Monte-Carlo Tree Search for the Multiple Sequence Alignment Problem

Stefan Edelkamp and Zhihao Tang Bremen University {edelkamp,zhihao}@tzi.de

Abstract

The paper considers solving the multiple sequence alignment, a combinatorial challenge in computational biology, where several DNA RNA, or protein sequences are to be arranged for high similarity. The proposal applies randomized Monte-Carlo tree search with nested rollouts and is able to improve the solution quality over time. Instead of learning the position of the letters, the approach learns a policy for the position of the gaps. The Monte-Carlo beam search algorithm we have implemented has a low memory overhead and can be invoked with constructed or known initial solutions. Experiments in the BAliBASE benchmark show promising results in improving state-of-the-art alignments.

Introduction

Multiple sequence alignments (MSA) are frequently used for the analysis of DNA, RNA, or protein sequences in order to determine the evolutionary relation between species with a common ancestor, to predict the so-called secondary/tertiary structure, as well as the functional centers, in which as few possible mutations as possible occur (assuming that similar sequences inherit similar structures and function).

Computational biologists have declared the MSA problem to be a *holy grail* (Gusfield 1997). One reason is that solving this problem often leads to a high memory demands, which has been partially leveraged with frontier search (Hirschberg 1975; Korf et al. 2005), refined heuristics, and variants of memory-limited (Zhou and Hansen 2002; 2003) or iterativedeepening heuristic search (Schrödl 2005). Most of these approaches provide strategies to limit exploring the search space induced by dynamic programming (Bellman 1957). Tools like Clustal(W/Omega) and Blast compute approximate MSAs with probabilistic models.

Algorithmically, MSA boils down to the cost-optimal alignment of strings. Smaller problems can be solved optimally and the dynamic programming solution relates to approximate string matching. Precursor work in AI showed considerable scaling but often neglects biological relevant features like the inclusion of similarity cost matrices and affine gap costs. Exceptions are iterative deepening dynamic programming (Schrödl 2005), its externalization (Edelkamp and Kissmann 2007), and a search variant using partial expansion (Hatem and Ruml 2013). Still, the memory requirements raise exponentially with the problem complexity (measured in the sum of the input sequences).

In this paper we apply fixed-memory-bound randomized search that incorporates no expert knowledge in form of refined heuristics. The algorithm that we chose has successfully been used for vehicle routing (Cazenave 2012; Edelkamp and Gath 2014). It applies a series of random walks (rollouts) and learns a mapping (policy) for sampling the search space. It is able to improve over existing solutions and incorporates initial alignments into the search. As other algorithms are memory-bound, with its low memory profile it can serve as an add-on over existing approaches.

The paper is structured as follows. First, we provide a concise formulation of the MSA problem. Next, we consider the implementation of Monte-Carlo tree search that we have adapted to MSA optimization. Experimental results in the BAliBASE benchmark show advances to the state-of-the-art.

Problem Formulation

We start with some formal definitions.

Definition 1 (Sequence Alignment) Given a set of n sequences $S = \{s_1, s_2, \ldots, s_n\}$ with $s_i \in \Sigma^*$ for all $i = 1, 2, \ldots, n$, and Σ being a final alphabet. A sequence alignment (of length k) consists of a set of n sequences $A = \{a_1, a_2, \ldots, a_n\}$ with $a_i \in \Sigma'^*$ for all $i = 1, 2, \ldots, n$, where $\Sigma' = \Sigma \cup \{"-"\}$ and $"-" \notin \Sigma$. For each aligned sequence $a_i \in A$ we have length $|a_i| = k$. If all letters "-" are removed from $a_i \in A$, we get back s_i . For n = 2, the alignment is pairwise, for n > 2 multiple.

Definition 2 (Gap, Number, Length, Position) A gap G consists of a single or a sequence of letters g = "-".

Copyright © 2015, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

Figure 1: An MSA and its phylogenetic tree.

Moreover $gaps_num(a_i)$ is the number of empty letters in the aligned sequence $a_i \in A$ and |G| the length of gap G. Particularly we have |G| = 1 for $G = \langle g \rangle$ and letter g is located at position $gap_pos_i(g)$ in sequence $a_i \in A$.

For DNAs the alphabet Σ_{DNA} is {A, G, C, T} denoting the nucleo bases adenin, guanin, cytosin and thymin. For RNA the nucleo base uracil, abbreviated by U is used instead of thymin, so that $\Sigma_{RNA} = \{A, G, C, U\}$. The protein alphabet contains 20 amino acids.

In an alignment all sequences are written on top of each other such that the number of columns with matching letter is maximized. Gaps are inserted to slide letters in the alignment. A substitution occurs, if two different letters meet; a gap is a deletion and/or an insertion of a letter and called *indel*. The assumption is that the alignment with the least number of indels is biologically most plausible.

Fig. 1 shows an example of a protein MSA with n = 7 having no gaps, and the according phylogenetic tree where internal nodes denote the ancestor sequences, where I (Isoleucine), L (Leucine), F (Phenylalanine), K (Lysine) and S (Serine) are the one-letter abbreviations for the amino acids. To judge the quality of an MSA an evaluation function is required.

Definition 3 (Evaluation Function) An evaluation is a function $F : A \to \mathbb{R}$. For a pairwise alignment $A = \{a_1, a_2\}$ with $a_i = \langle c_{i1}c_{i2} \dots c_{ik} \rangle$ and $c_{ij} \in \Sigma'$, i = 1, 2and $j = 1, 2, \dots, k$, its evaluation is the sum of similarities f of all alignment columns $F(A) = F(a_1, a_2) = \sum_{j=1}^{k} f(c_{1j}, c_{2j})$. For a MSA $A = \{a_1, a_2, \dots, a_n\}$ the evaluation is the sum of values for all sequence pairs $F(A) = F(a_1, a_2, \dots, a_n) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} F(a_i, a_j)$.

The evaluation function by (Levenshtein 1966) is used to compute *edit distances*. For DNA alignment we support scoring matrices used in WU-BLASTN (Altschul et al. 1990) and FASTA (Pearson 1994), and for protein alignment the PAM (Point Accepted Mutation) matrix (Dayhoff, Schwartz, and Orcutt 1978; Boeckenhauer and Bongartz 2010), the PET91 matrix (Jones, Taylor, and Thornton 1992), and BLOSUM (BLOck SUbstitution Matrix) (Henikoff and Henikoff 1992).

