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Abstract
The paper considers solving the multiple sequence alignment,
a combinatorial challenge in computational biology, where
several DNA RNA, or protein sequences are to be arranged
for high similarity. The proposal applies randomized Monte-
Carlo tree search with nested rollouts and is able to improve
the solution quality over time. Instead of learning the position
of the letters, the approach learns a policy for the position of
the gaps. The Monte-Carlo beam search algorithm we have
implemented has a low memory overhead and can be invoked
with constructed or known initial solutions. Experiments in
the BAliBASE benchmark show promising results in improv-
ing state-of-the-art alignments.

Introduction
Multiple sequence alignments (MSA) are frequently used
for the analysis of DNA, RNA, or protein sequences in or-
der to determine the evolutionary relation between species
with a common ancestor, to predict the so-called sec-
ondary/tertiary structure, as well as the functional centers,
in which as few possible mutations as possible occur (as-
suming that similar sequences inherit similar structures and
function).

Computational biologists have declared the MSA problem
to be a holy grail (Gusfield 1997). One reason is that solving
this problem often leads to a high memory demands, which
has been partially leveraged with frontier search (Hirschberg
1975; Korf et al. 2005), refined heuristics, and variants of
memory-limited (Zhou and Hansen 2002; 2003) or iterative-
deepening heuristic search (Schrödl 2005). Most of these
approaches provide strategies to limit exploring the search
space induced by dynamic programming (Bellman 1957).
Tools like Clustal(W/Omega) and Blast compute approxi-
mate MSAs with probabilistic models.

Algorithmically, MSA boils down to the cost-optimal
alignment of strings. Smaller problems can be solved op-
timally and the dynamic programming solution relates to
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approximate string matching. Precursor work in AI showed
considerable scaling but often neglects biological relevant
features like the inclusion of similarity cost matrices and
affine gap costs. Exceptions are iterative deepening dynamic
programming (Schrödl 2005), its externalization (Edelkamp
and Kissmann 2007), and a search variant using partial
expansion (Hatem and Ruml 2013). Still, the memory re-
quirements raise exponentially with the problem complexity
(measured in the sum of the input sequences).

In this paper we apply fixed-memory-bound randomized
search that incorporates no expert knowledge in form of
refined heuristics. The algorithm that we chose has suc-
cessfully been used for vehicle routing (Cazenave 2012;
Edelkamp and Gath 2014). It applies a series of random
walks (rollouts) and learns a mapping (policy) for sampling
the search space. It is able to improve over existing solutions
and incorporates initial alignments into the search. As other
algorithms are memory-bound, with its low memory profile
it can serve as an add-on over existing approaches.

The paper is structured as follows. First, we provide a con-
cise formulation of the MSA problem. Next, we consider
the implementation of Monte-Carlo tree search that we have
adapted to MSA optimization. Experimental results in the
BAliBASE benchmark show advances to the state-of-the-art.

Problem Formulation
We start with some formal definitions.

Definition 1 (Sequence Alignment) Given a set of n se-
quences S = {s1, s2, . . . , sn} with s

i

2 ⌃

⇤ for all i =

1, 2, . . . , n, and ⌃ being a final alphabet. A sequence align-
ment (of length k) consists of a set of n sequences A =

{a1, a2, . . . , an} with a
i

2 ⌃

0⇤ for all i = 1, 2, . . . , n, where
⌃

0
= ⌃ [ {“ � ”} and “ � ” /2 ⌃. For each aligned se-

quence a
i

2 A we have length |a
i

| = k. If all letters “�”
are removed from a

i

2 A, we get back s
i

. For n = 2, the
alignment is pairwise, for n > 2 multiple.

Definition 2 (Gap, Number, Length, Position) A gap G
consists of a single or a sequence of letters g = “ � ”.

Proceedings of the Eighth International Symposium on Combinatorial Search (SoCS-2015)

9



I

I

A

G

CG

s1:
CTAFK

CGCTAFK

LACGCTAFK

I GCGCTGFK

I GCGCTLFK

LASGCTAFK

LACACTAFK

s2:
s3:
s4:
s5:
s6:
s7: s4 s5 s6 s7

s2 s3

s1

A ! G

I ! LA ! G

A ! L C ! S G ! A

Figure 1: An MSA and its phylogenetic tree.

Moreover gaps num(a
i

) is the number of empty letters in
the aligned sequence a

i

2 A and |G| the length of gap G.
Particularly we have |G| = 1 for G = hgi and letter g is
located at position gap pos

i

(g) in sequence a
i

2 A.

For DNAs the alphabet ⌃
DNA

is {A,G,C,T} denoting the
nucleo bases adenin, guanin, cytosin and thymin. For RNA
the nucleo base uracil, abbreviated by U is used instead of
thymin, so that ⌃

RNA

= {A,G,C,U}. The protein alphabet
contains 20 amino acids.

