

calculated with i-bound i; initial weight w0, weight
update schedule S

Output: Set of suboptimal solutions C
1 Initialize w = w0 and let C ← ∅;
2 while w >= 1 do
3 〈Cw, T

∗
w〉 ← AOBF(w · hi);

4 C ← C ∪ {〈w,Cw, T
∗
w〉};

5 Decrease weight w according to schedule S;

6 return C;

context-minimal search graph. Unlike usual A*, AOBF does
not have explicit OPEN and CLOSED lists, instead main-
taining the explicated part of the context minimal AND/OR
search graph and keeping track of the current best partial
solution tree T ∗. AOBF interleaves a top-down step of ex-
panding the nodes in the best-first manner with bottom-up
update of nodes’ values and recaltulation of T ∗.
AND/OR Branch and Bound (AOBB) (Marinescu and
Dechter 2009a): AOBB traverses the weighted context-
minimal AND/OR graph in a depth-first manner while keep-
ing track of the current upper bound on the minimal solution
cost. A node n will be pruned if this upper bound exceeds
a heuristic lower bound on the solution to the subproblem
below n.
Breadth-Rotating AND/OR Branch and Bound (BRAOBB)
(Otten and Dechter 2011). Though Branch and Bound search
is inherently anytime, AND/OR decomposition hinders any-
time performance of AOBB, which has to solve completely
all but one independent child subproblems at each AND
node before the last one is even considered. BRAOBB is an
anytime version of AOBB, which works by rotating through
different subproblems in a breadth-first manner. It empiri-
cally proved to be a far more efficient anytime algorithm
than plain AOBB.

Weighted Best-First Search: Summary of
Previous Results

In this section we present an overview of our previously con-
ducted investigation of anytime weighted best-first search
(Flerova, Marinescu, and Dechter 2014b).

Tailoring Weighted BFS to Graphical Models
AND/OR Best-First search using the mini-bucket heuristic,
multiplied by the weight w > 1, yields Weighted AOBF.
Clearly, the cost of the solution found by this scheme is
guaranteed to be w-optimal (see also (Chakrabarti, Ghose,
and De Sarkar 1987)).

Using Weighted AOBF algorithm as a basis, we extended
two anytime weighted best-first algorithms, popular in path-
finding domain, to searching over AND/OR spaces, yielding
schemes wAOBF and wR-AOBF.
Iterative Weighted AOBF (wAOBF) : (Algorithm 1) executes
Weighted AOBF iteratively, decreasing the weight at each
iteration. This approach, similar to the Restarting Weighted

72

Algorithm 2: wR-AOBF(w0, hi)
Input: A graphical modelM = 〈X,D,F〉; pseudo tree T

rooted at X1; heuristic hi for i-bound=i; initial weight
w0, weight update schedule S

Output: Set of suboptimal solutions C
1 Initialize w = w0 and let C ← ∅;
2 Create root OR node s labeled by X1 and let G = {s};
3 Initialize v(s) = w · hi(s) and best partial solution tree T ∗ to
G;

4 while w >= 1 do
5 Expand and update nodes in G using AOBF(w,hi) search

with heuristic function w · hi;
6 If T ∗ has no more tip nodes then

C ← C ∪ {〈w, v(s), T ∗〉};
7 Decrease weight w according to schedule S;
8 For all leaf nodes in n ∈ G, update v(n) = w · hi(n).

Update the values of all nodes in G using the values of
their successors. Mark best successor of each OR node.;

9 Recalculate T ∗ following the marked arcs;

10 return C;

A* (Richter, Thayer, and Ruml 2010), results in a series of
solutions, each with a smaller suboptimality bound of the
weight w.

Anytime Repairing AOBF (wR-AOBF). Running each
search iteration from scratch and thus possibly explor-
ing the same search subspace multiple times is redundant.
To remedy this problem we introduced wR-AOBF (Algo-
rithm 2), an extension of the Anytime Repairing A* (ARA*)
algorithm (Likhachev, Gordon, and Thrun 2003) to the
AND/OR search spaces over graphical models. wR-AOBF
also runs iteratively, gradually decreasing the weight, but un-
like wAOBF, it keeps track on the expanded nodes and up-
dates their evaluation function whenever the weight changes
between the iterations. wR-AOBF is also a w-optimal algo-
rithm.