Definition 4 (Optimal MSA) Let \mathscr{A} be the set of all MSAs that can be generated by a set of sequences $S = \{s_1, s_2, \ldots, s_n\}$. The optimal MSA $A^* \in \mathscr{A}$ is an MSA with $F(A^*) = \min_{A \in \mathscr{A}} F(A)$, if the evaluation is based on distances or $F(A^*) = \max_{A \in \mathscr{A}} F(A)$.

Definition 5 (MSA Problem) Given a set of sequences $S = \{s_1, s_2, \ldots, s_n\}$, the MSA problem is to find the optimal MSA for A^* for S.

For a set of sequences more than one optimal MSAs may exist (Fig.2) yielding different biological explanations. All solutions have the same edit-distance 4. F(A) can calculate not only the similarities (maximum problems) but also the dissimilarities (minimum problems).

GTAGA	LCG –G	-TC- GTAC	-ACG GA-G	-TC	CA-CG AGAG	$\overline{\mathrm{G}}$	FCAC-G -AGAG
	-TC GTA	CACG AGAG	TCA- GTAC	-CG GAG	TCAC- GTAGA	₹G 4G	

Figure 2: Two sequences with 7 optimal MSAs.

We consider affine gap costs where gap opening has cost op and gap extension cost ex (per extension), so that gap G has total cost $P(G) = op + ex \cdot |G|$. Unfortunately, for biologists the values of op and ex in this refined cost model may vary (Hodgman, French, and Westhead 2010).

For a rising number of sequences the MSA problem is NPhard (Wang and Jiang 1994). For n sequences of maximal length q, standard dynamic programming (DP) computes an optimal solution with memory $O(q^n)$ and time $O(2^n \cdot q^n)$, so that alternative algorithms are required.

The algorithm iterative-deepening dynamic programming (IDDP) (Schrödl 2005) combines dynamic programming with iterative-deepening A* on the graph representation of the DP matrix. It expands edges not nodes. A lower bound h(e) is devised based on precomputed pattern database of triples. We have f(e) = g(e) + h(e), so that f(e) for an edge e is the estimated cost of a path of the start edge to reach the end edge via the current edge e IDDP inherits the advantages of DP and IDA*, it has a fixed ordering so that every node is visited once and includes a lower bound for guidance. A partial expansion alternative to IDDP has been proposed and parallelized by (Hatem and Ruml 2013).

Monte-Carlo Tree Search

Monte-Carlo search denotes a class of randomized tree search algorithms that has been designed for search spaces with large node branching factors and weak evaluation functions. By learning the proper choice of successors over time they can converge to the overall optimal solutions. In single-agent search, a series of optimization problems have been solved, e.g., TSPs with Time Windows (Rimmel, Teytaud, and Cazenave 2011; Cazenave and Teytaud 2012; Cazenave 2012) and Morpion Solitaire (Cazenave 2009; Rosin 2011).

Nested Monte-Carlo Search (NMCS) (Cazenave 2009) is a recursive algorithm that contributes to the fact that it is more important to erect the solution on the result of a recursive optimization process than looking at the next step only.

Nested Rollout Policy Adaptation (NRPA) (Rosin 2011) combines NMCS with policy learning. In NRPA we also apply nested search but a state-to-state policy is adapted. The branching being defined by an additional parameter called *iteration*. In every iteration a new random simulation (rollout) is conducted by sampling the policy. Improved solutions induce changes. In each level of the search an individual policy obtains a compromise between exploration and exploitation.

- 10: $temp_beam \gets \text{BeamNRPA}(level-1, p)$
- 11: for all (t_v, t_s, t_p) in temp_beam do
- 12: $t_p \leftarrow \operatorname{adapt}(p, t_s)$
- 13: insert (t_v, t_s, t_p) in new_beam
- 14: $beam \leftarrow \text{the } B \text{ best beams in } new_beam$
- 15: return beam

Figure 3: The search tree for a sample pairwise alignment.

Beam Nested Rollout Policy Adaptation (BeamN-RPA) (Cazenave 2012) is a variant of NRPA that maintains a policy for each solution, and a set of good solutions for each search level. The size of the set in level *i* is called *beam* and denoted by B_i . The pseudo-code is shown in Alg. 1. For each solution in a *level* BeamNRPA is called with level - 1. At the end B_{level} best solutions are generated return, so that the policies in higher search levels can be adapted. The adaptation of the policy is based on Bellmann updates and the same as in NRPA. The advantage of BeamNRPA is that it generalizes NRPA and naturally supports prior knowledge in form of solutions seeds.

MCTS for MSA

The intuitive method for the MSA problem is to enumerate possible alignments and after evaluating them, to choose the best one. The search tree can be constructed by a sequence of decisions and solved via NRPA and BeamNRPA. We study two possible encodings.

We assume that each letter v in Σ' has a fixed location index(v), so that for a string $V = \{v_1, v_2, \ldots, v_n\}$ in Σ'^* we obtain $index(V) = \sum_{i=1}^{n} index(v_i) \cdot |\Sigma'|^{n-i}$, where n is the length of V and $|\Sigma'|$ the size of the alphabet.

Construction of All Alignment Columns

An MSA consists of columns. Every column is a string in Σ'^n . In the search tree we generate, the root represents an empty node and all other nodes a column in the alignment. Thus, an MSA corresponds to a path from the root to the leaf (Fig. 3, optimal MSAs of Fig. 2 have bold edges).

Algorithm 2: alignment_col(alignment, policy)

1: $char_idx \leftarrow \{1, \ldots, 1\}$

- 2: $align_idx \leftarrow 1$
- 3: $col \leftarrow alignment.start$
- 4: repeat
- 5: $col.num \leftarrow enumeration(col.alternatives, char_idx, 0)$
- 6: sum = 0.0
- 7: for $i \leftarrow 1$ to col.num do
- 8: $value[i] \leftarrow \exp(policy[align_idx][col.alternatives[i]])$
- 9: $sum \leftarrow sum + value[i]$
- 10: $r \leftarrow \operatorname{rand}([0, \ldots, sum])$
- 11: $i \leftarrow 1$
- 12: $sum \leftarrow value[1]$
- 13: while $sum < r \operatorname{do}$
- 14: $i \leftarrow i + 1$
- 15: $sum \leftarrow sum + value[i]$
- 16: $col.index \leftarrow col.alternatives[i]$
- 17: transform the index col.alternatives[i] to the corresponding string
- 18: and save in col.string
- 19: for $i \leftarrow 1$ to n do
- 20: if col.string[i] is not a gap then
- 21: $char_idx[i] \leftarrow char_idx[i] + 1$
- 22: $align_idx \leftarrow align_idx + 1$
- 23: $col \leftarrow col.next$
- 24: until all sequences are read through

25: return alignment

During the construction the first step is to recursively enumerate all possible strings that may appear in this column (see Alg. 3). The depth of the tree is n as all strings have to have the same length. In each level for every letter of an alternative string s_i we have a) if all letters have been inserted then the following columns are labeled by a gap (line 6). b) if there are remaining letters that have a fit, then they are inserted to the MSA and the position i in this column either is the corresponding letter in s_i (lines 11–12) or a singletonletter gap (line 8). Additionally, the number of all alternative strings is returned. Temporary variables $char_i dx[i]$ store, how many letters have already been inserted to s_i .