In an alignment all sequences are written on top of each
other such that the number of columns with matching letter
is maximized. Gaps are inserted to slide letters in the align-
ment. A substitution occurs, if two different letters meet; a
gap is a deletion and/or an insertion of a letter and called
indel. The assumption is that the alignment with the least
number of indels is biologically most plausible.

Fig. 1 shows an example of a protein MSA with n =

7 having no gaps, and the according phylogenetic tree
where internal nodes denote the ancestor sequences, where
I (Isoleucine), L (Leucine), F (Phenylalanine), K (Lysine)
and S (Serine) are the one-letter abbreviations for the amino
acids. To judge the quality of an MSA an evaluation function
is required.

Definition 3 (Evaluation Function) An evaluation is a
function F : A ! R. For a pairwise alignment A =

{a1, a2} with a
i

= hc
i1ci2 . . . ciki and c

ij

2 ⌃

0, i = 1, 2
and j = 1, 2, . . . , k, its evaluation is the sum of similar-
ities f of all alignment columns F (A) = F (a1, a2) =P

k

j=1 f(c1j , c2j). For a MSA A = {a1, a2, . . . , an} the
evaluation is the sum of values for all sequence pairs
F (A) = F (a1, a2, . . . , an) =

P
n�1
i=1

P
n

j=i+1 F (a
i

, a
j

).

The evaluation function by (Levenshtein 1966) is used
to compute edit distances. For DNA alignment we sup-
port scoring matrices used in WU-BLASTN (Altschul et al.
1990) and FASTA (Pearson 1994), and for protein align-
ment the PAM (Point Accepted Mutation) matrix (Day-
hoff, Schwartz, and Orcutt 1978; Boeckenhauer and Bon-
gartz 2010), the PET91 matrix (Jones, Taylor, and Thorn-
ton 1992), and BLOSUM (BLOck SUbstitution Matrix)
(Henikoff and Henikoff 1992).

Definition 4 (Optimal MSA) Let A be the set of all MSAs
that can be generated by a set of sequences S =

{s1, s2, . . . , sn}. The optimal MSA A? 2 A is an MSA
with F (A?

) = min

A2A F (A), if the evaluation is based
on distances or F (A?

) = max

A2A F (A).

Definition 5 (MSA Problem) Given a set of sequences
S = {s1, s2, . . . , sn}, the MSA problem is to find the op-
timal MSA for A? for S.

For a set of sequences more than one optimal MSAs may
exist (Fig.2) yielding different biological explanations. All
solutions have the same edit-distance 4. F (A) can calculate
not only the similarities (maximum problems) but also the
dissimilarities (minimum problems).
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Figure 2: Two sequences with 7 optimal MSAs.

We consider affine gap costs where gap opening has cost
op and gap extension cost ex (per extension), so that gap
G has total cost P (G) = op + ex · |G|. Unfortunately, for
biologists the values of op and ex in this refined cost model
may vary (Hodgman, French, and Westhead 2010).

For a rising number of sequences the MSA problem is NP-
hard (Wang and Jiang 1994). For n sequences of maximal
length q, standard dynamic programming (DP) computes an
optimal solution with memory O(qn) and time O(2

n · qn),
so that alternative algorithms are required.

The algorithm iterative-deepening dynamic programming
(IDDP) (Schrödl 2005) combines dynamic programming
with iterative-deepening A* on the graph representation of
the DP matrix. It expands edges not nodes. A lower bound
h(e) is devised based on precomputed pattern database of
triples. We have f(e) = g(e) + h(e), so that f(e) for an
edge e is the estimated cost of a path of the start edge to
reach the end edge via the current edge e IDDP inherits the
advantages of DP and IDA*, it has a fixed ordering so that
every node is visited once and includes a lower bound for
guidance. A partial expansion alternative to IDDP has been
proposed and parallelized by (Hatem and Ruml 2013).

Monte-Carlo Tree Search
Monte-Carlo search denotes a class of randomized tree
search algorithms that has been designed for search spaces
with large node branching factors and weak evaluation func-
tions. By learning the proper choice of successors over
time they can converge to the overall optimal solutions.
In single-agent search, a series of optimization problems
have been solved, e.g., TSPs with Time Windows (Rimmel,
Teytaud, and Cazenave 2011; Cazenave and Teytaud 2012;
Cazenave 2012) and Morpion Solitaire (Cazenave 2009;
Rosin 2011).

Nested Monte-Carlo Search (NMCS) (Cazenave 2009) is
a recursive algorithm that contributes to the fact that it is
more important to erect the solution on the result of a recur-
sive optimization process than looking at the next step only.

Nested Rollout Policy Adaptation (NRPA) (Rosin 2011)
combines NMCS with policy learning. In NRPA we also ap-
ply nested search but a state-to-state policy is adapted. The
branching being defined by an additional parameter called it-
eration. In every iteration a new random simulation (rollout)
is conducted by sampling the policy. Improved solutions in-
duce changes. In each level of the search an individual policy
obtains a compromise between exploration and exploitation.
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Algorithm 1: BeamNRPA(level, pol)
1: if level = 0 then
2: seq  alignment(seq, pol)

3: return (weight(seq), seq, pol)
4: else
5: beam {(1, {}, pol)}
6: for N iterations do
7: new beam {}
8: for all (v, s, p) in beam do
9: insert (v, s, p) in new beam

10: temp beam BeamNRPA(level� 1, p)

11: for all (t v, t s, t p) in temp beam do
12: t p adapt(p, t s)

13: insert (t v, t s, t p) in new beam

14: beam the B best beams in new beam

15: return beam
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Figure 3: The search tree for a sample pairwise alignment.

