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Abstract

This paper makes two pedagogical contributions. First, we
describe two macro operators for best-first search algorithms:
the collapse macro where a subtree is deleted from memory
and its best frontier value is stored in its root, and, the restore
macro (the inverse of collapse) where the subtree is restored
to its previous structure. We show that many known search
algorithms can be easily described by using these macros.
The second contribution is an algorithm called Iterative Lin-
ear Best-first Search (ILBFS). ILBFS is equivalent to RBFS.
While RBFS uses a recursive structure, ILBFS uses the regu-
lar structure of BFS with occasionally using the collapse and
restore macros. ILBFS and RBFS are identical in the nodes
that they visit and have identical properties. But, I believe that
ILBFS is pedagogically simpler to describe and understand;
it could at least serve as a pedagogical tool for RBFS.

Introduction
Best-first search (BFS) is a general scheme. It seeds an open
list (denoted as OPEN) with the start state. At each expan-
sion cycle the most promising node (best) from OPEN is
removed and its children are generated and added to OPEN
while best is moved to a closed list (denoted as CLOSED).
Special cases of BFS differ in their cost function f . For ex-
ample, A* is a BFS with f(n) = g(n) + h(n), where g(n)
is the sum of the edge costs from the start to n and h(n) is a
heuristic estimation of the cost from n to a goal.

The main structure of BFS, i.e, always expanding a
node on OPEN with minimal f -value ensures that under
some conditions (known as cost algebra) (Stern et al. 2014;
Edelkamp, Jabbar, and Lluch-Lafuente 2005) it has a num-
ber of optimal properties. For example, that A* with an ad-
missible heuristics returns the optimal path and is optimally
effective. Therefore, many search algorithms use this BFS
structure but they add enhancements or modifications on top
of this structure. The list of relevant algorithms is so large
that we omit a list of references.

This paper makes two pedagogical contributions. First, it
describes two macro operators for BFS algorithms: collpase
and restore. A collapse action occurs at a closed node r. The
subtree below r is removed from both OPEN and CLOSED
and r is moved to OPEN along with the minimal f -value
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among the nodes of the frontier of the deleted subtree. Later,
a restore macro can be applied to restore the subtree to its
previous structure. We show that many known search al-
gorithms (e.g., IDA* (Korf 1985), SMA* (Russell 1992),
LookaheadA* (Stern et al. 2010) and EPEA* (Goldenberg
et al. 2014)) can be easily described by the BFS scheme plus
different ways of using the collapse and restore macros.

Recursive Best-First Search (RBFS) (Korf 1993) is a
fascinating algorithm which is strong competitor to IDA*.
However, unlike IDA*, RBFS is very complicated to grasp,
especially for new comers. One needs to spend quite some
time in order to fully understand RBFS and appreciate its
beauty. This is probably one of the reasons that in prac-
tice many implementers and researchers refrain from using
RBFS and it is not as commonly used as IDA*. The sec-
ond contribution of this paper tries to remedy this by intro-
ducing an algorithm called Iterative Linear Best-first Search
(ILBFS). ILBFS is a variant of RBFS which uses the reg-
ular structure of BFS but also uses the collapse and restore
macros. ILBFS and RBFS are identical in the nodes that they
visit. But, I believe that ILBFS is much simpler to describe
and understand and that ILBFS could serve as a pedagogical
tool for easily understanding RBFS. Hopefully, ILBFS will
cause more researchers and practitioners to understand and
consider to use RBFS.

The collapse and restore macros
In this section we focus on two techniques which are used
by different search algorithms in different contexts but were
never spelled out on their own. We call these general tech-
niques: collapse and restore of frontier nodes.

A known invariant in best-first search algorithms is that
OPEN is a perimeter of nodes around the start state. We call
this the perimeter invariant. This invariant implies that at
all times during the course of the algorithm (i.e., before the
goal node was chosen for expansion), there exists a node in
OPEN along any path to the goal. This invariant is easily
proven by induction. It is initially true when OPEN only in-
cludes that start state. The induction step is on the expand
action. Assume a node x was selected for expansion. While
it is removed from OPEN, all its successors are added to
OPEN.1 Let P be a path to the goal and let n ∈ P be a

1We assume that in case of inconsistent heuristics closed nodes
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Figure 1: collapsing the frontier

node in OPEN before the expansion of x. If x 6= n then n
is still in OPEN after the expansion cycle. If x = n then n
is now removed from OPEN. Let n′ be the successor of n in
P . n′ ∈ P was just added to OPEN.