Evaluating Anytime Weighted Best-First
In (Flerova, Marinescu, and Dechter 2014b) the anytime
performance of wAOBF and wR-AOBF was evaluated and
compared with state-of-the-art anytime Branch and Bound
scheme BRAOBB, exploring the same search space. The
algorithms return improved solutions until the optimal so-
lution is found or until either the time limit of 1 hour or
memory limit of 4 GB is reached. We implemented our al-
gorithms in C++ and ran all experiments on a 2.67GHz Intel
Xeon X5650, running Linux, with 4 GB allocated for each
job.

We used benchmarks from UAI 2008 competition 2 and
2011 Probabilistic Inference Challenge 3, which include
probabilistic graphical models and weighted CSPs. For uni-
formity we assume that the optimization task is maximiza-
tion throughout. The benchmark parameters are presented in
Table 1. In random grid networks, the nodes are arranged in
an NxN square and the functions are defined over pairs of

2http://graphmod.ics.uci.edu/group/Repository
3http://www.cs.huji.ac.il/project/PASCAL/archive/mpe.tgz

Benchmark # inst n k w∗ hT

Pedigrees 11 581-1006 3-7 16-39 52-102
Grids 32 144-2500 2 15-90 48-283
Type4 10 3907-8186 5 21-32 319-625
WCSP 56 25-1057 2-100 5-287 11-337

Table 1: Benchmark parameters: # inst - number of in-
stances, n - number of variables, k - domain size, w∗ - in-
duced width, hT - pseudo-tree height.

variables and are generated uniformly randomly. The pedi-
gree and type4 instances come from the domain of genetic
linkage analysis and are associated with the task of haplo-
typing. The Weighted CSP networks includes graph colour-
ing problems, SPOT5 networks and other Weighted CSP do-
mains.

Each problem was solved with 10 i-bounds, ranging from
2 to 20. Both weighted schemes used the sqrt weight pol-
icy: wj =

√
wj−1, where wj is the weight at iteration j.

This policy proved to be the most effective out of the five
candidates studied in our preliminary evaluation, reported in
(Flerova, Marinescu, and Dechter 2014a). The initial weight
was set to 64.

Table 2 presents a summary of the results. For 3 time
bounds we show the percentage of instances for which
wAOBF and wR-AOBF respectively find better solutions
than BRAOBB, the percentage for which they are tied with
BRAOBB and the number of instances, for which at least
one of the algorithms found a (possibly suboptimal) solu-
tion. We show the results for a relatively small and a large
i-bounds.

Analyzing the results presented in Table 2 and based on
the full data in (Flerova, Marinescu, and Dechter 2014b) we
observe:

1. Anytime weighted best-first schemes are superior to
BRAOBB in quite a few cases. However, their perfor-
mance varies a lot across benchmarks. wAOBF and wR-
AOBF yielded better solutions than BRAOBB on a large
percentage of instances on Grids (up to 72.7%) and Type4
(up to 100%), but are less effective on Pedigrees (up to
55.6%) and clearly inferior on WCSPs (only better than
BRAOBB on 6.4% for presented i-bounds).

2. Weighted best-first algorithms tend to be superior when
the i-bound is small and there is a large gap between the
i-bound and the problems instances (e.g. for i-bound=4).
However, when the i-bound is large (i.e. strong heuristics)
their dominance is usually less pronounced.

3. wAOBF and wR-AOBF often have better performance for
short time limits (e.g. for Grids, i=4, wAOBF is superior
to BRAOBB on 72.7% of problems for 60 seconds, but
only 29.2% for 3600 seconds).

4. wAOBF seems somewhat superior to wR-AOBF, domi-
nating BRAOBB more often.

Overall, we concluded that though anytime weigted best-
first schemes are not universally superior to BRAOBB, they
definitely are often competitive.