In this model we learn, which string should appear in which column. The maximal length of an MSA is the sum of all input strings. A policy in this model is a mapping $\left(\sum_{i=1}^{n} |s_i|\right) \times |\Sigma'|^n$ where $|s_i|$ is the length of s_i .

A random MSA is constructed in Alg. 2. Exploiting the policy, a string is randomly chosen (lines 6-18). The variable $aliqn_i dx$ represents which column is currently constructed. With the variable and the index of an alternative string, we can access the policy value and determine the probability of choosing it. The last step is to update the variables to prepare for the next column (lines 19-23). The steps are repeated until all letters have been inserted, so that all columns are constructed and stored in a list. At the end, the MSA is evaluated and returned (line 25).

The enumeration process is recursive, starting with $seq_i dx = 0$ and ending with $seq_i dx = n$. As the transformation reads a string of length n, the worst case of Alg. 3 takes $T_{enum}(n) = 2 \cdot T_{enum}(n-1)$ steps with $T_{enum}(0) = O(n)$. This induces $T_{enum} = O(n \cdot 2^n)$. We see that the time for constructing a column is equal to

```
Algorithm 3: enumerate(A, char_idx, seq_idx)
```

1: if $seq_i dx = 1$ then

2: static $num \leftarrow 0$

```
3: static str \leftarrow \{0, 0, \dots, 0\}
```

- 4: if $seq_i dx \leq n$ then
- 5: if $char_idx[seq_idx] > |s_{seq_idx}|$ then
- 6: $str[seq_idx] \leftarrow$ the index of the gap character 7: enumerate(A, char_idx, seq_idx + 1)
- 7: enumerate(A, ch 8: else
- 9: $str[seq_idx] \leftarrow$ the index of the gap character
- 10: enumerate $(A, char_idx, seq_idx + 1)$
- 11: $str[seq_idx] \leftarrow$ the index of the $char_idx[seq_idx]$ -th
- 12: character in sequence s_{seq_idx}
- 13: enumerate(A, char_idx, seq_idx + 1)
- 14: else
- 15: $num \leftarrow num + 1$
- 16: transform the string str to the corresponding index
- 17: and save in a[num]
- 18: return num

Figure 4: Resolving gap-only columns.

 $\begin{array}{l} T_{col}=T_{enum}+2\cdot O(2^n)+2\cdot O(n)+O(1)=O(n\cdot 2^n).\\ \text{Moreover, as we use the sum-of-pairs evaluation we get}\\ T_{eval}\ =\ C_n^2\cdot k\ =\ O(k\cdot n^2), \text{ where }k \text{ is the length}\\ \text{of the sequence alignment. Together we have }T_{colalign}\ =\ k\cdot T_{col}+T_{eval}\ =\ O(k\cdot n\cdot 2^n+k\cdot n^2)\ =\ O(q\cdot n^2\cdot 2^n),\\ \text{with }k\ =\ n\cdot q \text{ being the worst case, and }q \text{ being the maximal length of all sequences.} \end{array}$

Construction of All Alignment Gaps

Def. 1 implies that a sequence alignment is fully determined by the position of gaps. Based on this state representation idea for each sequence s_i the policy is stored as a matrix of size $gap(a_i) \cdot k$, where $gap(a_i)$ is the number of gap letters in the aligned sequence a_i and k the length of the alignment. Again, Monte-Carlo tree search is used to learn, where a gap letter is present in which column of the alignment.

If the length of the alignment is known the number of gap letters can be determined upfront (line 2). Then the positions of all gaps letters can be chosen one after the other (lines 5– 17). The temporary variable is_gap helps to determine all legal gap positions (lines 3, 6–11 and 19). The algorithm is executed for all sequences until the entire MSA can be evaluated (line 21). After all gaps in one sequence are done, we can sort them (line 20) which has pros and cons.

We avoid gap-only columns by moving the gap in the longest sequence to $gap_pos_{new} = (gap_pos_{org} + (-1)^i \cdot \lfloor (i+1)/2 \rfloor) \mod k, i = 1, 2, 3, \ldots$ (see Fig. 4). We check that there are no gap-only columns left. If no satisfying position can be found, the original one is maintained. Alg. 4 does, however, not cover this special case. Alternatively, we may allow gap columns, as they do not change the score.

The running time of this model is easy to analyze. A

Algorithm 4: alignment_gap(alignment, policy)

```
1: for seq_i dx \leftarrow 1 to n do
```

- $2: \quad alignment.gaps_num[seq_idx] \leftarrow$
- $alignment.length |s_{seq.idx}|$
- 3: $alignment.is_gap[seq_idx] \leftarrow \{FALSE, \dots, FALSE\}$
- 4: for $gap_idx \leftarrow 1$ to $alignment.gaps_num[seq_idx]$ do
- 5: $sum \leftarrow 0.0$
- 6: for $pos \leftarrow 1$ to alignment.length do
- 7: if $\neg alignment.is_gap[seq_idx][pos]$ then
- 8: $value[pos] \leftarrow \exp(policy[seq_idx][gap_idx][pos])$
- 9: $sum \leftarrow sum + value[pos]$
- 10: else
- 11: $value[pos] \leftarrow 0.0$
- 12: $r \leftarrow \operatorname{rand}([0, \ldots, sum])$
- 13: $pos \leftarrow 1$
- 14: $sum \leftarrow value[1]$
- 15: while $sum < r \operatorname{do}$
- 16: $pos \leftarrow pos + 1$
- 17: $sum \leftarrow sum + value[pos]$
- 18: $alignment.gaps_pos[seq_idx][gap_idx] \leftarrow pos$
- 19: $alignment.is_gap[seq_idx][pos] \leftarrow TRUE$
- 20: /* sort alignment.gaps_pos[seq_idx] or not */
- $21: \ \textbf{return} \ alignment$
 - $\begin{array}{ccc} \mathrm{A-CGG} \\ \mathrm{A--TG} \\ \mathrm{ATCGG} \\ \mathrm{ATCGG} \\ \mathrm{A-TG} \\ \mathrm{ATCGG} \end{array} \begin{array}{c} \mathrm{A--TG} \\ \mathrm{ATCGG} \end{array}$

random alignment is constructed one by one. Sequence s_i contains $k - |s_i|$ gap letters. We obtain $T_{gapalign} = O(\sum_{i=1}^n \sum_{j=1}^{k-|s_i|} (2k)) + T_{eval} = O(q^2 \cdot n^3)$, with $k = n \cdot q$ in the worst case and q being the maximal sequence length.

