
Improved Multi-Heuristic A* for Searching with Uncalibrated Heuristics

Venkatraman Narayanan
Carnegie Mellon University

Pittsburgh, PA, USA
venkatraman@cs.cmu.edu

Sandip Aine
Indraprastha Institute of Information

Technology, New Delhi, India
sandip@iiitd.ac.in

Maxim Likhachev
Carnegie Mellon University

Pittsburgh, PA, USA
maxim@cs.cmu.edu

Abstract

Recently, several researchers have brought forth the bene-
fits of searching with multiple (and possibly inadmissible)
heuristics, arguing how different heuristics could be inde-
pendently useful in different parts of the state space. How-
ever, algorithms that use inadmissible heuristics in the tradi-
tional best-first sense, such as the recently developed Multi-
Heuristic A* (MHA*), are subject to a crippling calibration
problem: they prioritize nodes for expansion by additively
combining the cost-to-come and the inadmissible heuristics
even if those heuristics have no connection with the cost-
to-go (e.g., the heuristics are uncalibrated) . For instance, if
the inadmissible heuristic were an order of magnitude greater
than the perfect heuristic, an algorithm like MHA* would
simply reduce to a weighted A* search with one consis-
tent heuristic. In this work, we introduce a general multi-
heuristic search framework that solves the calibration prob-
lem and as a result a) facilitates the effective use of multi-
ple uncalibrated inadmissible heuristics, and b) provides sig-
nificantly better performance than MHA* whenever tighter
sub-optimality bounds on solution quality are desired. Exper-
imental evaluations on a complex full-body robotics motion
planning problem and large sliding tile puzzles demonstrate
the benefits of our framework.

Introduction
The quality of the heuristic makes or breaks informed search
algorithms such as A* (Hart, Nilsson, and Raphael 1968).
An admissible heuristic guarantees optimality whereas an
informative (goal-directed) heuristic leads to faster solu-
tions. Unfortunately, designing heuristics that are both in-
formative and admissible is often challenging. To address
this, several algorithms have been developed over the years
that trade off optimality for speed by using heuristics that
are more goal-directed but inadmissible.

Inadmissible heuristics used in literature typically fall
in one of the following classes: (a) an inflated admissi-
ble heuristic or a weighted sum of admissible heuristics,
(b) an inadmissible estimate/approximation of an admissible
heuristic such as h+ (Hoffmann 2005), (c) an estimate of the
distance (number of edges) to get to the goal and, (d) an ar-
bitrary function that has nothing to do with the cost being

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

optimized (for example, a function of state-dependent fea-
tures or some domain-specific inadmissible heuristic). Most
informed search algorithms typically treat the inadmissible
heuristics in the same way as the admissible ones by com-
puting a priority g(s) + h(s) to determine which state to
expand. Computing the priority in this fashion poses unfor-
tunate problems especially for cases (c) and (d) as we are
mixing two fundamentally different quantities—g, which is
an estimate of the cost-to-come and h, the heuristic which
might have nothing to do with the cost-to-go. We term this
the calibration problem since g and h could be operating on
different units or scales.

The following example better illustrates the calibration
problem. Consider a robotics motion planning problem
where a dual-arm personal robot needs to move from one
room to another, and we want to minimize the distance trav-
eled by the robot. Each state in the graph represents the con-
figuration of the robot: its position in the world and the con-
figuration of its arms. Suppose that the robot starts out with
its arm spread out and that the search uses an admissible
heuristic computed as the Euclidean distance from the cur-
rent (x, y) location to the goal (x, y) location of the robot
base. While the search could start out well by expanding
states towards the goal it might get stuck at a doorway be-
cause its arms are spread out, thereby unable to generate suc-
cessor states that pass through the doorway. A typical heuris-
tic one might try to get around this problem is to say, for
states near the door, prefer expanding those states where the
arms are closer to being ‘tucked-in’ as they are more likely
to get the robot through the doorway. Such a heuristic has no
connection to the actual cost being minimized (the distance
traveled) and therefore it means very little to compute quan-
tities such as g(s) + h(s). This calls for an algorithm that
can handle uncalibrated heuristics in a non-additive fashion
and yet provide good quality solutions.

Recent work (Isto 1996; Röger and Helmert 2010; Aine
et al. 2014) furthers the utility of inadmissible heuristics by
convincingly arguing how multiple inadmissible heuristics
could improve search performance. The common argument
presented in these works is that each individual heuristic
might be useful in some part of the state space, and therefore
it might be more beneficial to use them in an independent
manner as opposed to combining them into one heuristic.
To build upon the previous example, the ‘tuck-arm’ heuris-

Proceedings of the Eighth International Symposium on Combinatorial Search (SoCS-2015)

78



tic might be useful when expanding states near the door,
whereas an ‘untuck-arm’ heuristic might be useful near the
goal state, say, where the robot needs to pick up an object.
Clearly, typical additive or max-like combinations of these
heuristics are not meaningful here—the search would prefer
expanding states where the robot arm is halfway between
tucked and untucked. On the other hand, the search would
benefit if they were used independently in different parts of
the state-space, such as one near the doorway, and the other
near the goal region.

In this work, we present a general multi-heuristic search
framework that is similar in spirit to Multi-Heuristic A*
(MHA*) (Aine et al. 2014), while making several signifi-
cant improvements including fixing the calibration problem
that could degenerate MHA* to weighted A* with one con-
sistent heuristic. We summarize the contributions and im-
provements over MHA* below:

1. A general multi-heuristic search framework, Improved
MHA*, which solves the calibration problem and thereby
permits the efficient use of multiple uncalibrated (and pos-
sibly inadmissible) heuristics. This allows for a complete
decoupling between the design of graph costs and heuris-
tics.