73

I-bound Algorithm
Time bounds

60 600 3600

X% / Y% / N X% / Y% / N X% / Y% / N

Grids (# inst=32, n=144-2500, k=2, w∗=15-90, hT =48-283)

i=4
wAOBF 72.7 / 9.1 / 22 41.7 / 25.0 / 24 29.2 / 29.2 / 24

wR-AOBF 40.9 / 9.1 / 22 16.7 / 25.0 / 24 12.5 / 29.2 / 24

i=16
wAOBF 20.0 / 72.0 / 25 7.4 / 77.8 / 27 0.0 / 75.0 / 28

wR-AOBF 4.0 / 72.0 / 25 0.0 / 77.8 / 27 3.6 / 75.0 / 28

Pedigrees (# inst=11, n=581-1006, k=3-7, w∗=16-39, hT =52-104)

i=4
wAOBF 55.6 / 0.0 / 9 33.3 / 11.1 / 9 11.1 / 22.2 / 9

wR-AOBF 11.1 / 0.0 / 9 0.0 / 11.1 / 9 0.0 / 11.1 / 9

i=16
wAOBF 42.9 / 28.6 / 7 11.1 / 33.3 / 9 0.0 / 44.4 / 9

wR-AOBF 28.6 / 14.3 / 7 0.0 / 22.2 / 9 0.0 / 22.2 / 9

WCSP (# inst=56, n=25-1057, k=2-100, w∗=5-287, hT =11-337)

i=4
wAOBF 4.3 / 21.3 / 47 2.0 / 26.5 / 49 5.5 / 23.6 / 55

wR-AOBF 6.4 / 23.4 / 47 2.0 / 26.5 / 49 5.5 / 23.6 / 55

i=12
wAOBF 0.0 / 80.0 / 5 0.0 / 35.7 / 14 0.0 / 35.7 / 14

wR-AOBF 0.0 / 80.0 / 5 0.0 / 35.7 / 14 0.0 / 35.7 / 14

Type4 (# inst=10, n=3907-8186, k=5, w∗=21-32, hT =319-625)

i=4
wAOBF 70.0 / 0.0 / 10 90.0 / 0.0 / 10 100.0 / 0.0 / 10

wR-AOBF 20.0 / 0.0 / 10 30.0 / 0.0 / 10 30.0 / 0.0 / 10

i=16
wAOBF 100.0 / 0.0 / 6 100.0 / 0.0 / 10 100.0 / 0.0 / 10

wR-AOBF 83.3 / 0.0 / 6 50.0 / 0.0 / 10 50.0 / 0.0 / 10

Table 2: X% - percentage of instances for which each algo-
rithm is the better than BRAOBB at a specific time bound,
Y% - percentage of instances for which algorithm ties with
BRAOBB, N - number of instances for which at least one
of algorithms found a solution. # inst - total number of in-
stances in benchmark, n - number of variables, k - maximum
domain size, w∗ - induced width, hT - pseudo-tree height. 4
GB memory, 1 hour time limit.
.

Weighted Branch and Bound Search
In the following section we present and explore the potential
of weighted depth-first Branch and Bound.

We denote by AOBB(hi,w0,UB) the weighted version of
AOBB that uses the mini-bucket heuristic hi with i-bound=i,
with the weight w0 and where initial the upper bound used
for pruning is UB (default UB=∞). It is easy to show that:
Theorem 1. If the heuristic h(n) is admissible, the cost
of the solution discovered by weighted AOBB is w-
optimal.

Iterative Weighted AOBB (wAOBB): extends
AOBB(hi,w0,UB) to an iterative scheme similar to
wAOBF (Algorithm 3). During first iteration wAOBB ex-
ecutes AOBB(hi,w0,UB = ∞). When AOBB terminates,
it reports its final solution cost C1 and the value of the
(initial) weight w1 = w0. At each subsequent iteration
j, where j ≥ 2 wAOBB executes AOBB(hi,wj ,UBj)
to completion. The weight wj is decreased according to
some predetermined weight policy. The upper bound UBj

depends on the cost of the solution with which the previous
iteration terminates, i.e. UBj = Cj−1. This upper bound is
used by AOBB for pruning at the beginning of the iteration.