Construction of an Initial Alignment

In the second model, prior knowledge is requested in the form of the length of the optimized alignment. This information can be supplied by the user or via an initial alignment. This section provides an algorithm to construct an initial alignment automatically (Kurtz 2007).

Definition 6 (Projection) Let $S = \{s_1, \ldots, s_n\}$ be a set of sequences and S' a subset of S. Assume $A_S = \{a_1, \ldots, a_n\}$ to be an MSA of S. The projection of A_S wrt. S' is the MSA $proj(A_S, S')$, constructed as follows

- all rows in A_S that do not correspond to sequences in S' are removed
- all columns that only contain gap letters are removed.

If $A_{S'} = proj(A_S, S')$, where $A_{S'}$ is an MSA of S', we say that A_S is compatible with $A_{S'}$.

An example for $S = \{\text{``ACGG'', ``ATG'', ``ATCGG''}\}$, $S' = \{\text{``ACGG'', ``ATG''}\}$ and $S'' = \{\text{``ATG'', ``ACTCGG''}\}$ is shown in Fig. 5. We see an MSA A_S of S, a projection $proj(A_S, S')$, and another projection $proj(A_S, S'')$.

Definition 7 (Alignment Tree) An alignment tree for a set of sequences S is a labeled tree. In this tree the node set is S and every edge (i, j) is labeled by the optimal pairwise alignment of two sequences s_i and s_j .

Figure 6: A star alignment tree of sequences $\{c, s_1, \ldots, s_6\}$.

Algorithm 5: initial_alignment()

```
1: for i \leftarrow 1 to n do
2: for j \leftarrow i + 1 to n do
3:
         compute the optimal alignment of s_i and s_j with distance d_*(s_i, s_j).
4: for i \leftarrow 1 to n do
5: total[i] \leftarrow 0
6:
      for i \leftarrow 1 to n do
7:
          total[i] \leftarrow total[i] + d_*(s_i, s_j)
8: c \leftarrow \arg\min_i total[i]
9: choose an arbitrary sequence s \in S \setminus \{s_c\}
10: let A be the optimal pairwise alignment of s_c and s
11: S' \leftarrow \{s_c, s\}
12: while S' \neq S do
13: choose an arbitrary sequence s \in S \setminus S'
14:
       combine A with the optimal pairwise alignment of s_c and s
15:
       S' \leftarrow S' \cup \{s\}
16: return A
```

In an alignment tree the relation between all sequence pairs are represented. There are different options for constructing such tree. We consider the special case of the tree being star-shaped (Fig. 6).

The algorithm for constructing an initial MSA has two stages. The basis is a set of precomputed pairwise alignments (see Alg. 5). For each pair of sequences (s_i, s_j) the distance to the optimal alignment is computed (lines 1–5). For each sequence s_i all distances of the optimal alignment corresponding to s_i are added (lines 6–11). The sequence with the minimal total distance is chosen as the center (line 12), all other sequences are leaves.

The second stage is to construct an MSA based on the pairwise alignment stored at the edges. Whenever an MSA of the sequences $\{c, s_1, \ldots, s_i\}$ is constructed, the optimal pairwise alignment of c and s_{i+1} is inserted. This insertion preserves the rule *once a gap always a gap*. Therefore, the constructed MSA is compatible with all pairwise alignments in the alignment tree. For example, c = "ATGCATT", $s_1 = \text{"AGTCAAT"}$ and $s_2 = \text{"ACTGTAATT"}$. The alignments of c and s_1 or c and s_2 are

$$a = ATG-CATT$$
 $a' = A-TGC-ATT$
 $a_1 = A-GTCAAT$ and $a'_2 = ACTGTAATT$

In the second alignment we find a gap prior to letter 'T' in d sequence a'. According to the golden rule the gap in a'' is preserved. Through the combination from a and a' we can generate a'' = "A-TG-C-ATT", so that the final MSA is

The MSA is not optimal as we could substitute a_2'' by "ACTGT–AATT". It is, however, a good approximation.

Definition 8 (Proper Cost Function) *A similarity*

a''=A-TG-C-ATT $a''_1=A--GTC-AAT$ $a''_2=ACTG-TAATT$

cost function f is proper if 1) for all $x \in \Sigma'$, we have f(x,x) = 0; 2) for all $x, y, z \in \Sigma'$, we have $f(x,z) \leq f(x,y) + f(y,z)$.

Lemma 1 Assume a proper similarity cost function f, and d being the column sum of f, a set of sequences $S = \{c, s_1, \ldots, s_n\}$ and a star alignment tree T with center c. If $A = \{a, a_1, \ldots, a_n\}$ is an MSA of S with length k that is compatible with all optimal alignments in T, then for all $1 \le i, j \le n$ we have $F(a_i, a_j) \le F(a_i, a) + F(a, a_j) = F_*(s_i, c) + F_*(c, s_j)$.

Proof: We consider column r in MSA A. According to the second property of a proper cost function for an arbitrary letter $b \in \Sigma'$ we have $f(a_i[r], a_j[r]) \leq f(a_i[r], b) + f(b, a_j[r])$. If b = a[r], we have $f(a_i[r], a_j[r]) \leq f(a_i[r], a[r]) + f(a[r], a_j[r])$. The distance of a pairwise alignment is the sum of distances of all columns. Thus,

$$F(a_i, a_j) = \sum_{r=1}^{k} f(a_i[r], a_j[r])$$

$$\leq \sum_{r=1}^{k} \left(f(a_i[r], a[r]) + f(a[r], a_j[r]) \right)$$

$$= \sum_{r=1}^{k} f(a_i[r], a[r]) + \sum_{r=1}^{k} f(a[r], a_j[r])$$

$$= F(a_i, a) + F(a, a_j).$$

Following the assumption we have that the MSA A is compatible with all optimal alignments in T. Therefore, the projections of A wrt. $\{s_i, c\}$ are optimal alignments of s_i and c. Folling the first property of a proper cost function, we have f(-, -) = 0, so that the distance of a pairwise sequence alignment does not change if an only-gap column is removed. Hence, $F(a_i, a) = F_*(s_i, c)$, and $F(a, a_j) = F_*(c, s_j)$. \Box

Theorem 1 Let $S = \{s_1, \ldots, s_n\}$ be a set of sequences, f be a proper similarity cost function, F be the column sum of f, and $A = \{a_1, \ldots, a_n\}$ be an MSA of S, constructed via Alg. 5. Then, $F(a_1, \ldots, a_n) \leq (2 - \frac{2}{n}) \cdot F_*(s_1, \ldots, s_n)$.