2. Three instantiations of the general framework with dis-
cussion on the pros and cons of each. We also show that
the original MHA* algorithm can be obtained as a varia-
tion of our more general framework.

3. Theoretical guarantees on completeness, bounds on sub-
optimality of the solution and bounds on number of re-
expansions of any state for all Improved MHA* variants,
when one consistent heuristic is available.

We evaluate the different instantiations of our framework
on two complex planning problems: the first, a real-world
robotics 11-DoF full-body motion planning problem for the
PR2 robot and the second, a large sliding tile puzzle prob-
lem. Our experiments show how the proposed framework is
able to utilize several uncalibrated heuristics seamlessly for
finding solutions.

Related Work
Inadmissible Heuristics
The use of inadmissible heuristics to trade off optimality
for speed has been well studied in heuristic search litera-
ture. Most notable amongst algorithms that use inadmissible
heuristics is weighted A* or wA* (Pohl 1970), which con-
structs an inadmissible heuristic by inflating an admissible
one. While inflated heuristics typically do help find solutions
faster because of their goal-directedness and help guarantee
w-optimality of the solution, they are limited in the sense
that they can only be constructed from admissible heuris-
tics. This rules out a large class of inadmissible heuristics
that could potentially help find a solution faster.

Inadmissible heuristics used in classical planning usually
try to approximate an admissible heuristic such as h+ (Hoff-
mann 2005). Some examples of these approximations in-
clude hadd, hFF, hlst, hLAMA etc. (Betz and Helmert 2009).
Since these are inadmissible estimates, they can be larger

than h+ by an arbitrarily large multiplicative factor (Betz
and Helmert 2009) or in other words, uncalibrated with
the actual cost-to-go. Consequently, using these uncalibrated
heuristics in the usual best-first manner by computing prior-
ities such as g(s) + h(s) could be inefficient as two out-
of-scale quantities are additively combined. Note that the
calibration problem exists only for best-first methods, i.e,
when we care about solution quality, and not when using
a greedy search algorithm. While many researchers opt for
greedy searches to find solutions faster, we target problems
where optimizing solution cost is also important.

Algorithms based on A∗ε (Pearl and Kim 1982) use an
inadmissible heuristic to speed up search, albeit in a dif-
ferent fashion. They operate by constructing a prefix of
the OPEN list called the FOCAL list and use a second
heuristic (typically an inadmissible estimate of the number
of ‘expansions-to-go’ from a given state) to decide which
state to expand from the FOCAL list. Explicit Estimation
Search or EES and its variants (Thayer and Ruml 2011;
Hatem and Ruml 2014) use a similar idea but employ a
secondary inadmissible heuristic to remove bias in the con-
struction of the FOCAL list. The success of these meth-
ods, though, predominantly relies on getting a good estimate
of the number of ‘expansions-to-go’. Further, these meth-
ods require states to be re-expanded arbitrarily many times
for guaranteeing desired sub-optimality bounds (Ebendt and
Drechsler 2009) on the solution cost. Nevertheless, our work
builds upon some of the ideas in these algorithms.

Multi-Heuristic Search
As noted in the introduction, searching with multiple heuris-
tics in an independent manner can be beneficial as it al-
lows users to design several heuristics that can be useful
in different parts of the state space. The Multi-Heuristic
A* (MHA*)1 algorithm (Aine et al. 2014) operates on this
idea and uses multiple inadmissible heuristics simultane-
ously to explore the search space. Despite allowing inad-
missible heuristics, MHA* can provide bounds on solution
quality and number of re-expansions of any state through the
use of a single consistent heuristic. While MHA* allows for
the use of a rich class of potentially informative inadmis-
sible heuristics (unlike weighted A* or A∗ε which constrain
the inadmissibility in some sense), it suffers from a serious
calibration problem: MHA* cycles through each available
inadmissible heuristic and decides whether to use an inad-
missible heuristic or the consistent heuristic based on an
anchor condition. However, this anchor condition involves
additively combining the cost-to-come g and the inadmis-
sible heuristic, leading to the calibration problem explained
earlier. As a result, it could happen that the anchor condi-
tion fails every time, thereby basically reducing to running
weighted A* with a consistent heuristic.

A multi-heuristic greedy best-first search is described
in (Röger and Helmert 2010) for satisficing planning. This
operates in a manner similar to MHA* by maintaining sev-
eral OPEN lists, each sorted based on a different heuristic.

1Throughout the paper, we will use MHA* to refer to the Shared
MHA* (SMHA*) variant (Aine et al. 2014)

79



States generated by an expansion from one OPEN list are
shared with all the other OPEN lists so that every heuris-
tic can independently look at different parts of the state
space. While this algorithm does not suffer from the calibra-
tion problem (since there is no notion of cost-to-come), the
solution quality could be arbitrarily bad and it cannot find
solutions that are within some user-defined sub-optimality
bound. A similar multi-heuristic search algorithm was used
for robotics motion planning (Isto 1996), but is also unable
to guarantee any bounds on solution quality.

In this work, we address the calibration problem that
MHA* suffers from while preserving its key benefit of ex-
ploring the state space with multiple heuristics. The pro-
posed multi-heuristic search framework, Improved MHA*,
has all the properties of MHA* while providing stronger
guarantees on efficiency.

Background
In this section we define the notation and terminology used
through the rest of the paper and provide an overview of
MHA* (Aine et al. 2014), on which our framework is devel-
oped.

Notation and Terminology
We assume the given planning problem can be represented
as a graph-search problem. Let S denote the finite set of
states of the planning domain. For an edge between s and
s′, c(s, s′) denotes the cost of the edge, and if there is
no such edge, then c(s, s′) = ∞. The successor function
SUCC(s) := {s′ ∈ S|c(s, s′) 6= ∞}, denotes the set of all
reachable successors of s. An optimal path from state s to s′
has cost c∗(s, s′) and the optimal path from sstart to s has
cost g∗(s).