Beam Nested Rollout Policy Adaptation (BeamN-
RPA) (Cazenave 2012) is a variant of NRPA that maintains
a policy for each solution, and a set of good solutions for
each search level. The size of the set in level i is called beam
and denoted by B

i

. The pseudo-code is shown in Alg. 1. For
each solution in a level BeamNRPA is called with level�1.
At the end B

level

best solutions are generated return, so
that the policies in higher search levels can be adapted. The
adaptation of the policy is based on Bellmann updates and
the same as in NRPA. The advantage of BeamNRPA is that
it generalizes NRPA and naturally supports prior knowledge
in form of solutions seeds.

MCTS for MSA
The intuitive method for the MSA problem is to enumerate
possible alignments and after evaluating them, to choose the
best one. The search tree can be constructed by a sequence of
decisions and solved via NRPA and BeamNRPA. We study
two possible encodings.

We assume that each letter v in ⌃

0 has a fixed location
index(v), so that for a string V = {v1, v2, . . . , vn} in ⌃

0⇤

we obtain index(V ) =

P
n

i=1 index(vi) · |⌃0|
n�i , where n

is the length of V and |⌃0| the size of the alphabet.

Construction of All Alignment Columns
An MSA consists of columns. Every column is a string in
⌃

0n. In the search tree we generate, the root represents an
empty node and all other nodes a column in the alignment.
Thus, an MSA corresponds to a path from the root to the leaf
(Fig. 3, optimal MSAs of Fig. 2 have bold edges).

Algorithm 2: alignment col(alignment, policy)
1: char idx {1, . . . , 1}
2: align idx 1

3: col alignment.start

4: repeat
5: col.num enumeration(col.alternatives, char idx, 0)

6: sum = 0.0

7: for i 1 to col.num do
8: value[i] exp(policy[align idx][col.alternatives[i]])

9: sum sum + value[i]

10: r  rand([0, . . . , sum])

11: i 1

12: sum value[1]

13: while sum < r do
14: i i + 1

15: sum sum + value[i]

16: col.index col.alternatives[i]

17: transform the index col.alternatives[i] to the corresponding string
18: and save in col.string

19: for i 1 to n do
20: if col.string[i] is not a gap then
21: char idx[i] char idx[i] + 1

22: align idx align idx + 1

23: col col.next

24: until all sequences are read through
25: return alignment

During the construction the first step is to recursively enu-
merate all possible strings that may appear in this column
(see Alg. 3). The depth of the tree is n as all strings have to
have the same length. In each level for every letter of an al-
ternative string s

i

we have a) if all letters have been inserted
then the following columns are labeled by a gap (line 6). b)
if there are remaining letters that have a fit, then they are in-
serted to the MSA and the position i in this column either
is the corresponding letter in s

i

(lines 11–12) or a singleton-
letter gap (line 8). Additionally, the number of all alternative
strings is returned. Temporary variables char idx[i] store,
how many letters have already been inserted to s

i

.
In this model we learn, which string should appear in

which column. The maximal length of an MSA is the sum
of all input strings. A policy in this model is a mapping
(

P
n

i=1 |si|)⇥ |⌃0|n where |s
i

| is the length of s
i

.
A random MSA is constructed in Alg. 2. Exploiting the

policy, a string is randomly chosen (lines 6–18). The variable
align idx represents which column is currently constructed.
With the variable and the index of an alternative string, we
can access the policy value and determine the probability of
choosing it. The last step is to update the variables to prepare
for the next column (lines 19–23). The steps are repeated un-
til all letters have been inserted, so that all columns are con-
structed and stored in a list. At the end, the MSA is evaluated
and returned (line 25).

The enumeration process is recursive, starting with
seq idx = 0 and ending with seq idx = n. As the trans-
formation reads a string of length n, the worst case of
Alg. 3 takes T

enum

(n) = 2 · T
enum

(n � 1) steps with
T
enum

(0) = O(n). This induces T
enum

= O(n · 2n).
We see that the time for constructing a column is equal to
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Algorithm 3: enumerate(A, char idx, seq idx)
1: if seq idx = 1 then
2: static num 0

3: static str  {0, 0, . . . , 0}
4: if seq idx  n then
5: if char idx[seq idx] > |s

seq idx

| then
6: str[seq idx] the index of the gap character
7: enumerate(A, char idx, seq idx + 1)

8: else
9: str[seq idx] the index of the gap character
10: enumerate(A, char idx, seq idx + 1)

11: str[seq idx] the index of the char idx[seq idx]-th
12: character in sequence s

seq idx

13: enumerate(A, char idx, seq idx + 1)

14: else
15: num num + 1

16: transform the string str to the corresponding index
17: and save in a[num]

18: return num

0 1

. . . k � 4 k � 3 k � 2 k � 1

0 1

. . .

gap pos
org

Figure 4: Resolving gap-only columns.