This invariant can be generalized to the subtree invariant.
Let r be a node that was generated by the best-first search
algorithm. At any point of time thereafter, a complete cut
of the subtree rooted at r must be present in OPEN. The
perimeter invariant above is a special case of the subtree in-
variant where r is the initial node of the search.

This invariant can be used in a reverse order too. Any set
of frontier nodes in OPEN can be removed and replaced by
their common ancestor (or ancestors) and the invariant still
holds. This entails the collapse macro defined next.

The collapse macro
For simplicity we assume that all nodes in OPEN and
CLOSED have parent pointers and that all nodes in
CLOSED also have pointers to their children.

Let r be a node in CLOSED and let T (r) be the subtree
rooted at r that includes all of r’s descendants that were
already generated by the algorithm. Note that the internal
nodes, including r itself, of this subtree, denoted by Ti(r),
are in CLOSED while the frontier nodes of this subtree, de-
noted by Tf (r), are in OPEN.2 The collpase(r) macro is
defined as follows:

(1) Ti(r) is removed from CLOSED.
(2) Tf (r) is removed from OPEN.
(3) r is added to OPEN with the best f -value in Tf (r).
(4) A binary variable r.C is set to True to denote that r

is on OPEN but it is a root of a subtree that was collapsed.
This means that the f -value of r was propagated from one
of its descendants. This variable is optional. In some cases
(as described below) this variable is not used.

The collapse macro is illustrated in Figure 1 where the
entire left subtree rooted at n is collapsed into n. f(n) is now
changed to 8, the minimal f -value among all the collapsed
leaves. In addition, n.C is set to True.

We borrow the terminology first used in RBFS (Korf
1993). We use f(n) (small f ) and the term static value to de-
note the regular f -value of a node n. The minimal f -value
of the leaves propagated up to a common ancestor n by a
collapse action is called the stored value of n and is denoted
by F (n) (capital F ). In Figure 1, the static value of n is
f(n) = 5 while its stored value is F (n) = 8. When the
search reaches a node n in OPEN with F (n) 6= f(n), we
know that n has been expanded before and that its stored

are re-opened and then re-expanded.
2For simplicity, we assume here that this is the first time that

the collapse macro is activated.

value is the minimal frontier node below n. But, in general,
in some cases it might be that F (n) = f(n). For this reason
we use the binary variable n.C to denote whether the stored
value F (n) is a result of a collapse action or not.

We note that the collapse macro is a general idea. It may
be implemented or partially implemented in many ways.

The restore macro
The restore macro is the inverse of collapse. It can be ap-
plied on a node r from OPEN where r.C = True. In this
case, we restore the same subtree that was collapsed back
into OPEN and CLOSED. Collapse is a form of lossy com-
pression. Therefore, the main question that arises is whether
we can identify the exact same subtree that was collapsed
only by the F -value stored at r. There is no definitive an-
swer to this and this is algorithm/domain dependent.

A simple, special case for restore is when the f -value of
nodes is monotonically non decreasing along any path. This
happens for example, when the heuristic h is admissible and
consistent. In this case, we can grow a tree below r as long
as we see f -values that are smaller than F (r). This can be
done, e.g., with a depth-first search (DFS) below r. In this
DFS when a node n is generated with f(n) < F (r) it is
expanded and added to CLOSED. When a node n is gener-
ated with f(n) ≥ F (r) then n is added to OPEN with f(n),
n.C is set to False and the DFS then backtracks from n.
This ensures that we restore the subtree below r such that
the minimal f -value in Tf (r) is F (r).

