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Abstract
In this paper we present Stochastic Tree-based Local Search
or STLS, a local search algorithm combining the notion of
cycle-cutsets with the well-known Belief Propagation to ap-
proximate the optimum of sums of unary and binary poten-
tials. This is done by the previously unexplored concept of
traversal from one cutset to another and updating the induced
forest, thus creating a local search algorithm, whose update
phase spans over all the forest variables.We study empirically
two pure variants of STLS against the state-of-the art GLS+

scheme and against a hybrid.

Introduction
The problem of optimizing discrete multivariate functions
or "energy functions" described as sums of potentials on
(small) subsets of variables is one of fundamental impor-
tance and interest in a wide variety of fields, such as com-
puter vision and graphical models. In the context of the lat-
ter, conditional probability tables (CPT) are used to describe
the relations between the variables of a model. Instances of
this problem arise in the form of Most Probable Explana-
tion (MPE) problems, where finding a maximum of such
energy functions composed of the CPTs translates to finding
an assignment of maximum probability given some partial
assignment as evidence.

Background
Definition 1 (Energy Minimization Problem). let x̄ =
x1, . . . , xN be a set of variables over a finite domain D, let
ϕi : D → R for i ∈ {1, . . . , N} be unary potentials, and
let ψi,j : D2 → R for a subset of pairs E ⊆ {{i, j} : 1 ≤
i < j ≤ N} be binary potentials, then the problem of energy
minimization is finding

x̄∗ = argminx̄
∑
i

ϕi (xi) +
∑
{i,j}∈E

ψi,j (xi, xj)

Definition 2 (Cycle-Cutset). Let G = (V,E) be an undi-
rected graph. A cycle-cutset in G is a subset C of V , such
that the graph induced on V ′ = V \C is acyclic.
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Algorithm 1 pseudo code of STLS/STLS∗.
STLS and STLS∗ differ in the restart and the cutset gener-
ation procerdures (see text). is_stagnated is set to TRUE
once no change has been made by both the BP and the local
search stages during a given number of iterations.
Input: Graph G = (V,E) annotated with potentials ϕi and

ψi,j .
Output: An assignment x̄ which achieves the minimum en-

ergy found in time t.
1 x̄← InitializeValues
2 while runtime < t do
3 C ← GenerateCutset(G)
4 F ← V \C;

// Alternate BP on forest variables
and local search on cutset variables

5 repeat
6 x̄|F ← BP_min_sum(G, x̄|C , F)
7 x̄|C ← SubsidiaryLocalSearch(G, x̄, C)
8 until no change in x̄;
9 if is_stagnated then

10 x̄← InitializeValues
11 is_stagnated← FALSE
12 end
13 end

Given an instance of the energy minimization problem,
a primal graph can be built, where every variable xi is as-
signed a vertex, and two vertices xi and xj are connected if
there exists a potential ψi,j . If the resulting graph is acyclic,
the problem can be solved efficiently using Belief Propa-
gation (BP) (Pearl 1988). If the graph is not acyclic, a cycle
cutset can be generated and an optimal assignment to the for-
est variables given the assignment to the cutset variables can
be found in a method known as “cutset-conditioning”(Pearl
1988; Dechter 2013).

STLS: Stochastic Tree-based Local Search
(Pinkas and Dechter 1995) suggested iteratively condition-
ing on a different cutset and finding exact optimal solution
on the rest variables as a possible scheme for dealing with
cycles in the graph. The algorithm can additionally perform
regular local search on the cutset variables. However, they
did not go further to establish the capabilities of this method.
The operation of of STLS is given in Algorithm 1. In ev-

204

Proceedings of the Seventh Annual Symposium on Combinatorial Search (SoCS 2014)



Set STLS STLS∗ Hybrid GLS+ Random GLS+

(# inst.) Best Ratio Best Ratio Best Ratio Best Ratio Best % of
best

Grids mean 2 (1) 1 2 (4) 1 17 (1) 1.02 0 (0) 0.75 0 (15) 95%
(21) max 3 (2) 1.04 3 (9) 1.04 15 (2) 1.03 0 (0) 0.86 0 (8)
CSP mean 15 (3) 1.19 14 (7) 1.18 13 (7) 1.17 20 (5) 1 21 (4) 77%
(29) max 19 (1) 1.19 18 (5) 1.19 16 (11) 1.18 20 (5) 1 21 (4)