Let g(s) denote the current best path cost from sstart to s
and h(s) denote the heuristic for s, typically an estimate of
the best path cost from s to sgoal. A heuristic is admissible if
it never overestimates the best path cost to sgoal and consis-
tent if it satisfies h(sgoal) = 0 and h(s) ≤ h(s′) + c(s, s′),
∀s, s′ such that s′ ∈ SUCC(s) and s 6= sgoal. OPEN denotes
a priority queue ordered by some priority function such as
g(s) + h(s) or g(s) + w · h(s) with w ≥ 1.

Definition 1 (Uncalibrated Heuristic). An uncalibrated
heuristic hu : S → R is a heuristic that induces a rank-
ing for a set of states, i.e, state si is ranked higher than state
sj by the uncalibrated heuristic hu if hu(si) > hu(sj). Note
that the uncalibrated heuristic has no relation to the cost-to-
go for a state and does not have non-negativity constraints.2

MHA*
MHA* assumes that there is one consistent heuristic h0
and n possibly inadmissible heuristics hi, i = 1, 2, . . . , n.
It maintains an anchor search (OPEN0), where states are
sorted by f0(s) = g(s) + w1 · h0(s) and n inadmissible
searches (OPENi, i = 1, 2, . . . , n), where states are sorted
by fi = g(s)+w1 ·hi(s). Note that the g-values for all states

2More generally, the uncalibrated heuristic could be a mapping
from X ∈ 2S , the power set of states, to some s ∈ X .

are shared across the searches, allowing the algorithm to au-
tomatically figure out which heuristics are useful at different
times of the search. MHA* cycles through each of the inad-
missible searches and expands the state at the top of OPENi
if the condition mins∈OPENi

fi(s) ≤ w2 ·mins∈OPEN0
f0(s)

is met, otherwise making an expansion from the anchor
search. While this condition enables MHA* to provide a
sub-optimality bound of w1 ·w2, it also creates a calibration
problem: since hi, i = 1, 2, . . . , n can be arbitrarily inad-
missible, fi(s) could be completely out-of-scale (for exam-
ple, several orders of magnitude larger) with f0(s), thereby
never meeting the required condition for expansion. Conse-
quently, MHA* would only expand states from the anchor
search, essentially reducing to running weighted A* search
with a single consistent heuristic.

Improved MHA*
Overview
Improved MHA* is designed to (a) guarantee that a solution
found is within a desired sub-optimality bound, (b) make
efficient use of the inadmissible heuristics, and (c) solve the
calibration problem. We first provide high level intuition for
each of the above three before going into the details.

An admissible heuristic provides a lower bound on the op-
timal solution cost g∗(sgoal), or the w-optimal solution cost
w ·g∗(sgoal) if using an inflated admissible heuristic such as
in wA* (Pohl 1970). Then given a desired sub-optimality
bound, one could run any search underneath (such as a
greedy search on an inadmissible heuristic) to find a feasi-
ble solution and check if the cost of that solution is less than
the lower bound derived from the admissible heuristic. Since
Improved MHA*, like the original MHA* has access to one
consistent (and hence admissible) heuristic, it can use the
procedure just described to run inadmissible greedy searches
underneath, while using the admissible heuristic to provide
guarantees on solution quality. However, the issue with run-
ning inadmissible or greedy searches underneath is that they
could be spending all their time expanding states from where
one can surely not obtain aw-optimal solution, thereby mak-
ing inefficient use of the inadmissible heuristics. Improved
MHA* addresses this by allowing the inadmissible searches
to only expand ‘promising’ states that have some possibility
of leading to a w-optimal solution. Different criteria for se-
lecting these promising states lead to different variants of the
algorithm. Finally, unlike MHA*, Improved MHA* operates
greedily on the uncalibrated inadmissible heuristics, never
additively combining them with the cost-to-come. This en-
sures that no heuristic is ‘skipped’ over, as might happen in
MHA* because of the calibration problem.

Algorithm
For most parts of the algorithm, Improved MHA* resembles
weighted A* (Pohl 1970) without re-expansions (Likhachev,
Gordon, and Thrun 2004). In fact, if we remove lines 18-
21 in Alg. 1, then the algorithm is identical to weighted
A* (wA*). The difference arises in the fact that we inter-
leave wA* expansions with ‘inadmissible’ expansions by

80



Algorithm 1 Improved MHA*: Requires instantiations of
TERM-CRITERION(s), PRIORITY(s), P-CRITERION(s)

Inputs:
The start state sstart and the goal state sgoal
Sub-optimality bound factor w (≥ 1)
One consistent heuristic h and n arbitrary (possibly inadmissi-
ble, uncalibrated) heuristics h1, h2, . . . , hn.

Output:
A path from sstart to sgoal whose cost is within w · g∗(sgoal).