T
col

= T
enum

+ 2 ·O(2

n

) + 2 ·O(n) +O(1) = O(n · 2n).
Moreover, as we use the sum-of-pairs evaluation we get
T
eval

= C2
n

· k = O(k · n2
), where k is the length

of the sequence alignment. Together we have T
colalign

=

k · T
col

+ T
eval

= O(k · n · 2n + k · n2
) = O(q · n2 · 2n),

with k = n ·q being the worst case, and q being the maximal
length of all sequences.

Construction of All Alignment Gaps
Def. 1 implies that a sequence alignment is fully determined
by the position of gaps. Based on this state representation
idea for each sequence s

i

the policy is stored as a matrix of
size gap(a

i

) · k, where gap(a
i

) is the number of gap letters
in the aligned sequence a

i

and k the length of the alignment.
Again, Monte-Carlo tree search is used to learn, where a gap
letter is present in which column of the alignment.

If the length of the alignment is known the number of gap
letters can be determined upfront (line 2). Then the positions
of all gaps letters can be chosen one after the other (lines 5–
17). The temporary variable is gap helps to determine all
legal gap positions (lines 3, 6–11 and 19). The algorithm
is executed for all sequences until the entire MSA can be
evaluated (line 21). After all gaps in one sequence are done,
we can sort them (line 20) which has pros and cons.

We avoid gap-only columns by moving the gap in the
longest sequence to gap pos

new

= (gap pos
org

+ (�1)

i ·
b(i + 1)/2c) mod k, i = 1, 2, 3, . . . (see Fig. 4). We check
that there are no gap-only columns left. If no satisfying po-
sition can be found, the original one is maintained. Alg. 4
does, however, not cover this special case. Alternatively, we
may allow gap columns, as they do not change the score.

The running time of this model is easy to analyze. A

Algorithm 4: alignment gap(alignment, policy)
1: for seq idx 1 to n do
2: alignment.gaps num[seq idx] 

alignment.length� |s
seq idx

|
3: alignment.is gap[seq idx] {FALSE, . . . , FALSE}
4: for gap idx 1 to alignment.gaps num[seq idx] do
5: sum 0.0

6: for pos 1 to alignment.length do
7: if ¬alignment.is gap[seq idx][pos] then
8: value[pos] exp(policy[seq idx][gap idx][pos])

9: sum sum + value[pos]

10: else
11: value[pos] 0.0

12: r  rand([0, . . . , sum])

13: pos 1

14: sum value[1]

15: while sum < r do
16: pos pos + 1

17: sum sum + value[pos]

18: alignment.gaps pos[seq idx][gap idx] pos

19: alignment.is gap[seq idx][pos] TRUE

20: /* sort alignment.gaps pos[seq idx] or not */
21: return alignment

A

A

A
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�
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�
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GG
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GG

ACGG
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�
TG

A

��
TG

ATCGG

Figure 5: Sample MSA projections.

random alignment is constructed one by one. Sequence
s
i

contains k � |s
i

| gap letters. We obtain T
gapalign

=

O(

P
n

i=1

P
k�|s

i

|
j=1 (2k))+T

eval

= O(q2 ·n3
), with k = n · q

in the worst case and q being the maximal sequence length.

Construction of an Initial Alignment
In the second model, prior knowledge is requested in the
form of the length of the optimized alignment. This infor-
mation can be supplied by the user or via an initial align-
ment. This section provides an algorithm to construct an ini-
tial alignment automatically (Kurtz 2007).
Definition 6 (Projection) Let S = {s1, . . . , sn} be a set of
sequences and S0 a subset of S. Assume A

S

= {a1, . . . , an}
to be an MSA of S. The projection of A

S

wrt. S0 is the MSA
proj(A

S

, S0), constructed as follows
• all rows in A

S

that do not correspond to sequences in S0

are removed
• all columns that only contain gap letters are removed.
If A

S

0
= proj(A

S

, S0), where A
S

0 is an MSA of S0, we say
that A

S

is compatible with A
S

0 .

An example for S = {“ACGG”, “ATG”, “ATCGG”},
S0 = {“ACGG”, “ATG”} and S00 = {“ATG”, “ACTCGG”}
is shown in Fig. 5. We see an MSA A

S

of S, a projection
proj(A

S

, S0), and another projection proj(A
S

, S00).
Definition 7 (Alignment Tree) An alignment tree for a set
of sequences S is a labeled tree. In this tree the node set is
S and every edge (i, j) is labeled by the optimal pairwise
alignment of two sequences s

i

and s
j

.
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Figure 6: A star alignment tree of sequences {c, s1, . . . , s6}.