Algorithm 3: wAOBB(w0, hi)
Input: A graphical modelM = 〈X,D,F〉; heuristic hi

obtained with i-bound i; initial weight w0

Output: C - a set of suboptimal solutions Cw, each with a
bound w

1 Initialize j = 1, UBj =∞, wj = w0, weight update
schedule S and let C ← ∅;

2 while wj >= 1 do
3 while T ∗ has more tip nodes, not yet expanded do
4 run AOBB(hi,wj , UBj); return the solution bounded

by the weight of previous iteration:
C ← C ∪ {〈wj−1, C

′
j〉}

5 return the solution with which AOBB terminated,
bounded by the current weight: C ← C ∪ {〈wj , Cj〉}

6 Decrease weight w according to schedule S;
7 UB← Cj

8 return C

During iterations j ≥ 2 AOBB returns all the intermediate
solutions, whose costs are denoted C ′j and are bounded by
weight wj−1, up until it terminates with the final solution,
whose cost is denoted Cj and is wj-optimal.
Iterative Weighted BRAOBB (wBRAOBB): extends
BRAOBB(i,w0,UB) to a weighted iterative scheme in
the same manner as wAOBB. Clearly, for both schemes the
sequence of the solution costs is non-increasing.

Experiments
We evaluate the performances of wAOBB and wBRAOBB
and compare with wAOBF and BRAOBB using the same ex-
perimental settings and benchmarks as described above for
evaluation of weighted best-first algorithms. All weighted
schemes use starting weight 64 and the sqrt weight policy.
We solve the max-product task throughout.

In our empirical evaluation we will address:

1. The impact of the weight on the solution accuracy and
runtime

2. The quality of schemes’ anytime behaviour

3. The interaction between heuristic strength and the multi-
plicative weight

The Impact of Weights
In Table 3 we report the time (sec) required for each
weighted scheme (wAOBF, wAOBB, wBRAOBB) to pro-
duce a w-optimal solution, and the corresponding solution
cost. For each algorithm we report the entire runtime re-
quired to reach the target weight from the starting weight
of 64, according to the sqrt policy, and produce a solution
bounded by w.

We also report the runtime and the cost by BRAOBB at
termination time. A time of 3600 seconds for BRAOBB sig-
nifies that it failed to return the optimal solution within the
time limit and we report the best solution found. We show
two select instances from each benchmark, for a relatively
strong heuristic.

74

Instance
BRAOBB

Scheme
Weights

2.8284 1.2968 1.0330 1.000
time / cost time / cost time / cost time / cost time / cost

Grids, I-bound=18

75-22-5
(484, 2, 30, 107) 115.45 / -15.605

wAOBF 5.92 / -15.72 6.66 / -15.72 59.81 / -15.61 423.76 / -15.61
wAOBB 5.87 / -19.08 6.1 / -17.55 52.46 / -15.65 — / —

wBRAOBB 5.91 / -19.08 6.22 / -17.55 79.91 / -15.7 — / —

75-25-5
(625, 2, 34, 122) 3582.08 / -20.836

wAOBF 8.0 / -23.38 9.77 / -21.7 — / — — / —
wAOBB 8.08 / -31.0 8.34 / -22.55 — / — — / —

wBRAOBB 8.14 / -31.0 8.56 / -22.84 — / — — / —
Pedigrees, I-bound=18

pedigree9
(935, 7, 27, 100) 220.34 / -122.904

wAOBF 26.75 / -129.55 26.96 / -123.06 33.56 / -122.9 — / —
wAOBB 12.44 / -129.76 12.47 / -128.56 13.63 / -123.2 — / —

wBRAOBB 12.59 / -129.76 12.61 / -128.56 13.74 / -123.2 — / —

pedigree51
(871, 5, 39, 98) 3600 / -111.55

wAOBF 120.94 / -119.16 — / — — / — — / —
wAOBB 29.01 / -121.77 31.15 / -121.77 — / — — / —

wBRAOBB 26.41 / -121.77 28.36 / -121.77 3035.48 / -109.83 — / —
WCSP, I-bound=6

capmo2.wcsp
(200, 100, 100, 100) 3600 / -0.28

wAOBF 26.81 / -0.31 — / — — / — — / —
wAOBB 22.43 / -0.31 — / — — / — — / —

wBRAOBB 22.47 / -0.31 — / — — / — — / —

myciel5g 3.wcsp
(47, 3, 19, 24) 12.93 / -64.0

wAOBF 2.52 / -72.0 50.47 / -64.0 — / — — / —
wAOBB 0.96 / -72.0 7.8 / -64.0 37.63 / -64.0 — / —