1: procedure EXPANDSTATE(s)
2: Remove s from OPEN
3: for all s′ ∈ SUCC(s) do
4: if s′ was not seen before then
5: g(s′)←∞
6: if g(s′) > g(s) + c(s, s′) then
7: g(s′)← g(s) + c(s, s′)
8: if s /∈ CLOSEDa then
9: Insert/Update s′ in OPEN with PRIORITY(s′)

10: procedure MAIN()
11: OPEN← ∅
12: CLOSEDa ← ∅, CLOSEDu ← ∅
13: g(sstart)← 0, g(sgoal)←∞
14: Insert sstart in OPEN with PRIORITY(sstart)
15: while not TERM-CRITERION(sgoal) do
16: if OPEN.EMPTY() then return null

17: P-SET←{s : s ∈ OPEN
∧ s /∈ CLOSEDu

∧ P-CRITERION(s)}
18: for i = 1, . . . , n do
19: si ← argmins∈P-SET RANK(s, i)
20: EXPANDSTATE(si)
21: CLOSEDu ← CLOSEDu ∪ {si}
22: sa ← OPEN.TOP()
23: EXPANDSTATE(sa)
24: CLOSEDa ← CLOSEDa ∪ {sa}
25: return solution path

each of the n inadmissible heuristics. As in wA*, we main-
tain an OPEN list sorted by some priority (such as f(s) =
g(s)+w ·h(s)). Then the algorithm repeatedly performs the
following until a termination condition is satisfied: a subset
of the OPEN list called the potential set (abbreviated as P-
SET) is constructed (line 17). As explained earlier, states in
the P-SET are likely to lead towards a bounded sub-optimal
solution. Then, each available heuristic hi selects a state for
expansion from the P-SET according to a ranking function
RANK(s, i) (line 19). For an uncalibrated heuristic, this is
simply hi(s), whereas for a calibrated heuristic, the rank-
ing function is g(s) + w · hi(s). These states are expanded
and marked as expanded ‘inadmissibly’ (line 21). Finally,
the state at the top of OPEN (sa) is expanded ‘admissibly’
and marked as closed for the anchor search (lines 22-24),
following the same terminology as in (Aine et al. 2014). The
rationale behind making an admissible expansion during ev-
ery execution of the while loop (line 15) is that we might ob-
tain a tighter (larger) lower bound on the w-optimal solution
cost, which in turn provides more freedom for the inadmis-

s3

Figure 1: Illustration showing the operation of Focal-MHA*.
Each row depicts the OPEN list and the states selected for
expansion during an iteration over the available heuristics.

sible heuristics to ‘explore’ the state space.
As noted in the algorithm pseudocode, we need to provide

instantiations for the OPEN list priority, the termination cri-
terion, and the criterion for membership in the P-SET. We
present three variants of Improved MHA* based on differ-
ent instantiations of the said methods.

MHA*++ MHA*++ uses the following instantiations:

PRIORITY(s) : g(s) + w · h(s)
TERM-CRITERION(s) : g(s) ≤ max

s∈CLOSEDa

PRIORITY(s)

P-CRITERION(s) : g(s) + h(s) ≤ max
s∈CLOSEDa

PRIORITY(s)

MHA*++ uses a weighted A* search as its anchor and eval-
uates P-SET membership by comparing the unweighted pri-
ority (g(s) + h(s)) of a state with the maximum weighted
priority (g(s) + w · h(s)) of any state expanded admissi-
bly. Although typically one uses the minimum priority from
OPEN to obtain bounds, we use the maximum priority from
CLOSED since the anchor is a wA* search and the priori-
ties (f -values) need not be monotonically non-decreasing as
in regular A*. This way, we can maintain a monotonically
non-decreasing lower bound on the w-optimal solution cost
and provide maximum latitude for inadmissible expansions.

Focal-MHA* Focal-MHA* uses the following instantia-
tions:

PRIORITY(s) : g(s) + h(s)

TERM-CRITERION(s) : g(s) ≤ w · min
s∈OPEN

PRIORITY(s)

P-CRITERION(s) : g(s) + h(s) ≤ w · min
s∈OPEN

PRIORITY(s)

Focal-MHA* is so named because of its direct connection
with the A∗ε family of algorithms and their use of the FO-
CAL list (Pearl and Kim 1982). Here, the anchor search is
an optimal A* search and the P-SET is simply the FOCAL
list, i.e, it is a prefix of the OPEN list and contains states
whose f -values are within w of the best f -value in OPEN.
Figure 1 shows the operation of Focal-MHA*. During ev-
ery execution of the while loop (line 15 in Alg. 1), every
heuristic selects and expands a state from the FOCAL list
according to the RANK function, and finally the anchor state
(sa) itself is expanded.

81



Unconstrained-MHA* As suggested by the name,
Unconstrained-MHA* imposes no restrictions for member-
ship in the P-SET:

PRIORITY(s) : g(s) + w · h(s)
TERM-CRITERION(s) : g(s) ≤ max

s∈CLOSEDa

PRIORITY(s)

P-CRITERION(s) : true

This algorithm is similar to the multi-heuristic greedy best-
first search proposed in (Röger and Helmert 2010) in that
it uses each inadmissible heuristic to run an unconstrained
greedy search. However, the use of the anchor search in our
case enables us to guarantee bounds on solution quality.

Theoretical Analysis
All variants of Improved MHA* have guarantees similar to
MHA*: the sub-optimality of the solution found is bounded
by w times the cost of the optimal solution, and no state
is expanded more than twice (at most once by the anchor
search and at most once across all inadmissible searches). In
addition, MHA*++ and Focal-MHA* provide the guarantee
that if the search currently does not have a w-optimal solu-
tion through a particular state s in OPEN (i.e., the state is
not ‘promising’), then s will not be expanded inadmissibly.
This property is novel to Improved MHA* and distinguishes
it from MHA*. These properties are formalized below:

Theorem 1. At any point during the execution of Improved
MHA* (for all its variants), PRIORITY(sa) ≤ w · g∗(sgoal),
where sa = argmins∈OPEN PRIORITY(s)

Proof. (Sketch) For MHA*++ and Unconstrained-MHA*,
the proof for this theorem follows in a manner similar to
the proof for wA* without re-expansions (Likhachev, Gor-
don, and Thrun 2004). What makes it different from wA*
without re-expansions is that states can be expanded ‘out-of-
order’ by the inadmissible heuristics, possibly violating the
invariants maintained by wA*. However, by allowing any
state to be re-expanded a second time by the anchor search,
we can show that the anchor search can rectify the g-value
of any state s if g(s) > w ·g∗(s). This essentially proves that
the invariant maintained by wA* without re-expansions still
holds for Improved IMHA*, i.e, the priority of state sa at the
top of OPEN is a lower bound onw·g∗(sa) andw·g∗(sgoal).
A rigorous proof for this theorem would be identical to the
proofs provided for Shared MHA* (Aine et al. 2014).