Proof: We assume that MSA $A^* = \{a_1^*, \ldots, a_n^*\}$ is optimal for *S*, i.e., $F(a_1^*, \ldots, a_n^*) = F_*(s_1, \ldots, s_n)$, and $c = s_n$ is the center. We compute the distance between *A* and A^* .

$$F(a_1, \dots, a_n) = \sum_{i=1}^{n-1} \sum_{j=i+1}^n F(a_i, a_j) = \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n F(a_i, a_j)$$

$$\leq \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \left(F_*(s_i, c) + F_*(c, s_j) \right)$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} F_*(s_i, c) + \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} F_*(s_j, c) \right)$$

$$= \frac{1}{2} \left(\sum_{j=1}^{n-1} \sum_{i=1}^{n-1} F_*(s_i, c) + \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} F_*(s_i, c) \right)$$

$$= (n-1) \cdot \sum_{i=1}^{n-1} F_*(s_i, c)$$

Figure 7: Space (top) and time needed by (Beam)NRPA.

and

$$F(a_1^*, \dots, a_n^*) = \sum_{i=1}^{n-1} \sum_{j=i+1}^n F(a_i^*, a_j^*)$$

= $\frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n F(a_i^*, a_j^*)$
 $\ge \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n F_*(s_i, s_j)$
= $\frac{1}{2} \sum_{i=1}^n \left(\sum_{j=1}^n F_*(s_i, s_j) \right)$
 $\ge \frac{1}{2} \sum_{i=1}^n \left(\sum_{j=1}^n F_*(c, s_j) \right)$
= $\frac{1}{2} n \cdot \sum_{j=1}^n F_*(c, s_j) = \frac{1}{2} n \cdot \sum_{i=1}^n F_*(s_i, c)$

Therefore, we have

$$\frac{F(a_1, \dots, a_n)}{F_*(s_1, \dots, s_n)} = \frac{F(a_1, \dots, a_n)}{F(a_1^*, \dots, a_n^*)}$$
$$= \frac{(n-1) \cdot \sum_{i=1}^{n-1} F_*(s_i, c)}{\frac{1}{2}n \cdot \sum_{i=1}^n F_*(s_i, c)} = 2 - \frac{2}{n}. \square$$

The MSA that is constructed via the star-shaped alignment tree is, therefore, an upper bound for the distance of the optimal MSA (Kurtz 2007).

Experimental Results

Experiments were ran on a Debian v7.8 32 GB RAM PC (using 1 of the AMD FX(tm)-8350's 4,0/4,2GHz 8-cores), taking GNU's g++ (v4.7.2, -O3). For scoring, PAM250 and affine gap cost wrt. -10x - 1 for gap length x were used.

We took the BAliBASE benchmark (ftp://bess.ustrasbg.fr/pub/BAliBASE2), which has been designed to compare the efficiency of different MSA algorithms¹. BAliBASE is a library of biologically alignments that optimize an informal biological *meaning*. Having a formal sum of pairwise scores on BAliBASE entries cannot replace a comparison with bioinformatics competitors such as Clustal-Omega (Clu 2011), MUSCLE (Edgar 2004a; 2004b) or MAFFT (Katoh 2013). However, our interest was showing the potential of MCTS for the MSA problem in terms of saving space and posthoc optimization during the search. Originally, we wanted to compare our algorithm with Genetic Algorithms (e.g., the program SAGA). But we did not do it, due to the non-optimal results for the search without the initial alignment.

Reference 1 consists of 82 sequence groups, partitioned into 9 classes according to the length (short, medium, long) and similarity (large, medium, small). Among those we chose *test 3*, consisting of 28 sequence groups with three to six sequences of different similarity. From the set of MSAs we chose 1ped and 4enl (3 sequences) and 1lcf (6 sequences), together with the groups 2myr (4), ga14 (5), and 1pamA (4), which are supposedly the hardest (Hatem and Ruml 2013; Schrödl 2005). The implementation supports FASTA and MSF formats. The web presentation comes with manual close-to-optimal solutions.

For these sequence groups at most 20MB RAM was allocated, which is by far lower than the one in IDDP and variants. On the other hand, BeamNRPA was better than NRPA: the wider the beam, the better the solution. The number of rollouts for BeamNRPA its $beam \cdot iteration^{level}$ (we allow a beam width other than 1 only in level 1), and chose beam = 1, 2, 4, iteration = 50 and level = 3. BeamNRPA with beam = 1 is NRPA. The initial alignment is defined by the star algorithm and improved by the optimizer.

In NRPA_col a policy is a matrix of size $(\sum_{i=1}^{n} |s_i|) \times |\Sigma'|^n$, so that the memory requirements are exponential in n. This leads NRPA_col to fail for 5-6 sequences and to bad results in many others.

For NRPA_gap a policy is a matrix of size $(k - |s_i|) \times k$ for every s_i , so that memory requirements are polynomial in $|s_i|$ and k. Only 4 of 28 groups needed more than 10MB space, and 20MB was the overall maximum. For DP and its variants the space complexity is $O(|s_1| \cdot \ldots \cdot |s_n|)$. A biological sequence (DNA/protein) may have over one thousand bases/amino acids. Hence, the memory requirements are huge. Our algorithm saves only the positions of all gaps in an alignment. Obviously, the number of gaps is much less than the length of an aligned sequence. Therefore, the required memory in our program is very small.

Sample learning curves for 1ped and 1pamA are shown in Fig. 8 and Fig. 9), respectively. NRPA_gap without sorting often resulted in a better quality than with sorting, where *lpamA*, *2myr* and *llcf* are the only exceptions (see Table 1). Thus, we used no sorting in BeamNRPA. Memory and time performances of NRPA and BeamNRPA are cross-compared

¹BAliBASE3 (http://www.ncbi.nlm.nih.gov/pubmed/ 16044462) is considered by specialists as a bad benchmarking resource even for identifying good scoring functions. Moreover, BAliBASE version 2 is used in all precursing AI publications.