Algorithm 5: initial alignment()
1: for i 1 to n do
2: for j  i + 1 to n do
3: compute the optimal alignment of s

i

and s

j

with distance d⇤(si, sj).
4: for i 1 to n do
5: total[i] 0

6: for j  1 to n do
7: total[i] total[i] + d⇤(si, sj)

8: c argmin
i

total[i]

9: choose an arbitrary sequence s 2 S \ {s
c

}
10: let A be the optimal pairwise alignment of s

c

and s

11: S

0  {s
c

, s}
12: while S

0 6= S do
13: choose an arbitrary sequence s 2 S \ S

0

14: combine A with the optimal pairwise alignment of s
c

and s

15: S

0  S

0 [ {s}
16: return A

In an alignment tree the relation between all sequence
pairs are represented. There are different options for con-
structing such tree. We consider the special case of the tree
being star-shaped (Fig. 6).

The algorithm for constructing an initial MSA has two
stages. The basis is a set of precomputed pairwise align-
ments (see Alg. 5). For each pair of sequences (s

i

, s
j

) the
distance to the optimal alignment is computed (lines 1–5).
For each sequence s

i

all distances of the optimal alignment
corresponding to s

i

are added (lines 6–11). The sequence
with the minimal total distance is chosen as the center (line
12), all other sequences are leaves.

The second stage is to construct an MSA based on the
pairwise alignment stored at the edges. Whenever an MSA
of the sequences {c, s1, . . . , si} is constructed, the optimal
pairwise alignment of c and s

i+1 is inserted. This insertion
preserves the rule once a gap always a gap. Therefore, the
constructed MSA is compatible with all pairwise alignments
in the alignment tree. For example, c = “ATGCATT”, s1 =

“AGTCAAT” and s2 = “ACTGTAATT”. The alignments of
c and s1 or c and s2 are

a

a1

=

=

ATG

�
CATT

A

�
GTCAAT and

a0=A

�
TGC

�
ATT

a02=ACTGTAATT

In the second alignment we find a gap prior to letter ‘T’ in
d sequence a0. According to the golden rule the gap in a00 is
preserved. Through the combination from a and a0 we can
generate a00 = “A–TG–C–ATT”, so that the final MSA is

The MSA is not optimal as we could substitute a002 by
“ACTGT–AATT”. It is, however, a good approximation.
Definition 8 (Proper Cost Function) A similarity

a00

a001

a002

=

=

=

A

�
TG

�
C

�
ATT

A

��
GTC

�
AAT

ACTG

�
TAATT

cost function f is proper if 1) for all x 2 ⌃

0, we
have f(x, x) = 0; 2) for all x, y, z 2 ⌃

0, we have
f(x, z)  f(x, y) + f(y, z).
Lemma 1 Assume a proper similarity cost function f , and
d being the column sum of f , a set of sequences S =

{c, s1, . . . , sn} and a star alignment tree T with center c.
If A = {a, a1. . . . , an} is an MSA of S with length k that
is compatible with all optimal alignments in T , then for all
1  i, j  n we have F (a

i

, a
j

)  F (a
i

, a) + F (a, a
j

) =

F⇤(si, c) + F⇤(c, sj).
Proof: We consider column r in MSA A. According to the
second property of a proper cost function for an arbitrary let-
ter b 2 ⌃

0 we have f(a
i

[r], a
j

[r])  f(a
i

[r], b)+f(b, a
j

[r]).
If b = a[r], we have f(a

i

[r], a
j

[r])  f(a
i

[r], a[r]) +

f(a[r], a
j

[r]). The distance of a pairwise alignment is the
sum of distances of all columns. Thus,

F (ai, aj) =
kX

r=1

f(ai[r], aj [r])


kX

r=1

�
f(ai[r], a[r]) + f(a[r], aj [r])

�

=
kX

r=1

f(ai[r], a[r]) +
kX

r=1

f(a[r], aj [r])

= F (ai, a) + F (a, aj).

Following the assumption we have that the MSA A is com-
patible with all optimal alignments in T . Therefore, the pro-
jections of A wrt. {s

i

, c} are optimal alignments of s
i

and
c. Folling the first property of a proper cost fucntion, we
have f(�,�) = 0, so that the distance of a pairwise se-
quence alignment does not change if an only-gap column
is removed. Hence, F (a

i

, a) = F⇤(si, c), and F (a, a
j

) =

F⇤(c, sj). ⇤
Theorem 1 Let S = {s1, . . . , sn} be a set of sequences, f
be a proper similarity cost function, F be the column sum of
f , and A = {a1, . . . , an} be an MSA of S, constructed via
Alg. 5. Then, F (a1, . . . , an) 

�
2� 2

n

�
· F⇤(s1, . . . , sn).

Proof: We assume that MSA A?

= {a?1, . . . , a?n} is optimal
for S, i.e., F (a?1, . . . , a

?
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Figure 7: Space (top) and time needed by (Beam)NRPA.
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The MSA that is constructed via the star-shaped align-
ment tree is, therefore, an upper bound for the distance of
the optimal MSA (Kurtz 2007).