wBRAOBB 0.9 / -72.0 7.37 / -64.0 35.63 / -64.0 — / —
Type4, I-bound=18

type4b 120 17
(4072, 5, 24, 319) 3600 / -1332.18

wAOBF 80.49 / -1354.93 81.24 / -1329.59 84.98 / -1327.6 — / —
wAOBB 49.79 / -1353.83 49.97 / -1337.37 50.25 / -1334.85 — / —

wBRAOBB 54.91 / -1353.83 55.12 / -1337.37 55.44 / -1334.85 — / —

type4b 130 21
(4874, 5, 29, 416) 3600 / -1383.74

wAOBF 86.21 / -1438.24 88.89 / -1386.34 — / — — / —
wAOBB 58.12 / -1414.3 97.66 / -1489.57 — / — — / —

wBRAOBB 96.61 / -1512.32 96.93 / -1489.57 — / — — / —

Table 3: Runtime (sec) and cost obtained by wAOBF, wAOBB and wBRAOBB for selected w, and by BRAOBB (that finds
optimal cost). Instance parameters: n - number of variables, k - max domain size, w∗ - induced width, hT - pseudo tree height.
”time out” - running out of time, ”—/—” - running out of memory. 4 GB memory limit, 1 hour time limit.

Time saving for w-bounded suboptimality. Comparing
pairs of columns, in particular column 2 (exact results for
BRAOBB) and columns 5-6 (1.2968- and 1.0330-optimal
solutions), we observe that the weighted schemes can yield
remarkable time savings compared to BRAOBB.

Overall, from all the experiments we observed that the
weighted schemes can often provide good approximate so-
lutions with tight suboptimality bounds, yielding signifi-
cant time savings compared to finding optimal solutions by
the competing BRAOBB. The weighted Branch and Bound
schemes are more memory efficient than wAOBF. However,
on the instances feasible for all three weighted schemes there
is no clear dominance.

Anytime Performance
Figure 1 (for Grids and Pedigrees) and Figure 2 (for Type4
and WCSPs) display the anytime behaviour of the schemes
for typical instances from each benchmark. For each in-
stance we show the ratio between the cost returned at a par-
ticular time limit (at 10, 60, 600 and 1800 sec) and the op-
timal (if known) or best cost found. The closer the ratio is
to 1, the better. For clarity, we display the interval between
0.7 and 1.0 only. Each row shows a particular i-bound, two
per benchmark. The four leftmost bars (for 4 different time

points) correspond to wAOBF, next ones, left to right, to
BRAOBB, wAOBB and wBRAOBB. We additionally dis-
play the weight w for a time bound above the respective
bar for the weighted schemes. The cases where BRAOBB
proved solution optimality is indicated by ’***’ above bars.

Grids (Figure 1): we observe that wAOBF is typically su-
perior to Branch and Bound algorithms, returning solutions
earlier and of better accuracy. For example, wAOBF is the
only scheme to return a solution within 10 seconds on grid
75-23-5, i=6. However, there are exceptions where wAOBB
and wBRAOBB are superior to wAOBF, (e.g., grid 50-16-
5, i=6). BRAOBB often tends to find the least accurate so-
lutions, providing guarantees only when it proves solution
optimality, (e.g., 90-20-5, i=60, 600 and 1800 seconds).

Pedigrees (Figure 1): Weighted Branch and Bound
schemes are often superior (e.g. pedigree13, i=6). For some
problems they even provide solutions with accuracy ap-
proaching 1.0 while the other schemes fail to find any so-
lution, e.g., pedigree7, i=6.

WCSPs (Figure 2): wAOBF is mostly inferior. The
wAOBB and wBRAOBB perform better than BRAOBB on
many instances (e.g., capmo2.wcsp for all i-bounds), ex-
cept for a number of problems (not shown), for which only
BRAOBB is the only scheme to return solutions.

75

Figure 1: Ratio of the cost obtained by some time point (10, 60, 600 and 1800 sec) and max cost. Max. cost = optimal, if known,
otherwise = best cost found for the problem. Corresponding weight - above the bars. The cases where BRAOBB proved solution
optimality is indicated by ’***’ above bars. In red - optimal solutions. Instance parameters are in format (n,k,w∗,hT), where n
- number of variables, k - max. domain size, w∗ - induced width, hT - pseudo-tree height. Grids and Pedigrees. Memory limit
4 GB, time limit 1 hour.