Figure 8: Learning curves of *1ped*.

Figure 9: Learning curves of *1pamA*.

in Fig. 7 and listed in Table 1 and 2. The wider the beam, the higher the computational cost. On the other hand, as shown in Fig. 8, the larger the search tree, the better the solution found by BeamNRPA.

Next, we tested whether an initial alignment could be improved (see Table 3). After determining the alignment, we called the adaptation function 10 time (α -value of 1) to come up with an initial policy. For the sequence group *1ped* an alignment better than the initial one was found quickly (see Fig. 8). The initial alignment of *1pamA* had a score of -8291. Unfortunately, for this hardest group BeamNRPA did not improve much within the given parameter range (see Fig. 9).

Finally, we optimize best-known solutions from the BAliBASE benchmark with BeamNRPA_gap. Table 4 shows an improvement (wrt. our cost function) in 20 groups, equal results in 6 groups (1ac5, 1bgl, 1dlc, 1fieA, 1gpb, 1gtr) and worse result in 2 groups (1pamA and 1taq).

Altogether there are 28 sequence groups. For the groups 1pamA and 1taq our program cannot return a better solution than BAliBASE (from beam = 2 and 4). For these 6 groups (1ac5, 1bgl, 1dlc, 1fieA, 1gpd and 1gtr) our program returns the same good solutions as BAliBASE (from beam = 2 and 4). For the other 20 groups the better solutions are found from beam = 2 or 4 (beam = 2 sometimes can return a better solution than beam = 4).

Conclusion and Outlook

In this paper we pioneered Monte-Carlo tree search for the multiple sequence problem. The results for learning gaps with BeamNPRA are very promising. The approach has a very low memory overhead, can be used from scratch and for post-hoc optimization, Wrt. our cost function we found improvements to many published BAliBASE alignments.

It is possible to improve the policy representation by learning inter-dependencies of gap positions within the set of sequences. A further yet unexplored option is the parallelization of BeamNRPA. In (Rosin 2011) it has been said that parallelizing NRPA is involved, since the policy has to be shared among the threads. The advantage of BeamNRPA is that it is easier to parallelize as all policies in the beam can be read and updated concurrently. It has the additional feature that it can be parallized in every level of the search. As the number of iterations is usually larger than the number of threads, the searches in each thread are iterative. Another option to deal with concurrency issues in the parallelization is to use low-level compare-and-swap.

Table 1: NRPA_gap									
		with s	orting	ŗ	without sorting				
	len score time mem							mem	
1ajsA	433	-6456	573	5524K	434	-4871	579	5516K	
1cpt	455	-5711	471	4926K	458	-4509	477	4656K	
1lvl	506	-7335	761	6778K	510	-6709	767	6770K	
1pamA	656	-22053	2546	20M	677	-22877	2568	20M	
1ped	385	-1909	223	3022K	386	-1239	225	2748K	
2myr	543	-9800	1308	11M	546	-9890	1324	11M	
4enl	433	-2701	407	4256K	426	-2031	412	4250K	
gal4	431	-10423	720	6604K	433	-8866	736	6600K	
1ac5	517	-7690	708	6390K	519	-6932	708	6386K	
1adj	421	2931	71	1609K	421	2954	69	1612/K	
1bgl	1002	-7085	746	6402K	1002	-6403	750	6394K	
1dlc	636	-6008	585	5556K	637	-5683	588	5544K	
1eft	420	-3371	316	3432K	419	-2658	318	3422K	
1fieA	689	-641	221	2808K	689	-268	222	2800K	
1gowA	542	-7471	692	6378K	541	-6706	700	6370K	
1pkm	466	-2231	213	2812K	468	-1534	214	2800K	
1sesA	463	-6949	373	3848K	465	-5766	376	3838K	
2ack	534	-11462	752	6594K	534	-10214	757	6586K	
arp	449	-8972	507	4912K	449	-7536	511	4904K	
glg	513	-8423	508	4922K	514	-7127	513	4916K	
1ad3	459	-2086	172	2350K	459	-277	173	2342K	
1gpb	854	-9015	847	7012K	854	-8726	867	7002K	
1gtr	451	-3715	230	2800K	451	-1842	236	2792K	
1lcf	747	-20636	1361	10M	747	-20645	1374	10M	
1rthA	556	-1284	269	3004K	556	-318	270	2998K	
1taq	948	-17728	1656	13M	950	-16778	1667	13M	
3pmg	588	-2868	329	3656K	589	-2105	330	3648K	
actin	415	-4411	272	3238K	415	-3619	273	2964K	

Table 2: BeamNRPA_gap

		beam	n = 2		beam = 4					
	len	score	time	mem	len	score	time	mem		
1ajsA	437	-4262	1810	9080K	432	-3684	3546	12M		
1cpt	457	-3766	1483	7656K	452	-2857	3024	10M		
1lvl	502	-4693	2517	10M	497	-3833	4935	15M		
1pamA	665	-17679	9235	35M	665	-14016	17458	49M		
1ped	388	-1209	677	4224K	383	-1075	1399	5556K		
2myr	532	-6520	4469	18M	536	-5930	8662	26M		
4enl	433	-1796	1302	6760K	424	-1381	2571	9128K		
gal4	431	-7133	2459	10M	429	-6751	4686	14M		
1ac5	519	-4733	2351	10M	513	-4304	4598	13M		
1adj	421	1594	205	2188K	421	2804	409	2548K		
1bgl	1002	-2510	2602	10M	1002	-892	5128	13M		
1dlc	636	-2295	1935	8752K	636	-1986	3775	11M		
1eft	420	-1618	993	5092K	420	-1361	1943	6780K		
1fieA	689	3033	705	4012K	689	3652	1345	5216K		
1gowA	537	-4415	2413	10M	537	-3049	4628	14M		
1pkm	466	207	655	4240K	467	-132	1280	5164K		
1sesA	465	-3060	1192	6052K	464	-1713	2329	8112K		
2ack	533	-6652	2537	10M	534	-5442	4960	14M		
arp	447	-5633	1632	7864K	447	-5169	3277	11M		
glg	513	-4263	1632	6888K	514	-2804	3202	10M		
1ad3	459	906	520	3368K	458	690	1042	4548K		
1gpb	854	257	2905	11M	854	1708	5555	15M		
1gtr	451	759	715	4036K	451	2076	1385	5368K		
1lcf	747	-8938	4725	17M	747	-6393	9068	24M		
1rthA	556	3992	825	4592K	555	4744	1624	5976K		
1taq	950	-9353	5771	22M	950	-7945	11080	32M		
3pmg	589	606	1055	5580K	589	1632	2055	7444K		
actin	414	-255	854	4776K	414	991	1667	6248K		