Experimental Results
Experiments were ran on a Debian v7.8 32 GB RAM PC
(using 1 of the AMD FX(tm)-8350’s 4,0/4,2GHz 8-cores),
taking GNU’s g++ (v4.7.2, -O3). For scoring, PAM250 and
affine gap cost wrt. �10x� 1 for gap length x were used.

We took the BAliBASE benchmark (ftp://bess.u-
strasbg.fr/pub/BAliBASE2), which has been designed to

compare the efficiency of different MSA algorithms1.
BAliBASE is a library of biologically alignments that
optimize an informal biological meaning. Having a formal
sum of pairwise scores on BAliBASE entries cannot
replace a comparison with bioinformatics competitors such
as Clustal-Omega (Clu 2011), MUSCLE (Edgar 2004a;
2004b) or MAFFT (Katoh 2013). However, our interest was
showing the potential of MCTS for the MSA problem in
terms of saving space and posthoc optimization during the
search. Originally, we wanted to compare our algorithm
with Genetic Algorithms (e.g., the program SAGA). But we
did not do it, due to the non-optimal results for the search
without the initial alignment.

Reference 1 consists of 82 sequence groups, partitioned
into 9 classes according to the length (short, medium, long)
and similarity (large, medium, small). Among those we
chose test 3, consisting of 28 sequence groups with three
to six sequences of different similarity. From the set of
MSAs we chose 1ped and 4enl (3 sequences) and 1lcf (6 se-
quences), together with the groups 2myr (4), ga14 (5), and
1pamA (4), which are supposedly the hardest (Hatem and
Ruml 2013; Schrödl 2005). The implementation supports
FASTA and MSF formats. The web presentation comes with
manual close-to-optimal solutions.

For these sequence groups at most 20MB RAM was allo-
cated, which is by far lower than the one in IDDP and vari-
ants. On the other hand, BeamNRPA was better than NRPA:
the wider the beam, the better the solution. The number of
rollouts for BeamNRPA its beam · iterationlevel (we al-
low a beam width other than 1 only in level 1), and chose
beam = 1, 2, 4, iteration = 50 and level = 3. BeamNRPA
with beam = 1 is NRPA. The initial alignment is defined by
the star algorithm and improved by the optimizer.

In NRPA col a policy is a matrix of size (

P
n

i=1 |si|) ⇥
|⌃0|n, so that the memory requirements are exponential in
n. This leads NRPA col to fail for 5-6 sequences and to bad
results in many others.

For NRPA gap a policy is a matrix of size (k � |s
i

|) ⇥ k
for every s

i

, so that memory requirements are polynomial
in |s

i

| and k. Only 4 of 28 groups needed more than 10MB
space, and 20MB was the overall maximum. For DP and its
variants the space complexity is O(|s1| · . . . · |sn|). A bi-
ological sequence (DNA/protein) may have over one thou-
sand bases/amino acids. Hence, the memory requirements
are huge. Our algorithm saves only the positions of all gaps
in an alignment. Obviously, the number of gaps is much less
than the length of an aligned sequence. Therefore, the re-
quired memory in our program is very small.

Sample learning curves for 1ped and 1pamA are shown in
Fig. 8 and Fig. 9), respectively. NRPA gap without sorting
often resulted in a better quality than with sorting, where
1pamA, 2myr and 1lcf are the only exceptions (see Table 1).
Thus, we used no sorting in BeamNRPA. Memory and time
performances of NRPA and BeamNRPA are cross-compared

1BAliBASE3 (http://www.ncbi.nlm.nih.gov/pubmed/
16044462) is considered by specialists as a bad benchmarking
resource even for identifying good scoring functions. Moreover,
BAliBASE version 2 is used in all precursing AI publications.
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NRPA gap with/without Sorting

BeamNRPA, beam = 2, beam = 4

BeamNRPA initial, beam = 2, beam = 4

Figure 8: Learning curves of 1ped.

in Fig. 7 and listed in Table 1 and 2. The wider the beam, the
higher the computational cost. On the other hand, as shown
in Fig. 8, the larger the search tree, the better the solution
found by BeamNRPA.

Next, we tested whether an initial alignment could be im-
proved (see Table 3). After determining the alignment, we
called the adaptation function 10 time (↵-value of 1) to come
up with an initial policy. For the sequence group 1ped an
alignment better than the initial one was found quickly (see
Fig. 8). The initial alignment of 1pamA had a score of -8291.
Unfortunately, for this hardest group BeamNRPA did not
improve much within the given parameter range (see Fig. 9).

Finally, we optimize best-known solutions from the BAl-
iBASE benchmark with BeamNRPA gap. Table 4 shows an
improvement (wrt. our cost function) in 20 groups, equal re-
sults in 6 groups (1ac5, 1bgl, 1dlc, 1fieA, 1gpb, 1gtr) and
worse result in 2 groups (1pamA and 1taq).