The restore macro is more problematic when there is no
guarantee that the f -value is monotonically non decreasing
along paths, for example, when using f(n) = g(n) +W ×
h(N) for W > 1 (as in WA*). Here, if we stop the DFS be-
low r when we reach a node m with f(m) > F (r) we have
no guarantee that we are in the frontier of the collapsed tree
as there might be descendants of m with smaller f -values.
However, there are cases where the restore macro is fully ap-
plicable even without the monotonicity property. This hap-
pens for example for both ILBFS and RBFS described be-
low. These algorithm activate the restore macro in such a
way that the old collapsed tree is fully restored (see below).

Known algorithms using the macros
The collapse and restore macros are used by many algo-
rithms, many of which can be easily described with these
macros. We cover such algorithms in this section.

IDA*
IDA* can be seen as performing restore and collapse actions
on the root node as follows. First, h0 = h(root) is calcu-
lated. Then, restore(root, h0) is called where we activate
the DFS method described above.3 Then, until the goal is
found, we loop as follows. We call Collpase(root) and then
we call restore(root, F (root)).4

3Logically, this not an actual restore because that tree was never
available. But, this is indeed a DFS with the relevant bound.

4It is important to note that IDA* follows a best-first expansion
order (i.e., generates new nodes across iterations in a best-first or-
der according to f = g+h.) only if the cost function is monotonic.
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SMA*
Simplified Memory-bounded A* (SMA)* (Russell 1992) is
a memory efficient variant of A*. It performs basic A* cy-
cles until memory is full. In this case, it can only expand a
node and add a node to OPEN if another node is deleted. To
free space, the node in OPEN with the worst f -value is cho-
sen and deleted. But, at this point, a collapse action is called
on its parent so that the best value of the parent’s children is
now stored.5 When a root r of a collapsed subtree is chosen
for expansion then SMA* expands and generates the nodes
below it one by one. However, it uses the pathmax method to
pass F (n) from parents to children along that subtree. This
can be seen as a restore macro.

A* with lookahead
A* with lookahead (AL*) (Stern et al. 2010; Bu et al. 2014)
uses the same basic expansion cycle of A*. The least cost
node n from OPEN is expanded and moved to CLOSED,
and its children are generated and added to OPEN. After a
node n is expanded, a limited lookahead is first performed
from n by using a DFS. This DFS is bounded by a parameter
K which allows the DFS to continue as long as it reaches
nodes m for which f(m) ≤ f(n) + K. This DFS can be
seen as a restore action. Then, f -values are backed up to n
and this can be seen as a collapse action on node n. In AL*,
again we perform a restore action before a collapse action.

Partial expansion A*
Partial expansion A* (PEA*) (Yoshizumi, Miura, and Ishida
2000) and its enhanced version EPEA* (Felner et al. 2012;
Goldenberg et al. 2014) also uses the collapse macro. When
expanding node n, PEA*/EPEA* first generates a list C(n)
of all the children of n. However, only the subset of C(n)
with f -values that are equal to F (n) are added to OPEN.
The rest children are collapsed into node n and n is added
back to OPEN with the smallest f -value among the children.
No restore macro is used here.

RBFS
Recursive best-first search (RBFS) (Korf 1993) is a linear-
space algorithm which simulates best-first search expan-
sions. In this sense, it is a strong competitor to IDA* (Korf
1985). The main advantage of RBFS over IDA* is that in
RBFS new nodes are expanded in a best-first order even if
the f -function is not monotonically increasing. By contrast,
IDA* expands new nodes in a best-first only for monotoni-
cally increasing f -functions. Due to their linear-space com-
plexity both algorithms suffer from the same problem of not
being able to detect duplicates. Experimental results and an-
alytical studies show pros and cons in the performance of
these algorithms and neither of these can be declared as a
winner over the other (Korf 1993).

In practice, however, IDA* is massively used by re-
searchers and is considered the benchmark algorithm for

This is due to the exact the same reason just described for a restore
macro that is implemented by a bounded DFS.

5In fact, SMA* performs partial collapse actions (called backup
in that paper) every time a node is generated.

performing linear-space BFS. According to Google Scholar
(April 28, 2015), IDA* is cited 1572 times while RBFS is
cited 328 times . An enormous number of research papers
use, study or enhance IDA* while RBFS is rarely used or
studied. Neller (2002) used RBFS as its leading algorithm
while Hatem, Kiesel and Ruml. (2015) recently published a
paper that provides an enhancement to RBFS. But, these are
rare exceptions compared to the number of papers published
on IDA*. What is the reason for this gap?