Table 3: BeamNRPA_gap with initial alignment

IajsA 457 -2663 2126 11M 459 -2680 4169 15M lcpt 468 -937 1669 9792K 467 -828 3313 12M llvl 501 -2027 1915 11M 502 -1961 4117 13M lpamA 730 -11736 12350 53M 728 -11896 23831 73M lped 402 -556 722 5128K 402 -430 1447 6664 2myr 598 -4788 6150 26M 595 -4501 11504 37M 4enl 425 -892 997 6124K 427 -903 1959 8228 gal4 492 -4643 4813 22M 488 -4342 8832 30M ladj 432 3210 479 9552K 429 3392 964 9552 lbgl 1072 1958 7248	,	Table	3: Bean	ith initial alignment						
IajsA 457 -2663 2126 11M 459 -2680 4169 15M lcpt 468 -937 1669 9792K 467 -828 3313 12M llvl 501 -2027 1915 11M 502 -1961 4117 13M lpamA 730 -11736 12350 53M 728 -11896 23831 73M lped 402 -556 722 5128K 402 -430 1447 6664 2myr 598 -4788 6150 26M 595 -4501 11504 37M 4enl 425 -892 997 6124K 427 -903 1959 8228 gal4 492 -4643 4813 22M 488 -4342 8832 30M lac5 551 641 3084 13M 545 802 6090 19M ladj 432 3210 479 <t9< td=""><td></td><td></td><td>bean</td><td>n = 2</td><td></td><td colspan="5">beam = 4</td></t9<>			bean	n = 2		beam = 4				
Jept 468 -937 1669 9792K 467 -828 3313 12M 1lvl 501 -2027 1915 11M 502 -1961 4117 13M 1pamA 730 -11736 12350 53M 728 -11896 23831 73M 1ped 402 -556 722 5128K 402 -430 1447 6664 2myr 598 -4788 6150 26M 595 -4501 11504 37M 4enl 425 -892 997 6124K 427 -903 1959 8228 gal4 492 -4643 4813 22M 488 -4342 8832 30M 1ac5 551 641 3084 13M 545 802 6090 19M 1adj 432 3210 479 9552K 429 3392 964 9552 1bg1 1072 1958 7248 <td< td=""><td></td><td>len</td><td>score</td><td>time</td><td>mem</td><td>len</td><td>score</td><td>time</td><td>mem</td></td<>		len	score	time	mem	len	score	time	mem	
11vl 501 -2027 1915 11M 502 -1961 4117 13M 1pamA 730 -11736 12350 53M 728 -11896 23831 73M 1ped 402 -556 722 5128K 402 -430 1447 6664 2myr 598 -4788 6150 26M 595 -4501 11504 37M 4enl 425 -892 997 6124K 427 -903 1959 8228 gal4 492 -4643 4813 22M 488 -4342 8832 30M 1ac5 551 641 3084 13M 545 802 6090 19M 1adj 432 3210 479 9552K 429 3392 964 9552 1bg1 1072 1958 7248 47M 1071 3890 13190 47M 1dlc 655 2555 2550 <td< td=""><td>1ajsA</td><td>457</td><td>-2663</td><td>2126</td><td>11M</td><td>459</td><td>-2680</td><td>4169</td><td>15M</td></td<>	1ajsA	457	-2663	2126	11M	459	-2680	4169	15M	
1pamA 730 -11736 12350 53M 728 -11896 23831 73M 1ped 402 -556 722 5128K 402 -430 1447 6664 2myr 598 -4788 6150 26M 595 -4501 11504 37M 4enl 425 -892 997 6124K 427 -903 1959 8228 gal4 492 -4643 4813 22M 488 -4342 8832 30M 1ac5 551 641 3084 13M 545 802 6090 19M 1adj 432 3210 479 9552K 429 3392 964 9552 1bg1 1072 1958 7248 47M 1071 3890 13190 47M 1dlc 655 2555 2550 18M 654 2615 5029 18M 1eft 419 1355 957 85	1cpt	468	-937	1669	9792K	467	-828	3313	12M	
Iped 402 -556 722 5128K 402 -430 1447 6664 2myr 598 -4788 6150 26M 595 -4501 11504 37M 4enl 425 -892 997 6124K 427 -903 1959 8228 gal4 492 -4643 4813 22M 488 -4342 8832 30M 1ac5 551 641 3084 13M 545 802 6090 19M 1adj 432 3210 479 9552K 429 3392 964 9552 1bg1 1072 1958 7248 47M 1071 3890 13190 47M 1dlc 655 2555 2550 18M 654 2615 5029 18M 1eft 419 1355 957 8572K 417 1440 1888 8576 1fieA 702 5565 1147 22M </td <td>1lvl</td> <td>501</td> <td>-2027</td> <td>1915</td> <td>11M</td> <td>502</td> <td>-1961</td> <td>4117</td> <td>13M</td>	1lvl	501	-2027	1915	11M	502	-1961	4117	13M	
2myr 598 -4788 6150 26M 595 -4501 11504 37M 4enl 425 -892 997 6124K 427 -903 1959 8228 gal4 492 -4643 4813 22M 488 -4342 8832 30M 1ac5 551 641 3084 13M 545 802 6090 19M 1adj 432 3210 479 9552K 429 3392 964 9552 1bg1 1072 1958 7248 47M 1071 3890 13190 47M 1dlc 655 2555 2550 18M 654 2615 5029 18M 1eft 419 1355 957 8572K 417 1440 1888 8576 1fieA 702 5565 1147 22M 703 5567 2250 22M 1gowA 542 1138 1975 12M <td>1pamA</td> <td>730</td> <td>-11736</td> <td>12350</td> <td>53M</td> <td>728</td> <td>-11896</td> <td>23831</td> <td>73M</td>	1pamA	730	-11736	12350	53M	728	-11896	23831	73M	
4eni 425 -892 997 6124K 427 -903 1959 8228 gal4 492 -4643 4813 22M 488 -4342 8832 30M lac5 551 641 3084 13M 545 802 6090 19M ladj 432 3210 479 9552K 429 3392 964 9552 lbgl 1072 1958 7248 47M 1071 3890 13190 47M ldlc 655 2555 2550 18M 654 2615 5029 18M left 419 1355 957 8572K 417 1440 1888 8576 lfteA 702 5565 1147 22M 703 5567 2250 22M lgowA 542 1138 1975 12M 542 1225 3925 15M lgwA 494 2917 2238 16M	1ped	402	-556	722	5128K	402	-430	1447	6664K	