For Focal-MHA*, the proof is identical to the above
except that we have a stronger bound: PRIORITY(sa) ≤
g∗(sgoal). This follows from the fact that the anchor search
is an optimal A* search. However, because w ≥ 1, the theo-
rem is trivially true for Focal-MHA* too. �

Corollary 1. At any point during the execution of Improved
MHA* (for all its variants), PRIORITY(sa) ≤ w · g∗(sgoal),
where sa = argmaxs∈CLOSEDa

PRIORITY(s)

Proof. CLOSEDa contains states that have been expanded
by the anchor search, i.e, those states that were at the
top of OPEN at some point during the search. From The-
orem 1, we know that every state in CLOSEDa has a

priority that lower bounds the w-optimal solution cost.
Specifically, the maximum priority of any of those states
maxs∈CLOSEDa

PRIORITY(S) is also a lower bound on w ·
g∗(sgoal). �

Theorem 2 (Bounded re-expansions). No state is ex-
panded (opened) more than twice by any variant of Im-
proved MHA*, i.e, a state can be re-expanded (re-opened)
only once.

Proof. For any state s to be expanded from OPEN, it must
first be inserted into OPEN and this happens only when ei-
ther s /∈ CLOSEDu or s /∈ CLOSEDa (lines 8 and 17). Fur-
ther, every expanded state s is added to either CLOSEDu or
CLOSEDa (lines 21 and 24). Thus, it immediately follows
that a state can be expanded at most twice before it is added
to both CLOSEDu and CLOSEDa. In fact, if a state is added
first to CLOSEDa before it is added to CLOSEDu, it will not
be expanded a second time at all (line 8). �

Theorem 3 (Bounded sub-optimality). All variants of Im-
proved MHA* terminate and when they do, the solution re-
turned (if one exists) has a cost which is at most w times the
cost of the optimal solution. In other words, when Improved
MHA* terminates, g(sgoal) ≤ w · g∗(sgoal).

Proof. The search terminates either on line 16 or
line 25. Termination on line 25 occurs only when
TERM-CRITERION is satisfied. Using Theorem 1 and Corol-
lary 1 with the termination criterion for each variant, we
see that the search terminates only when g(sgoal) ≤ w ·
g∗(sgoal), thus proving the theorem.

For the case when no solution exists, OPEN will be empty
(line 16) once every state in the graph has been expanded at
most twice (Theorem 2) and the search terminates. �

Theorem 4 (Efficiency). For MHA*++ and Focal-MHA*,
any state s with g(s) + h(s) > w · g∗(sgoal) will not be
expanded inadmissibly.

Proof. For MHA*++, P-SET membership requires g(s) +
h(s) ≤ maxs∈CLOSEDa

PRIORITY(s). From Corollary 1, we
see that states in the P-SET satisfy g(s) + h(s) ≤ w ·
g∗(sgoal). For Focal-MHA*, the anchor search is an optimal
A* search and thus mins∈OPEN PRIORITY(s) ≤ g∗(sgoal).
Using this in the P-SET membership criterion, we see that
all states in the P-SET satisfy g(s) + h(s) ≤ w · g∗(sgoal).
Thus, in MHA*++ as well as Focal-MHA*, a state with
g(s) + h(s) > w · g∗(sgoal) cannot belong to the P-SET,
and can thus never be expanded inadmissibly. �

Experimental Results
Motion Planning
We first evaluate the performance of the Improved MHA*
variants on an 11 degree of freedom (DoF) full-body robot
motion planning domain for the PR2 (a dual-arm mobile
robot). The objective is for the planner to generate a collision
free motion for the robot to approach and pick up objects
on cluttered tables in a kitchen environment. In addition to
controlling the right arm of the robot (in order to grasp the

82



Table 1: Comparison of different Improved MHA* variants with the original MHA* algorithm, MH-GBFS and RRT-Connect
for full-body motion planning.

w = 100 w = 10 w = 5

++ Focal Uncons Orig. ++ Focal Uncons Orig. ++ Focal Uncons Orig. MH-GBFS RRT-C

Success (%) 84 75 84 61 83 74 83 0 66 74 60 0 85 45
States Expanded 2415 3058 2415 5179 3293 3086 3227 - 2378 3086 2472 - 2752 n/a

Plan Time (s) 36.89 47.44 36.98 75.63 47.60 47.88 46.96 - 37.92 48.08 38.31 - 41.98 21.95
Base Cost (m) 5.33 5.47 5.33 5.47 5.32 5.52 5.33 - 4.77 5.52 4.49 - 5.45 5.22
Arm Cost (rad) 6.32 6.45 6.32 6.02 6.17 6.49 6.17 - 5.70 6.49 5.41 - 6.60 8.26

Figure 2: The kitchen domain for our experiments. Note the
randomly placed tables on the right with randomized clutter
on top. In the middle is a narrow door that separates the two
rooms. The different colored robots show node expansions
from each of the 20 different heuristics we used.

object) the robot generally starts out of reach and must drive
to the table before reaching. Specifically, the planner con-
trols the base’s position and orientation (x, y, θ), the height
of the prismatic spine which raises and lowers the torso,
the 6 DoF pose of the gripper in the robot’s body frame
(xhand, yhand, zhand, rollhand, pitchhand, yawhand), and
the arm’s “free angle” (which way the elbow is pointing).