W. Ruml, one of the authors of (Hatem, Kiesel, and Ruml
2015) said in his talk at AAAI-2015: “for many years, I was
afraid of RBFS”. His was afraid by the fact that RBFS may
bounce back and forth from different areas of the search tree.
Indeed, Hatem et al. provided a technical enhancement to
RBFS that remedies this behavior.

The author of this paper believes that the reason that re-
searchers refrain from using RBFS and use IDA* instead,
is not necessarily the disadvantages of RBFS (as discussed
and addressed by Hatem et al. (2015) but its pedagogical
complexities. The pedagogical difficulties of understanding
IDA* and RBFS are in opposite extremes. IDA* is very
easy to understand and to implement even for beginners.
A few explanations together with a simple running exam-
ple is enough for seeding this algorithm in a classroom of
students. By contrast, RBFS is very complicated. Even the
most talented teacher will need several hours to teach it and
no student will be able to fully grasp its elegant behavior
and appreciate its beauty without reading the explanations
on RBFS a few more times and performing a decent num-
ber of practice runs on arbitrary example trees. In fact, R. E.
Korf who invented both IDA* and RBFS realized that RBFS
is pedagogically complex and said that: “most people do not
understand it”.6

Iterative linear best-first search
To remedy this, based on the macros defined above, I would
like to introduce an algorithm called Iterative linear best-
first search (ILBFS). ILBFS is fully identical to RBFS in the
nodes it visits but its logical structure is different. Instead of
describing RBFS and then moving to ILBFS, we will do the
opposite as ILBFS is easier to understand in my opinion.
Then, one may move to its recursive variant namely RBFS.
ILBFS simulates RBFS using the classic best-first search
framework, i.e., it maintains an OPEN and CLOSED list
and essentially performs a series of expansion cycles. Nev-
ertheless, in order to ensure the linear space requirement, it
heavily uses the collapse and restore macros. I believe that
pedagogically, ILBFS should be taught/explained first.

Best node chosen for expansion
Before moving to ILBFS, we first present an important ob-
servation that we will need below.

In a regular implementation of BFS the currently known
search tree is stored in memory at all times, where all the in-
ternal nodes are in CLOSED and all the frontier nodes are in
OPEN. Let oldbest be the node just expanded by BFS, i.e.,
oldbest was deleted from OPEN and its b children were just

6Personal communication with the author (Summer 1998).
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Figure 2: Best-first search tree and how ILBFS develops it

added to OPEN (where b is the branching factor). Let best
be the new best node in OPEN. There are now two possible
cases with regards to the identity best:

• Case 1: best is a child of oldbest. In this case, BFS log-
ically operates like a DFS. The search deepens one level
below oldbest and adds the children of best to the tree.

• Case 2: best is not a child of oldbest but is somewhere
else in the tree. BFS now moves to another location of
the tree and performs the expansion operation at that lo-
cation. But, oldbest is kept in CLOSED and its children
are kept in OPEN. This behavior contributes to the expo-
nential growth of OPEN (with respect to the depth of the
tree) as at each point of time one node is deleted from
OPEN but b nodes are added instead, without necessarily
increasing the depth of the tree.

Tree of ILBFS
We now move to explaining ILBFS. Regular BFS stores the
entire search tree in memory. By contrast, ILBFS only stores
one branch of internal nodes plus their immediate children.
Let principal branch denote the branch of internal nodes that
includes all ancestors of best. ILBFS stores the principal
branch and their immediate children, i.e., ILBFS stores the
branch that has best in its bottom level. In addition, the fact
that only this branch can be stored in memory is called the
principal branch invariant.