Type4 (Figure 2): wAOBF mostly dominates over all
Branch and Bound schemes. However, for larger i-bounds
wAOBB and wBRAOBB perform well, sometimes provid-
ing tighter suboptimality guarantees or report solutions in
less time than wAOBF. For example, for type4b 170 23,
i=12, wAOBB and wBRAOBB return solutions within 10
seconds, while wAOBF does not.

We conclude that weighted Branch and Bound schemes
are competitive and on 2 out of 4 benchmarks (Pedigrees
and WCSPs) they are often superior.

The Impact of Heuristic Strength
Figures 1 and 2 illustrate that in many cases the weighted
schemes tend to be superior to BRAOBB when there is a
significant distance between the i-bound which characterizes
the heuristic strength and the problem’s induced width. For
example, compare pedigree7, i=6 and i=16.

One explanation is that the weight may make the weak
admissible heuristic more accurate (a weak lower bound be-
comes stronger lower bound, closer to the actual optimal

cost, when multiplied by a constant).
For higher i-bounds there is typically little difference be-

tween the costs of the solutions, which are often exact (e.g.
all pedigree instances, i=20).

When both of the presented i-bounds values are far from
the induced width (e.g. type4 140 20, w∗ = 29, i-bounds
6 and 12), the weighted Branch and Bound schemes benefit
from the improved heuristics, as do the other schemes.

Summary
Figure 3 presents a different, more inclusive view of the data.
It shows the scatterplots comparing wAOBF and wAOBB
schemes. Each scatterplot corresponds to a single bench-
mark, for time 600 seconds and for a particular typical i-
bound. Since we are only interested in relative performance
comparison, we do not take into account the heuristic com-
putation time, which is the same for all schemes. Values
equal to 1.0 depict better performance. Each marker corre-
sponds to a single instance.

In Figure 3 shows that on Grid and Type4 benchmarks

76

Figure 2: Ratio of the cost obtained by some time point (10, 60, 600 and 1800 sec) and max cost. Max. cost = optimal, if
known, otherwise = best cost found for the problem. Corresponding weight - above the bars. The cases where BRAOBB proved
solution optimality is indicated by ’***’ above bars. In red - optimal solutions. Instance parameters are in format (n,k,w∗,hT),
where n - number of variables, k - max. domain size, w∗ - induced width, hT - pseudo-tree height. Type4 and WCSPs. Memory
limit 4 GB, time limit 1 hour.

wAOBF is often superior, as indicated by the many mark-
ers laying above the red diagonal. On Pedigrees wAOBB is
slightly better, and on WCSP wAOBB really shines, finding
visibly better solutions for the majority of instances.

The comparison between both of the weighted Branch and
Bound schemes and BRAOBB is presented in a summariz-
ing Table 4. Similar to Table 2 it shows the percentage of
problems for which wAOBB and wBRAOBB are superior
to BRAOBB, percentage, for which they are tied, and the to-
tal number of problems for which a solution was found. We
also show results for wAOBF for comparison.

The results in Table 4 agree with observations we made
earlier:

• The weighted BB schemes are sometimes considerably
superior to BRAOBB (e.g., wAOBB better on 44% of
problems on Grids, i=6, 60 sec; wBRAOBB is better on
70% on Pedigrees, i=6, 3600 sec).

• Unlike wAOBF, there is no obvious relation between the
time limit and the quality of weighted Branch and Bound
schemes’ performance. Sometimes they are more sucess-

ful for short time bounds (e.g. for WCSPs, i=6, wAOBB
is better than BRAOBB on 22.9% of problems for 60 sec,
but only on 16.3% for 3600 sec), but it is not always the
case.

• On Grids and Pedigrees wAOBB and wBRAOBB clearly
are better than BRAOBB on more instances when the
heuristic is weak. However, for Type4 and WCSPs larger
i-bounds yield better performance for most time limits.
Strong heuristics might be more crucial for these bench-
marks, since they are known to be harder than Grids and
Pedigrees.

Conclusion
The paper provides the first study of weighted depth-first
search over graphical models. We compared the new algo-
rithms with one of the most competitive Branch and Bound
schemes and with weighted best-first search. Our results
demonstrated that the weighted Branch and Bound algo-
rithms can be effective as anytime schemes, having the

77

Figure 3: wAOBB vs wAOBF: comparison of relative accuracy for 600 sec. Each marker is a single instance. Memory limit
4 GB, time limit 1 hour. In parenthesis (X/Y): X - # instances, for which at least one algorithm found a solution, Y - total #
instances.