Altogether there are 28 sequence groups. For the groups
1pamA and 1taq our program cannot return a better solution
than BAliBASE (from beam = 2 and 4). For these 6 groups
(1ac5, 1bgl, 1dlc, 1fieA, 1gpd and 1gtr) our program returns
the same good solutions as BAliBASE (from beam = 2 and
4). For the other 20 groups the better solutions are found
from beam = 2 or 4 (beam = 2 sometimes can return a better
solution than beam = 4).

NRPA gap with/without Sorting

BeamNRPA, beam = 2, beam = 4

BeamNRPA initial, beam = 2, beam = 4

Figure 9: Learning curves of 1pamA.

Conclusion and Outlook

In this paper we pioneered Monte-Carlo tree search for the
multiple sequence problem. The results for learning gaps
with BeamNPRA are very promising. The approach has a
very low memory overhead, can be used from scratch and
for post-hoc optimization, Wrt. our cost function we found
improvements to many published BAliBASE alignments.

It is possible to improve the policy representation by
learning inter-dependencies of gap positions within the set
of sequences. A further yet unexplored option is the paral-
lelization of BeamNRPA. In (Rosin 2011) it has been said
that parallelizing NRPA is involved, since the policy has to
be shared among the threads. The advantage of BeamNRPA
is that it is easier to parallelize as all policies in the beam
can be read and updated concurrently. It has the additional
feature that it can be parallized in every level of the search.
As the number of iterations is usually larger than the number
of threads, the searches in each thread are iterative. Another
option to deal with concurrency issues in the parallelization
is to use low-level compare-and-swap.
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Table 1: NRPA gap
with sorting without sorting

len score time mem len score time mem
1ajsA 433 -6456 573 5524K 434 -4871 579 5516K
1cpt 455 -5711 471 4926K 458 -4509 477 4656K
1lvl 506 -7335 761 6778K 510 -6709 767 6770K

1pamA 656 -22053 2546 20M 677 -22877 2568 20M
1ped 385 -1909 223 3022K 386 -1239 225 2748K
2myr 543 -9800 1308 11M 546 -9890 1324 11M
4enl 433 -2701 407 4256K 426 -2031 412 4250K
gal4 431 -10423 720 6604K 433 -8866 736 6600K
1ac5 517 -7690 708 6390K 519 -6932 708 6386K
1adj 421 2931 71 1609K 421 2954 69 1612/K
1bgl 1002 -7085 746 6402K 1002 -6403 750 6394K
1dlc 636 -6008 585 5556K 637 -5683 588 5544K
1eft 420 -3371 316 3432K 419 -2658 318 3422K

1fieA 689 -641 221 2808K 689 -268 222 2800K
1gowA 542 -7471 692 6378K 541 -6706 700 6370K
1pkm 466 -2231 213 2812K 468 -1534 214 2800K
1sesA 463 -6949 373 3848K 465 -5766 376 3838K
2ack 534 -11462 752 6594K 534 -10214 757 6586K
arp 449 -8972 507 4912K 449 -7536 511 4904K
glg 513 -8423 508 4922K 514 -7127 513 4916K

1ad3 459 -2086 172 2350K 459 -277 173 2342K
1gpb 854 -9015 847 7012K 854 -8726 867 7002K
1gtr 451 -3715 230 2800K 451 -1842 236 2792K
1lcf 747 -20636 1361 10M 747 -20645 1374 10M

1rthA 556 -1284 269 3004K 556 -318 270 2998K
1taq 948 -17728 1656 13M 950 -16778 1667 13M

3pmg 588 -2868 329 3656K 589 -2105 330 3648K
actin 415 -4411 272 3238K 415 -3619 273 2964K

Table 2: BeamNRPA gap
beam = 2 beam = 4

len score time mem len score time mem
1ajsA 437 -4262 1810 9080K 432 -3684 3546 12M
1cpt 457 -3766 1483 7656K 452 -2857 3024 10M
1lvl 502 -4693 2517 10M 497 -3833 4935 15M

1pamA 665 -17679 9235 35M 665 -14016 17458 49M
1ped 388 -1209 677 4224K 383 -1075 1399 5556K
2myr 532 -6520 4469 18M 536 -5930 8662 26M
4enl 433 -1796 1302 6760K 424 -1381 2571 9128K
gal4 431 -7133 2459 10M 429 -6751 4686 14M
1ac5 519 -4733 2351 10M 513 -4304 4598 13M
1adj 421 1594 205 2188K 421 2804 409 2548K
1bgl 1002 -2510 2602 10M 1002 -892 5128 13M
1dlc 636 -2295 1935 8752K 636 -1986 3775 11M
1eft 420 -1618 993 5092K 420 -1361 1943 6780K

1fieA 689 3033 705 4012K 689 3652 1345 5216K
1gowA 537 -4415 2413 10M 537 -3049 4628 14M
1pkm 466 207 655 4240K 467 -132 1280 5164K
1sesA 465 -3060 1192 6052K 464 -1713 2329 8112K
2ack 533 -6652 2537 10M 534 -5442 4960 14M
arp 447 -5633 1632 7864K 447 -5169 3277 11M
glg 513 -4263 1632 6888K 514 -2804 3202 10M