Figure 2(a) presents a typical tree where leaf nodes (dou-
ble framed) are in OPEN. The rightmost node n is best. Fig-
ure 2(b) presents the way ILBFS stores this tree. Only the
principal branch (i.e., the right branch of internal nodes) and
their children are stored in memory. Other parts of the tree
are collapsed into children of the principal branch. Given
that d is the depth of the tree and that b is the branching fac-
tor, then the amount of memory needed will be O(b× d) =
O(d) assuming b is constant. Therefore, the amount of mem-
ory needed for ILBFS is linear in the depth of the search tree.

High-level description of ILBFS
ILBFS uses the regular best-first search expansion cycle and
it mimics a regular BFS on the complete tree. However, it is
restricted to keep the principal branch invariant and it occa-
sionally calls collapse/restore actions as described next.

ILBFS maintains two data structures: (1) TREE: includes
the principal branch and its immediate children. (2) OPEN:
includes the frontier of TREE.

ILBFS needs to keep the principal branch invariant in both
cases defined above for the relation between oldbest and
best as follows:

• Case 1: Here, best is a child of oldbest. In this case
ILBFS is identical to regular BFS. best is chosen for ex-
pansion and its children are added to OPEN. The principal
branch invariant is kept but it becomes one level deeper.

• Case 2: best is not a child of oldbest.7 ILBFS cannot yet
go ahead and expand best (as in regular BFS) as this will
violate the principal branch invariant. ILBFS overcomes
this difficulty as follows. Let A be the common ancestor
of oldbest and best. Due to the principal branch invariant
A must be the parent of best. In addition, let B be the
sibling of best (B is a child of A) which is also an ancestor
of oldbest. In order to keep the principal branch invariant
the subtree below B is collapsed into B.

For example, assume that node n of Figure 2(b) was ex-
panded as oldbest. Its children are added to the tree (fig-
ure 2(c)). Next, the the leftmost node with F = 7 is the new
best. Since best is not a child of oldbest we identify A the
common ancestor of best and oldbest. Similarly, we identify
B, A’s child which is also an ancestor of oldbest. We then
activate the collapse macro on B as shown in Figure 2(d).

Finally, the last issue that needs to be taken care of is that
sometimes a node best in OPEN is chosen for expansion
but its F -value was collapsed from one of its descendants.
This can be detected by checking the best.C variable. In this
case, we apply the restore macro on best to reveal the real
best node from the frontier. In fact, we only want to restore
the principal branch. This is shown in Figure 2(e). We deal
with the low-level details of how this is done below.

The high-level pseudo code for ILBFS is presented in Al-
gorithm 1. The basic structure of a regular best-first search
is easily recognized. Lines 7–11 make sure that the princi-
pal branch invariant is kept. The collapse macro is called in
lines 8–9. The restore macro is called in lines 10–11.

Low level implementation of ILBFS
We now cover low-level details of ILBFS. In particular, we
will give the exact pseudo code for the collapse and restore
macros used by ILBFS. To do this we provide a more de-
tailed pseudo code of ILBFS in Algorithm 2.

7best refers to the node currently in OPEN with the minimal F -
value, even if its value was collapsed from one of its descendants.
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Algorithm 1: High-level ILBFS
Input: Root R

1 Insert R into OPEN and TREE
2 oldbest=NULL
3 while OPEN not empty do
4 best=extract min(OPEN)
5 if goal(best) then
6 exit

7 if oldbest 6= best.parent then
8 B ← sibling of oldbest that is ancestor of best
9 collapse(B)

10 if best.C=True then
11 best← restore(best)

12 foreach child C of best do
13 Insert C to OPEN and TREE

14 oldbest← best

Collapse in ILBFS
The exact implementation for the collapse macro in ILBFS
is presented in Lines 7-11 of Algorithm 2. We have both
oldbest and best at hand. The branch of oldbest and its chil-
dren is collapsed iteratively, bottom up, until we reach B,
the sibling of the new best node. When this node is reached,
the while() sentence is no longer true and the loop ends.

For example, in Figure 2(c) after oldbest was expanded
and the new best node best is revealed we realize that
oldbest is not the parent of best. Therefore, the children
of oldbest are collapsed into oldbest and oldbest is placed
back in OPEN (Line 9). Next we do the same for its parent
and continue this up the branch until we reach node B which
is the sibling of the new best node.