I-bound Algorithm
Time bounds

60 600 3600
X% / Y% / N X% / Y% / N X% / Y% / N

Grids (# inst=32, n=144-2500, k=2, w∗=15-90, hT =48-283)

i=6
wAOBF 68.0 / 20.0 / 25 40.0 / 40.0 / 25 16.0 / 44.0 / 25
wAOBB 44.0 / 12.0 / 25 32.0 / 32.0 / 25 28.0 / 44.0 / 25

wBRAOBB 36.0 / 12.0 / 25 28.0 / 28.0 / 25 24.0 / 44.0 / 25

i=18
wAOBF 16.7 / 66.7 / 24 3.8 / 80.8 / 26 0.0 / 75.0 / 28
wAOBB 16.7 / 62.5 / 24 7.4 / 77.8 / 27 3.6 / 82.1 / 28

wBRAOBB 12.5 / 62.5 / 24 7.4 / 77.8 / 27 0.0 / 82.1 / 28
Pedigrees (# inst=11, n=581-1006, k=3-7, w∗=16-39, hT =52-104)

i=6
wAOBF 44.4 / 33.3 / 9 22.2 / 33.3 / 9 22.2 / 22.2 / 9
wAOBB 30.0 / 10.0 / 10 40.0 / 10.0 / 10 60.0 / 20.0 / 10

wBRAOBB 30.0 / 20.0 / 10 60.0 / 30.0 / 10 70.0 / 30.0 / 10

i=20
wAOBF 0.0 / 50.0 / 2 20.0 / 20.0 / 5 0.0 / 40.0 / 5
wAOBB 50.0 / 0.0 / 2 20.0 / 80.0 / 5 0.0 / 80.0 / 5

wBRAOBB 50.0 / 50.0 / 2 20.0 / 80.0 / 5 0.0 / 80.0 / 5
WCSP (# inst=56, n=25-1057, k=2-100, w∗=5-287, hT =11-337)

i=6
wAOBF 2.9 / 20.0 / 35 0.0 / 20.0 / 40 0.0 / 19.0 / 42
wAOBB 17.1 / 25.7 / 35 14.6 / 36.6 / 41 14.0 / 34.9 / 43

wBRAOBB 22.9 / 28.6 / 35 22.0 / 36.6 / 41 16.3 / 37.2 / 43

i=14
wAOBF 0.0 / 66.7 / 3 0.0 / 42.9 / 7 0.0 / 50.0 / 8
wAOBB 0.0 / 66.7 / 3 42.9 / 42.9 / 7 37.5 / 50.0 / 8

wBRAOBB 0.0 / 66.7 / 3 42.9 / 42.9 / 7 37.5 / 50.0 / 8
Type4 (# inst=10, n=3907-8186, k=5, w∗=21-32, hT =319-625)

i=6
wAOBF 80.0 / 0.0 / 10 90.0 / 0.0 / 10 90.0 / 0.0 / 10
wAOBB 20.0 / 0.0 / 10 50.0 / 0.0 / 10 50.0 / 0.0 / 10

wBRAOBB 10.0 / 0.0 / 10 20.0 / 0.0 / 10 50.0 / 0.0 / 10

i=18
wAOBF 100.0 / 0.0 / 1 100.0 / 0.0 / 9 88.9 / 11.1 / 9
wAOBB 100.0 / 0.0 / 1 88.9 / 0.0 / 9 88.9 / 0.0 / 9

wBRAOBB 100.0 / 0.0 / 1 88.9 / 0.0 / 9 88.9 / 0.0 / 9

Table 4: X% - percentage of instances for which each algo-
rithm is the better than BRAOBB at a specific time bound,
Y% - percentage of instances for which algorithm ties with
BRAOBB, N - number of instances for which at least one
of algorithms found a solution. # inst - total number of in-
stances in benchmark, n - number of variables, k - maximum
domain size, w∗ - induced width, hT - pseudo-tree height. 4
GB memory, 1 hour time limit.
.

added benefit of w-optimal solution, which are sometime
tighter than those by weighted best-first search.