1ad3 459 906 520 3368K 458 690 1042 4548K
1gpb 854 257 2905 11M 854 1708 5555 15M
1gtr 451 759 715 4036K 451 2076 1385 5368K
1lcf 747 -8938 4725 17M 747 -6393 9068 24M

1rthA 556 3992 825 4592K 555 4744 1624 5976K
1taq 950 -9353 5771 22M 950 -7945 11080 32M

3pmg 589 606 1055 5580K 589 1632 2055 7444K
actin 414 -255 854 4776K 414 991 1667 6248K

Table 3: BeamNRPA gap with initial alignment
beam = 2 beam = 4

len score time mem len score time mem
1ajsA 457 -2663 2126 11M 459 -2680 4169 15M
1cpt 468 -937 1669 9792K 467 -828 3313 12M
1lvl 501 -2027 1915 11M 502 -1961 4117 13M

1pamA 730 -11736 12350 53M 728 -11896 23831 73M
1ped 402 -556 722 5128K 402 -430 1447 6664K
2myr 598 -4788 6150 26M 595 -4501 11504 37M
4enl 425 -892 997 6124K 427 -903 1959 8228K
gal4 492 -4643 4813 22M 488 -4342 8832 30M
1ac5 551 641 3084 13M 545 802 6090 19M
1adj 432 3210 479 9552K 429 3392 964 9552K
1bgl 1072 1958 7248 47M 1071 3890 13190 47M
1dlc 655 2555 2550 18M 654 2615 5029 18M
1eft 419 1355 957 8572K 417 1440 1888 8576K

1fieA 702 5565 1147 22M 703 5567 2250 22M
1gowA 542 1138 1975 12M 542 1225 3925 15M
1pkm 474 1809 834 10M 473 2081 1652 10M
1sesA 494 2917 2238 16M 488 3379 4390 16M
2ack 561 -509 3557 20M 556 -215 7039 22M
arp 490 435 3209 15M 488 622 6341 20M
glg 553 2568 3222 19M 551 2620 6376 19M

1ad3 464 5133 611 10M 463 5121 1210 10M
1gpb 877 17561 4097 53M 878 17578 7891 53M
1gtr 466 7671 1162 16M 465 7658 2289 16M
1lcf 799 2330 8778 58M 799 3392 17135 58M

1rthA 565 8897 1120 23M 563 9022 2202 23M
1taq 978 1889 7947 62M 977 1879 15483 62M

3pmg 619 6744 2006 16M 620 6731 3936 16M
actin 416 7883 824 13M 416 7916 1622 13M

Table 4: BeamNRPA gap for BAliBASE optima (BBO)
BBO beam = 2 beam = 4
score len score time mem len score time mem

1ajsA -1292 449 -1264 1698 9852K 449 -1258 3378 13M
1cpt 520 461 558 1397 8440K 461 602 2750 10M
1lvl -750 516 -750 2284 12M 516 -720 4522 16M

1pamA -2366 677 -5252 8715 39M 678 -3290 17215 54M
1ped -42 398 -15 647 4548K 396 40 1274 5956K
2myr -1490 554 -1561 4018 21M 554 -1452 8048 28M
4enl -336 441 -293 1164 7428K 438 -265 2298 9804K
gal4 -876 439 -811 2168 11M 438 -779 4283 15M
1ac5 2375 524 2375 2141 11M 524 2375 4247 15M
1adj 4037 421 4064 200 2192K 421 4087 395 2556K
1bgl 7394 1002 7394 2263 11M 1002 7394 4505 15M
1dlc 4906 638 4906 1733 9724K 638 4906 3419 11M
1eft 2211 412 2257 921 6100K 412 2257 1831 7232K

1fieA 6815 689 6815 640 4300K 689 6815 1279 5628K
1gowA 2710 546 2712 2112 11M 545 2730 4135 15M
1pkm 2981 468 2981 617 4252K 468 2984 1231 5428K
1sesA 5896 465 5896 1086 6488K 465 5907 2167 8520K
2ack 3470 536 3473 2321 11M 536 3473 4542 15M
arp 3875 450 3889 1492 8556K 450 3891 2974 11M
glg 4959 514 5007 1502 9268K 513 5109 2937 10M

1ad3 5409 459 5415 491 4100K 459 5426 982 4752K
1gpb 20141 854 20141 2605 12M 854 20141 5145 17M
1gtr 8807 451 8807 665 4320K 451 8807 1321 5660K
1lcf 25001 747 25007 4168 19M 747 25015 8268 26M

1rthA 10400 556 10475 788 4940K 556 10472 1575 6336K
1taq 13545 949 13048 5222 25M 949 13300 10482 34M

3pmg 7867 589 7869 956 6080K 589 7868 1899 7912K
actin 8489 415 8556 793 5108K 415 8530 1575 6620K
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