Protein. mean 2 (4) 1 0 (0) 0.99 3 (1) 1 5 (2) 1 5 (2) 100%
(9) max 6 (1) 1 1 (2) 0.99 5 (2) 1 5 (1) 1 5 (2)

SGM. mean 32 (29) 0.94 0 (6) 0.85 37 (40) 0.99 53 (33) 1 57 (32) 100%
(90) max 37 (32) 0.96 30 (23) 0.96 42 (43) 0.99 55 (35) 1 52 (35)

Table 1: Statistics for average and maximal results over 10 runs on sets from PIC2011. The values presented refer to the results
obtained after 1 minute for the Segmentation set and 3 minutes for all other sets. Best is the number of the instances for whom
the algorithm achieved the best result (and second best in parenthesis). Ratio is the average ratio of the result obtained by the
algorithm to that of classic GLS+. For GLS+ the average ratio of the result to the best overall result is presented.

ery iteration an optimal assignment to the forest variables
is generated given the values of the cutset variables using
BP min-sum. Therefore, the energy of the system can not in-
crease from iteration to iteration and the resulting algorithm
is a local search algorithm finding the optimal solution on
all the forest variables in every iteration.

Two variants of STLS were tested, one which used
the cutset selection procedure of (Becker, Bar-Yehuda, and
Geiger 2000) and a simple restart scheme, and a more com-
plex variant named STLS∗, which uses previous assign-
ments to estimate a “certainty index”. The assignment his-
tory and the certainty index are used to heuristicly generate
new cutsets and in the initialization of restarts.

Experiments
The two variants of STLS were compared to GLS+ (Hut-
ter, Hoos, and Stützle 2005), another local search algorithm,
considered for the last decade to be the state-of-the-art, as
well as to a simple hybrid of STLS and GLS+. All algo-
rithms were run 10 times on problems from the Grids, CSP,
ProteinFolding and Segmentation problem sets of the PAS-
CAL2 Probabilistic Inference Challenge (PIC2011)1 (see
(Lee, Lam, and Dechter 2013) for a summary of the statis-
tics of these benchmark sets). The resulting energies were
sampled after 0.1, 1, 10, 60, 120, and 180 seconds (Segmen-
tation problems only up to 1 minute), and all the results of a
given instance were linearly normalized to the interval [0, 1],
mapping the worst result to 0 and the best to 1. In STLS and
STLS∗ the variables were initialized to an undefined value,
thus ignored until obtaining a valid value. GLS+ was ini-
tialized either randomly or using the customary Mini-Bucket
heuristic. The cutset variables were updated using the Hop-
field Model activation function as the local search algorithm
mentioned in line 7 of Algorithm 1. See results in Table 1.

Results and Future Work
As can be seen in Table 1, although the GLS+ variants do
manage to produce the best results more often, especially in

1http://www.cs.huji.ac.il/project/PASCAL/index.php

the Segmentation benchmark, the average ratios of the aver-
age and maximal results obtained by the various algorithms
to those of the classic GLS+ range from slight superiority
for GLS+ (ratio < 1) on the Segmentation benchmark to
significant dominance of the STLS algorithms on the CSP
benchmark. This implies that while GLS+ manages to pro-
duce the best results in many cases, it does not significantly
outperform STLS and it struggles considerably on some in-
stances. The overall improved performance of the hybrid im-
plies that either algorithm acts as a mechanism for avoiding
local optima by the other, and suggests the union of both
algorithms as a promising trail for further improvement.

In future work, the algorithm should be extended to han-
dle potentials of higher arity than 2 as well. Importantly,
STLS yields strong local optima (conditional optimal on
every forest), and therefore, in the limit it is as good as min-
sum belief propagation in quality, while it can be more effec-
tive computationally. Comparing with specific loopy belief
propagation scheme is left for future work as well.
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