Each state in the graph we plan on corresponds to a com-
plete robot configuration. From any state the robot has a
set of motion primitives it can apply, which are short kine-
matically feasible motions (Likhachev and Ferguson 2008;
Cohen, Chitta, and Likhachev 2010). Collision free motion
primitives connect pairs of states, thereby representing edges
in our graph. While there is a single start state, the goal
state is underspecified as any state that results in the gripper
reaching the object meets the goal conditions—for instance,
the robot could pick up the object from different (x, y, θ)
locations around the object.

Figure 2 shows the environment we ran our experiments
in. The domain is challenging due to the high dimension-
ality of the problem, cluttered tables, and narrow passages
which must be crossed (the robot’s base barely fits through
the doorway and only if the arm is tucked in). Determining
a single heuristic which can guide the base and arm toward
the goal and around obstacles is challenging. It becomes es-
pecially hard when there are conflicting ideas, like wanting
to extend the arm when reaching for the goal, but wanting to
tuck it when going through a door. A multi-heuristic search
is perfect for dealing with these heuristics with multiple (and

at times conflicting) components.
We designed 20 heuristics (19+1 anchor) to help guide

the search. 16 of these guide the base’s (x, y) position while
requiring different fixed base headings and a tucked arm.
These heuristics help navigation in tight spaces, but can’t
reach for the goal. There are then 3 other heuristics which
guide the arm to the goal with or without guiding the base to
a specific pose within arm’s reach of the goal. One guides
the base to a pose “behind” the goal (so that the gripper
faces forward when the robot gets there), the second focuses
on gripper orientation, while the third only tries to pull the
gripper to the proper position and orientation without influ-
encing the base position. Note that almost all of these heuris-
tics are inadmissible and uncalibrated. They serve as rank-
ing functions rather than estimates of cost-to-go—e.g., the
tuck-arm heuristic merely prefers to expand states where the
robot’s arm is tucked in as opposed to other states.

We generated 100 random trials. The two tables in the
kitchen are randomly positioned differently every 10 trials as
is the clutter on top of them. Each of the 100 trials is created
by choosing a random pose on one of the two tables for the
gripper to reach and the starting configuration for the robot
is randomly generated as well. A trial is deemed successful
if the planner can find a w-optimal solution within a time
limit of 5 minutes, and unsuccessful otherwise.

Table 1 compares the three variants, MHA*++, Focal-
MHA* and Unconstrained-MHA* with the original
MHA* algorithm for different sub-optimality bounds w,
as well as the multi-heuristic greedy best-first search
(MH-GBFS) (Röger and Helmert 2010) and RRT-
Connect (Kuffner and LaValle 2000). To uniformly
compare across all methods, the solution quality of the
generated paths is measured by the distance traveled by the
robot base and the arm (joint angles). The reported statistics
for a method are average values across its successful trials.

Unlike the Improved MHA* variants, the original MHA*
algorithm requires two sub-optimality factors w1 and w2,
for the inflation and anchor respectively. As recommended
in (Aine et al. 2014), we set w2 = min(2.0,

√
w) and

w1 = w/w2 for all our comparisons to get the same desired
sub-optimality bounds for each case. The Improved MHA*
methods significantly outperform the original MHA* algo-
rithm for lower sub-optimality bounds; in fact the original
MHA* algorithm fails to succeed on any trial at all. This
is expected, since MHA* essentially reduces to weighted
A* with a single heuristic when the inadmissible heuris-

83



tics are out-of-scale (several orders of magnitude greater)
with the consistent heuristic, or equivalently when the an-
chor sub-optimality factor (w2) is too small. For a large sub-
optimality bound (w = 100) however, MHA* provides a
reasonable success rate as was shown in (Aine et al. 2014).

MH-GBFS performs comparably to Unconstrained-
MHA* for larger sub-optimality bounds as expected, since
they both run unconstrained greedy searches. The high suc-
cess rate of these approaches can be attributed to the fact that
the inadmissible heuristics designed for this problem are all
useful at some point or another, thereby not really requiring
the ‘control’ provided by MHA*++ and Focal-MHA* when
operating at higher sub-optimality bounds. However, when
we desire lower sub-optimality bounds, it becomes essen-
tial to control the inadmissible searches, as can be seen from
Table 1 for w = 5. Characteristic of greedy search, MH-
GBFS has higher solution costs especially when compared
to MHA*++ and Unconstrained-MHA*.

RRT-Connect (Kuffner and LaValle 2000) is a popu-
lar sampling-based motion planning algorithm in robotics.
While it is known to quickly generate plans for high dimen-
sional problems, it suffers from a ‘narrow passage’ prob-
lem. In our experiments, the doorway in the kitchen cre-
ates a narrow passage in the 11-DoF configuration space,
thereby affecting RRT-Connect’s success rate. Moreover,
RRT-Connect does not explicitly minimize a cost and there-
fore the paths generated typically have high cost (Table 1).

Sliding Tile Puzzles
In this section, we present the experimental results for large
sliding tile puzzles (8× 8, 9× 9 and 10× 10). For each size,
we create 100 random (solvable) puzzle instances to build
our test suite. We evaluate the performance of the Improved
MHA* variants and MH-GBFS over the entire test suite. In
each case, we run the planner for a time limit of 5 minutes.

For this domain, we used a set of 9 heuristics (8 inadmissi-
ble + 1 anchor). We used the Manhattan distance plus linear
conflicts as the consistent heuristic (anchor). The inadmis-
sible heuristics were computed in the following manner: for
a given puzzle size, we generate a database of 1000 differ-
ent solved configurations by performing a random walk of k
steps from the goal state, where k is a random number be-
tween 2 and 10 times the puzzle size. For each configuration,
we store the path to goal and store k as the cost to goal.