Restore in ILBFS
Performing the restore action is challenging and perhaps the
only complex pedagogical step in ILBFS. All we have at
hand is a node best together with its stored value F (best).
How do we re-generate the principal branch to its structure
before the collapse action?

Here we rely on an observation that was first seen by Korf
in the original RBFS paper (Korf 1993). We repeat it here in
the context of ILBFS.

Observation 1: In ILBFS after a collapse action is ap-
plied on a node B then F (B) > f(B).

Proof: Let oldbest and best be the best nodes chosen for
expansion in successive cycles and let B be the ancestor of
oldbest (the sibling of best) for which we activated the col-
lapse action. Since best is in OPEN and since only the prin-
cipal branch is stored, then there must have existed a point
of time where both best and B were in OPEN for the first
time (after expanding their ancestor). Then, B was chosen
for expansion which means that f(B) ≤ F (best). best was
always in OPEN until a point where all nodes in the frontier
below B have f -values larger than F (best) (assuming we
break ties in a depth-first order). At this point best is cho-
sen for expansion and everything below B is collapsed to
F (B) > F (best) ≥ f(B).

Algorithm 2: Low-level ILBFS
Input: Root R

1 Insert R into OPEN and TREE
2 oldbest=NULL
3 while OPEN not empty do
4 best=extract min(OPEN)
5 if goal(best) then
6 exit

7 while (oldbest 6= best.parent) do
8 oldbest.val← min(values of oldbest children)
9 Insert oldbest to OPEN

10 Delete all children of oldbest from OPEN and TREE
11 oldbest← oldbest.parent

12 foreach child C of best do
13 F (C)← f(C)
14 if F (best) > f(best) and F (best) > F (C) then
15 F (C)← F (best)

16 Insert C to OPEN and TREE

17 oldbest← best.

Above, we defined a binary variable n.C that says
whether node n is a root of a collapsed subtree or not. This
was a general definition. Here, for ILBFS (and for RBFS as
well) this binary variable is not needed because we can make
this distinction solely based on Observation 1 as follows:

Observation 2: Assume best is chosen for expansion. If
F (best) > f(best) then based on Observation 1 (applied
on best), we know that best is a root of a collapsed subtree
whose best frontier node had f -value of F (best). Otherwise,
(if F (best) = f(best)) it is on the frontier.8

When F (best) > f(best) we must therefore apply the
restore macro. Since F (best) is the minimal frontier value
collapsed from the children of best, then we know that every
child below best was at least as large as F (best). Therefore,
during the restore process on best we can propagate F (best)
to its child c if F (best) > f(c). We call this the restore prop-
agation rule which is similar to the pathmax method (Felner
et al. 2011). In Figure 2(e) we propagate the value of 7 from
parents to children below them according to this rule.

Now we are interested to reach a node below best that
was on the frontier with f -value of F (best). For this we
just perform a depth-first search below best where we set
the bound of the DFS to F (best). During the DFS, if we
reach a node n with f(n) > F (best) we backtrack. If
f(n) < F (best) we generate all children of n. For each
child c we set F (c) = max(F (best), f(c)) to keep the re-
store propagation rule. This DFS continues until we reach
a node n with f(n) = F (best). This means that we have
reached the old frontier. At this point we have a new princi-
pal branch whose bottom level include the actual best node
from the restored frontier. Then, ILBFS continues as usual.

8The case where F (best) < f(best) will never occur as we
seed F (best) = f(best) and it never decreases (see pseudo code
below). It is also important to note that Observations 1 and 2 are
valid even in the case where the f -cost function is non-monotonic.
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BFS SMA* ILBFS AL* EPEA*
Memory bd M b× d bd−k bd−1

Collapse No lazily eagerly always always

Table 1: Continuum of algorithms

In fact, the restore phase can be performed by just contin-
uing ILBFS as usual as long as we apply the restore prop-
agation rule. This process is shown in lines 12–15 of Algo-
rithm 2 for a given step. The main while() loop continues
according to regular BFS and the new best node will be the
best child of best after applying the propagation rule (lines
14–15). We will deepen in the tree along one branch until
we get to a node n where f(n) = F (best). This is a node
on the frontier and new nodes will be revealed below it.