Clearly, however, due to the fact that no algorithm is al-
ways superior, the question of algorithm selection requires
further investigation. We aim to identify problem features
that could be used to predict which scheme is best suited
for solving a particular instance. We also plan to automate
the algorithm parameter selection based on benchmarks or
problems, as well as enrich our set of schemes by consider-
ing, for example, dynamic weights.

An alternative to selecting a single scheme for a spe-
cific problem is combining our algorithms within a portfolio
framework, similar to e.g., SATzilla [(Xu et al. 2008)] and
PBP [(Gerevini, Saetti, and Vallati 2009)]. The question of
portfolio building and scheduling also will be studied in the
future.

Acknowledgement
This work was sponsored in part by NSF grants IIS-1065618
and IIS-1254071, and by the United States Air Force under
Contract No. FA8750-14-C-0011 under the DARPA PPAML
program.

References
Chakrabarti, P.; Ghose, S.; and De Sarkar, S. 1987. Ad-
missibility of AO* when heuristics overestimate. Artificial
Intelligence 34(1):97–113.
de Givry, S.; Schiex, T.; and Verfaillie, G. 2006. Exploiting
tree decomposition and soft local consistency in weighted
csp. In AAAI, 22–27.
Dechter, R., and Mateescu, R. 2007. AND/OR search spaces
for graphical models. Artificial Intelligence 171(2-3):73–
106.
Dechter, R., and Rish, I. 2003. Mini-buckets: A gen-
eral scheme for bounded inference. Journal of the ACM
50(2):107–153.
Flerova, N.; Marinescu, R.; and Dechter, R.
2014a. Weighted anytime search: new schemes
for optimization over graphical models. Report
R210:http://www.ics.uci.edu/ dechter/publications/r210.pdf.

78

Flerova, N.; Marinescu, R.; and Dechter, R. 2014b.
Weighted best first search for map. In The International
Symposium on Artificial Intelligence and Mathematics 2014.
Gerevini, A.; Saetti, A.; and Vallati, M. 2009. An auto-
matically configurable portfolio-based planner with macro-
actions: Pbp. In ICAPS.
Hansen, E., and Zhou, R. 2007. Anytime heuristic search.
Journal of Artificial Intelligence Research 28(1):267–297.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal basis
for the heuristic determination of minimum cost paths. IEEE
Trans on Systems Science and Cybernetics 4(2):100–107.
Huberman, B. A.; Lukose, R. M.; and Hogg, T. 1997. An
economics approach to hard computational problems. Sci-
ence 275(5296):51–54.
Kask, K., and Dechter, R. 1999. Mini-bucket heuristics for
improved search. In Proceedings of the Fifteenth conference
on Uncertainty in artificial intelligence, 314–323. Morgan
Kaufmann Publishers Inc.
Kask, K., and Dechter, R. 2001. A general scheme for au-
tomatic search heuristics from specification dependencies.
Artificial Intelligence 129(1–2):91–131.
Likhachev, M.; Gordon, G.; and Thrun, S. 2003. ARA*:
Anytime A* with provable bounds on sub-optimality. NIPS
16.
Marinescu, R., and Dechter, R. 2009a. AND/OR Branch-
and-Bound search for combinatorial optimization in graphi-
cal models. Artificial Intelligence 173(16-17):1457–1491.
Marinescu, R., and Dechter, R. 2009b. Memory intensive
AND/OR search for combinatorial optimization in graphical
models. Artificial Intelligence 173(16-17):1492–1524.
Nillson, N. J. 1980. Principles of Artificial Intelligence.
Tioga, Palo Alto, CA.
Otten, L., and Dechter, R. 2011. Anytime AND/OR depth
first search for combinatorial optimization. In SOCS.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artif. Intell. 1(3-4):193–204.
Richter, S.; Thayer, J.; and Ruml, W. 2010. The joy of
forgetting: Faster anytime search via restarting. In ICAPS,
137–144.
van den Berg, J.; Shah, R.; Huang, A.; and Goldberg, K.
2011. Anytime nonparametric A*. In AAAI.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2008.
Satzilla: Portfolio-based algorithm selection for sat. J. Artif.
Intell. Res.(JAIR) 32:565–606.

79