We cluster this database in 8 parts using the heuristic dif-
ference between two configurations as the distance metric.
For a given instance to solve (say with configuration sc),
we pick one target configuration (tci) from each cluster,
such that the heuristic distance between sc and tci is min-
imum. Once a target configuration tci is chosen, inadmissi-
ble heuristic hi for any state s was computed by hi(s) =
w · h0(s, tci) + cost(tci) (note that this heuristic includes
inflation), where w is the desired sub-optimality bound. For
the original MHA* algorithm we set w2 = min(2.0,

√
w)

andw1 = w/w2 (we use hi(s) = w1 ·h0(s, tci)+cost(tci)).
It may be noted that unlike the full-body planning domain,
the inadmissible heuristics for this domain are not really un-
calibrated as these are computed using the same function as
the consistent heuristic (albeit with different target configu-

0

25

50

75

100

X1 X5 X10 X100

Heuristic Scaling Factor

In
st

a
n
ce

s
S
o
lv

ed

MHA*++Original MHA*

Figure 3: Comparison between the original MHA* and
MHA*++ for 9 × 9 puzzles (w = 10) for different scalings
of the heuristic. The x-axis shows the factors with which
the inadmissible heuristics are multiplied (e.g., ×5 denotes
multiplication by 5) and the y-axis shows the number of in-
stances solved (out of 100), within a time limit of 5 minutes.

rations). Therefore in this case, we use g+h ranking (we do
not inflate the heuristics here, as they are already inflated)
for the Improved MHA* variants (line 19 in Alg. 1), as it
takes into account the impact of g values.

We include the results for this domain in Table 2. The
first thing to note is that orginal MHA* does not perform as
poorly as in the full-body planning domain. This is expected,
as the heuristics used in this domain are not really out-of-
scale. However, even in this case, MHA*++ consistently
performs better/equivalent to the original on most trials, and
the improvement gets more pronounced with larger puzzle
size and lower desired sub-optimality bounds. As examples,
for the 9 × 9 puzzle with w = 5, original MHA* solves
61 instances whereas MHA*++ solves 87, and for 10 × 10
with w = 5, original MHA* solves 21 instances whereas
MHA*++ solves 42. This highlights the fact that even if we
have heuristics that are not out-of-scale, MHA*++ can dom-
inate original MHA* due to its improved control, ranking,
and expansion policies. Considering the other variants, we
observe that MHA*++ and original MHA* tend to do better
than others in most cases indicating that when the heuristic
is not out-of-scale, weighted best-first ranking is probably a
better choice than greedy ranking. However, there are cases
where the opposite is true (as seen for 9× 9 with w = 10).

To understand the impact of out-of-scale heuristics in the
puzzle domain, we did the following experiment: we mul-
tiplied the inadmissible heuristics by a chosen factor (5, 10
and 100) and ran original MHA* and MHA*++ for the 9×9
puzzle with w = 10. The results (Fig. 3) clearly depict the
impact of out-of-scale heuristics on original MHA*; its per-
formance degrades considerably as we make the heuristics
more out-of-scale, and after a point (10 and above) it reduces
to weighted A* (with additional overhead of multiple queue
updates). In contrast, MHA*++ remains robust to heuristic
scaling and outperforms MHA* by a significant margin.

84



Table 2: Comparison of different Improved MHA* variants with the original MHA* algorithm and MH-GBFS for sliding tile
puzzle problems.

Size w = 50 w = 10 w = 5

++ Focal Uncons Orig. ++ Focal Uncons Orig. ++ Focal Uncons Orig. MH-GBFS

8×
8

Success (%) 95 91 91 97 100 92 96 100 100 66 61 83 94
Plan Time (s) 18.16 38.56 27.74 20.70 18.23 28.03 22.65 18.14 19.56 39.43 42.95 26.31 28.45

Sol. Cost 1617.4 1883.6 1704.0 1573.1 1552.5 1848.9 1656.4 1438.4 1415.6 1642.5 1345.2 1302.7 1889.8

9×
9

Success (%) 94 69 85 93 97 61 86 77 87 46 28 61 71
Plan Time (s) 44.25 53.52 60.49 43.15 46.99 60.31 53.16 62.16 58.78 49.18 66.26 89.33 55.59

Sol. Cost 2127.6 2374.8 2350.6 2030.8 1988.6 2428.2 2196.8 1914.0 1750.2 2084.6 1560.2 1630.7 2447.0

10
×

10

Success (%) 41 24 35 44 51 27 34 36 42 19 10 21 24
Plan Time (s) 89.84 81.62 88.50 88.33 93.62 90.00 92.78 98.42 100.12 88.28 91.00 114.40 99.22

Sol. Cost 2523.1 2951.8 2800.3 2411.4 2449.9 2859.7 2571.5 2261.0 2251.9 2533.3 2075.4 1994.2 2663.4

Discussion
The experimental results show that different Improved
MHA* variants are useful under different circumstances.
The two influential factors in deciding which variant to use
are (i) the desired sub-optimality bound for the solution and
(ii) the quality of the one consistent heuristic, i.e, how close
h is to the perfect heuristic. Focal-MHA* uses an optimal A*
search for its anchor whereas MHA*++ and Unconstrained-
MHA* use a weighted A* search for their anchor. For Focal-
MHA*, the size of P-SET is determined only by the state
at the top of OPEN and the desired sub-optimality bound
(w), unlike the other two where the quality of the heuris-
tic also affects the size of the P-SET. Thus, one can expect
Focal-MHA*’s behavior to be more consistent across differ-
ent sub-optimality bounds as opposed to the other two, since
there is no interaction between w and h.