Continuum of algorithms
We now put three of the BFS algorithms discussed so far
into a continuum according to their memory needs and the
frequency and performing collapse and restore on ancestors
of nodes in the frontier. These algorithms are the leftmost
three columns of Table 1. Regular BFS does not apply the
macros and needs bd memory. SMA*, consumes at most
M memory (size of memory available) and performs the
macros lazily when memory is exhausted. ILBFS performs
the macros eagerly, every time the best node is not a child
of the old best node, as described above. Thus, ILBFS needs
the least amount of memory among the three algorithms –
b×d. In fact, we might activate ILBFS but apply the collapse
macro less strictly. In this case we will have more parts of
the search tree in memory and get closer to SMA*.

AL* and EPEA* are also shown in this table. Both AL*
and EPEA* activate the collapse and restore macros at ev-
ery node expansion for a fixed depth (k for AL* and 1 for
EPEA*) regardless of the memory available. This is done
in a manner that is different than the other three algorithms
which basically try to collapse non-promising nodes. We
thus do not see AL* and EPEA* as part of this continuum.

RBFS and its relation to ILBFS
Now after we presented ILBFS, we can pedagogically move
to its recursive version, RBFS. Again, we note that RBFS
was invented first but we believe that after ILBFS is well
understood, RBFS will be much easier to understand com-
pared to understanding RBFS from scratch.

It is well known that DFS can be implemented iteratively
using an OPEN list or recursively via the recursion stack.
A similar relation occurs between ILBFS and RBFS. RBFS
performs exactly the same steps as ILBFS. ILBFS always
stores the principal branch and its children in OPEN and
CLOSED. RBFS uses recursive calls. The same nodes are
kept in memory albeit in the recursion stack.

The key point to understand RBFS and ILBFS is the fact
that in order to preserve a best-first order, all that is needed is
to keep track of two nodes, the best node in OPEN (best) and
the second best node in OPEN (best2). We expand best and
generate its children. The next best node is either best2 or
one of the children of best who becomes the new best2. The

RBFS(n, B)
1. if n is a goal
2. solution← n; exit()
3. C ← expand(n)
4. if C is empty, return∞
5. for each child ni in C
6. if f(n) < F (n) then F (ni)←max(F (n), f(ni))
7. else F (ni)← f(ni)
8. (n1, n2)← bestF(C)
9. while (F (n1) ≤ B and F (n1) <∞)

10. F (n1)← RBFS(n1, min(B,F (n2)))
11. (n1, n2)← bestF(C)
12. return F (n1)

Figure 3: Pseudo-code for RBFS.

main difference between ILBFS and RBFS is how these val-
ues are stored. In ILBFS, best2 is naturally stored in OPEN.9
By contrast, RBFS is recursively applied on a node with an
upper bound which equals to the second best node that was
generated so far in the tree. This is a virtual bound that is up-
dated on the fly according to some formulas given in RBFS.
This makes RBFS much harder to understand.

We now describe RBFS and recognize the collapse and
restore macros hidden behind the recursive structure. Instead
of providing our own description we borrow the description
of RBFS and its pseudo code from the most recent paper on
RBFS (Hatem, Kiesel, and Ruml 2015).10 Our remarks are
given in brackets in bold fonts.

Pseudo-code for RBFS is shown in Figure 3. Its argu-
ments are a node n to be explored and a bound B that rep-
resents the best f value of an unexplored node found else-
where in the search space so far. [Our remark: node n is best
while B is the F -value of best2. In ILBFS, we have best2 at
hand.] Each generated child node is given an f value, the
usual g(ni) + h(ni), and an F value, representing the best
known f value of any node below ni that has not yet been
expanded. The F value of a child node is set to f the first
time it is ever generated (line 7). We can determine that
a child node is being generated for the first time by com-
paring its parent’s f with its parent’s backed-up value F
(line 6). If f(n) < F (n) then it must have already been
expanded and the child nodes must have already been gen-
erated. [Our remark: this is similar to Observations 1 and 2
above.] If a child has been generated previously, its F value
is set to the maximum of the F value of the parent or its own
f value. Propagating the backed-up values down previously
explored descendants of n improves efficiency by avoiding
the backtracking that would otherwise be necessary when f
decreases along a path. [Our remark: this is exactly the restore
macro and the restore propagation rule].

RBFS orders all child nodes by their current F (line 8)
and expands the child with the lowest value (bestF returns
the best two children according to F ). [Our remark: the fact
that we only need the best two children complicates the issue.

9In case of a previous collapse, best2 is of course the ancestor
of the real best2 and we will need to restore it.

10Most of the text is copied verbatim from that paper. We thank
the authors for graciously sharing the text with us.
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This was maintained naturally with ILBFS as all these nodes
are now added to OPEN which is ordered by definition.] Each
child node with an F that is within B is visited by a recursive
call [Our remark: if it is within B it is best in OPEN and will
be expanded naturally by ILBFS] using an updated thresh-
old min(B,F (n2)), the minimum cost of a node generated
so far but not yet expanded. (If there is just one child then
F (n2) returns ∞.) Setting the threshold this way for each
recursive call allows RBFS to be robust to non-monotonic
costs. [Our remark: in ILBFS the second best node and the
node with F = B are nodes in OPEN. There is no need to
say anything along these lines when describing ILBFS.] If F
goes down along a path, the threshold for the recursive calls
will be lower than B to preserve a best-first expansion or-
der. [Our remark: this is preserved naturally by ILBFS which
keeps a best-first order by definition] If all child costs exceed
the threshold, the search backtracks (lines 9 and 12). [Our
remark: this is the collapse macro of children up to the parent.
In this case, the best node in OPEN is elsewhere in the tree.]
This is represented by B. When RBFS backtracks (line 10),
it backs up either ∞ or the best f value of a node not yet
expanded below node n1, the child with the currently lowest
F . Backing up a value of∞ indicates that there are no fruit-
ful paths below n1 and prevents RBFS from performing any
further search below it.

Comparison between ILBFS and RBFS
The most important role of ILBFS is its pedagogical struc-
ture. The author of this paper believes that it will be much
easier to teach RBFS after ILBFS is first described. How-
ever, ILBFS can also be implemented on its own right and
we now compare the implementation of the two algorithms.

Both algorithms will need the same amount of memory
(b × d) to store the principal branch and its children. While
ILBFS stores all these nodes in a user supplied data struc-
tures, RBFS uses the recursion stack storing the branch and
each level in the stack stores a node and its children.

As for runtime. For ILBFS the size of OPEN is O(b× d).
Therefore each operation on OPEN will take O(log(d)) as-
suming that b is a constant. This time overhead is negligible.
For RBFS, we note that at line 8, the algorithm returns the
smallest two nodes among the children. This takes O(b).11

In addition, it is well known that DFS-based algorithms
do not need to store the entire state and when moving from a
parent to a child they can only store the delta above the par-
ent. When the DFS backtracks this delta is undone. ILBFS
can implement this too because it always moves from a par-
ent to a child or backtracks. In particular, in case 2 above,
when the new best node is in another location in the search
tree, ILBFS backtracks to the common ancestor via the col-
lapse phase and then deepens to the new best node via the re-
store phase. Thus, these incremental changes can be imple-
mented rather naturally in ILBFS too. Our implementation
of ILBFS was around 1.3 slower than the fast implementa-
tion of RBFS which was written by Korf.

11In the original RBFS paper (Korf 1993) a complete sort is sug-
gested on all children. But, since b is expected to be very small this
is a negligible addition.

Therefore, from the implementing point of view, an im-
plementer may choose either ILBFS or RBFS according to
his/her personal preferences.

Conclusions
We highlighted the collapse and restore macros. We then
presented ILBFS, an iterative variant of RBFS. We believe
that ILBFS is easier to understand pedagogically. We thus
recommend instructors to use it when they teach RBFS.
Even if one still favors to implement RBFS, ILBFS is an
interesting variant of RBFS and has importance on its own.

There were two problems with RBFS. First, its problem-
atic node regenerations. This was remedied by Hatem et
al. (2015). Second, it was hard to understand. Hopefully, this
current paper will remedy this issue.
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