While it might seem that Unconstrained-MHA* does as
well as MHA*++ from Table 1, there can be cases where
MHA*++ is clearly better. This is true especially when we
desire low sub-optimality bounds or when the inadmissible
heuristic used is uninformative. Figure 4 shows a synthetic
example of a 2D Manhattan world planning problem where
MHA*++ performs much better than Unconstrained-MHA*
in the presence of a spurious inadmissible heuristic.

Finally, unlike MHA* which uses two sub-optimality fac-
tors w1 and w2, Improved MHA* requires only a single fac-
tor w. This permits a natural extension to an anytime algo-
rithm that can improve its solution quality over time. Fur-
thermore, we would like to note that alternative schedul-
ing strategies (Phillips et al. 2015) could be used to cycle
through the set of available heuristics, instead of the round-
robin scheme presented here (line 18 in Alg. 1).

Conclusions
We presented a general multi-heuristic search framework,
Improved MHA*, which can use multiple inadmissible and
uncalibrated heuristics in a synergetic fashion to find a so-
lution. We presented three variants of the framework and
for each, provided theoretical guarantees on completeness,
bounded sub-optimality and bounded re-expansions. Addi-
tionally, we proved that two of the variants can use the in-
admissible heuristics efficiently by focusing them only on

G

S

22

14

14

G

S

8 8

8

8

Figure 4: An example showing the advantage of MHA*++
over Unconstrained-MHA* in the presence of a spurious
inadmissible heuristic. Assume that for this 2D Manhat-
tan world problem, the consistent heuristic h is the per-
fect heuristic and that there is one inadmissible heuristic h1
which prefers expanding states closer to the lower left cor-
ner. Let the desired sub-optimality bound w = 1.5. For this
example, g∗(sgoal) = 6 and w · g∗(sgoal) = 9. The shaded
cells show the states which can be expanded inadmissibly
by h1 for Unconstrained-MHA* (left) and MHA*++ (right).
Also marked on select cells is the g∗(s) + h∗(s) value, the
cost of the optimal path through that cell. As seen from the
illustration, Unconstrained-MHA* can spend a lot of effort
expanding states which cannot lead to a w-optimal solution.

promising states. We evaluated our algorithm on complex
11-DoF robotics motion planning problems and sliding tile
puzzles and showed that it significantly outperforms the
original MHA* algorithm.

The use of multiple heuristics for search naturally raises
the possibility of parallelization. While A* is a fundamen-
tally sequential algorithm, we believe that the structure pro-
vided by Improved MHA* can be exploited for parallel ex-
pansion of states from the P-SET. Finally, we anticipate that
Improved MHA* will provide a platform for the design and
use of uncalibrated heuristics that have no relation with the
cost-to-go, but might effectively guide best-first searches.

85



Acknowledgments
We would like to thank the anonymous reviewers for their
helpful suggestions and feedback. This research was spon-
sored by the ONR DR-IRIS MURI grant N00014-09-1-
1052.

References
Aine, S.; Swaminathan, S.; Narayanan, V.; Hwang, V.; and
Likhachev, M. 2014. Multi-heuristic A*. In Proceedings of
Robotics: Science and Systems.
Betz, C., and Helmert, M. 2009. Planning with h+ in theory
and practice. In KI 2009: Advances in Artificial Intelligence.
Springer. 9–16.
Cohen, B. J.; Chitta, S.; and Likhachev, M. 2010. Search-
based planning for manipulation with motion primitives. In
Robotics and Automation (ICRA), 2010 IEEE International
Conference on, 2902–2908. IEEE.
Ebendt, R., and Drechsler, R. 2009. Weighted A*
search–unifying view and application. Artificial Intelligence
173(14):1310–1342.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2):100–107.
Hatem, M., and Ruml, W. 2014. Simpler bounded subopti-
mal search. In Proceedings of Twenty-Eighth AAAI Confer-
ence on Artificial Intelligence. AAAI Press.
Hoffmann, J. 2005. Where’ignoring delete lists’ works:
Local search topology in planning benchmarks. Journal of
Artificial Intelligence Research 685–758.
Isto, P. 1996. Path planning by multiheuristic search via sub-
goals. In Proceedings of the 27th International Symposium
on Industrial Robots, CEU, 71272–6.
Kuffner, J. J., and LaValle, S. M. 2000. Rrt-connect: An
efficient approach to single-query path planning. In ICRA,
995–1001. IEEE.
Likhachev, M., and Ferguson, D. 2008. Planning long
dynamically-feasible maneuvers for autonomous vehicles.
In Proceedings of Robotics: Science and Systems (RSS).
Likhachev, M.; Gordon, G. J.; and Thrun, S. 2004. ARA*:
Anytime A* with provable bounds on sub-optimality. In Ad-
vances in Neural Information Processing Systems 16. Cam-
bridge, MA: MIT Press.
Pearl, J., and Kim, J. H. 1982. Studies in semi-admissible
heuristics. Pattern Analysis and Machine Intelligence, IEEE
Transactions on (4):392–399.
Phillips, M.; Narayanan, V.; Aine, S.; and Likhachev, M.
2015. Efficient search with an ensemble of heuristics. In
Proceedings of the Twenty-Fourth International Joint Con-
ference on Artificial Intelligence. AAAI Press (to appear).
Pohl, I. 1970. First results on the effect of error in heuristic
search. Machine Intelligence 5:219–236.
Röger, G., and Helmert, M. 2010. The more, the merrier:
Combining heuristic estimators for satisficing planning. In
ICAPS’10, 246–249.

Thayer, J. T., and Ruml, W. 2011. Bounded suboptimal
search: A direct approach using inadmissible estimates. In
IJCAI 2011, Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, 674–679.

86