gal4 492 -4643 4813 22M 488 -4342 8832 30M 1ac5 551 641 3084 13M 545 802 6090 19M 1adj 432 3210 479 9552K 429 3392 964 9552 1bg1 1072 1958 7248 47M 1071 3890 13190 47M 1dlc 655 2555 2550 18M 654 2615 5029 18M 1eft 419 1355 957 8572K 417 1440 1888 8576 1fieA 702 5565 1147 22M 703 5567 2250 22M 1gowA 542 1138 1975 12M 542 1225 3925 15M 1gwA 544 834 10M 473 2081 1652 10M 1sesA 494 2917 2238 16M 488	2myr	598	-4788	6150	26M	595	-4501	11504	37M	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4enl	425	-892	997	6124K	427	-903	1959	8228K	
ladj 432 3210 479 9552K 429 3392 964 9552 lbgl 1072 1958 7248 47M 1071 3890 13190 47M ldlc 655 2555 2550 18M 654 2615 5029 18M left 419 1355 957 8572K 417 1440 1888 8576 lfeA 702 5565 1147 22M 703 5567 2250 22M lgowA 542 1138 1975 12M 542 1225 3925 15M lpkm 474 1809 834 10M 473 2081 1652 10M lsesA 494 2917 2238 16M 488 3379 4390 16M 2ack 561 -509 3557 20M 556 -215 7039 22M arp 490 435 3209 15M	gal4	492	-4643	4813	22M	488	-4342	8832	30M	
Ibgi 1072 1958 7248 47M 1071 3890 13190 47M Idic 655 2555 2550 18M 654 2615 5029 18M left 419 1355 957 8572K 417 1440 1888 8576 lfeA 702 5565 1147 22M 703 5567 2250 22M lgowA 542 1138 1975 12M 542 1225 3925 15M lpkm 474 1809 834 10M 473 2081 1652 10M lsesA 494 2917 2238 16M 488 3379 4390 16M 2ack 561 -509 3557 20M 556 -215 7039 22M arp 490 435 3209 15M 488 622 6341 20M glg 553 2568 3222 19M	1ac5	551	641	3084	13M	545	802	6090	19M	
Idic 655 2555 2550 18M 654 2615 5029 18M left 419 1355 957 8572K 417 1440 1888 8576 lfeA 702 5565 1147 22M 703 5567 2250 22M lgowA 542 1138 1975 12M 542 1225 3925 15M lpkm 474 1809 834 10M 473 2081 1652 10M lsesA 494 2917 2238 16M 488 3379 4390 16M 2ack 561 -509 3557 20M 556 -215 7039 22M arp 490 435 3209 15M 488 622 6341 20M glg 553 2568 3222 19M 551 2620 6376 19M lad3 464 5133 611 10M	1adj	432	3210	479	9552K	429	3392	964	9552K	
1eft 419 1355 957 8572K 417 1440 1888 8576 1fieA 702 5565 1147 22M 703 5567 2250 22M 1gowA 542 1138 1975 12M 542 1225 3925 15M 1pkm 474 1809 834 10M 473 2081 1652 10M 1sesA 494 2917 2238 16M 488 3379 4390 16M 2ack 561 -509 3557 20M 556 -215 7039 22M arp 490 435 3209 15M 488 622 6341 20M glg 553 2568 3222 19M 551 2620 6376 19M 1ad3 464 5133 611 10M 463 5121 1210 10M 1gpb 877 17561 4097 53M <t< td=""><td>1bgl</td><td>1072</td><td>1958</td><td>7248</td><td>47M</td><td>1071</td><td>3890</td><td>13190</td><td>47M</td></t<>	1bgl	1072	1958	7248	47M	1071	3890	13190	47M	
IfieA 702 5565 1147 22M 703 5567 2250 22M lgowA 542 1138 1975 12M 542 1225 3925 15M lpkm 474 1809 834 10M 473 2081 1652 10M lsesA 494 2917 2238 16M 488 3379 4390 16M 2ack 561 -509 3557 20M 556 -215 7039 22M arp 490 435 3209 15M 488 622 6341 20M glg 553 2568 3222 19M 551 2620 6376 19M 1ad3 464 5133 611 10M 463 5121 1210 10M lgpb 877 17561 4097 53M 878 17578 7891 53M lgtr 466 7671 1162 16M <td< td=""><td>1dlc</td><td>655</td><td>2555</td><td>2550</td><td>18M</td><td>654</td><td>2615</td><td>5029</td><td>18M</td></td<>	1dlc	655	2555	2550	18M	654	2615	5029	18M	
IgowA 542 1138 1975 12M 542 1225 3925 15M Ipkm 474 1809 834 10M 473 2081 1652 10M IsesA 494 2917 2238 16M 488 3379 4390 16M 2ack 561 -509 3557 20M 556 -215 7039 22M arp 490 435 3209 15M 488 622 6341 20N glg 553 2568 3222 19M 551 2620 6376 19M 1ad3 464 5133 611 10M 463 5121 1210 10M 1gpb 877 17561 4097 53M 878 17578 7891 53M 1gtr 466 7671 1162 16M 465 7658 2289 16M 1lcf 799 2330 8778 58M	1eft	419	1355	957	8572K	417	1440	1888	8576K	
Ipkm 474 1809 834 10M 473 2081 1652 10M 1sesA 494 2917 2238 16M 488 3379 4390 16M 2ack 561 -509 3557 20M 556 -215 7039 22M arp 490 435 3209 15M 488 622 6341 20N glg 553 2568 3222 19M 551 2620 6376 19M 1ad3 464 5133 611 10M 463 5121 1210 10M 1gpb 877 17561 4097 53M 878 17578 7891 53M 1gtr 466 7671 1162 16M 465 7658 2289 16M 1lcf 799 2330 8778 58M 799 3392 17135 58M 1rthA 565 8897 1120 23M <td< td=""><td>1fieA</td><td>702</td><td>5565</td><td>1147</td><td>22M</td><td>703</td><td>5567</td><td>2250</td><td>22M</td></td<>	1fieA	702	5565	1147	22M	703	5567	2250	22M	
IsesA 494 2917 2238 16M 488 3379 4390 16M 2ack 561 -509 3557 20M 556 -215 7039 22M arp 490 435 3209 15M 488 622 6341 20M glg 553 2568 3222 19M 551 2620 6376 19M lad3 464 5133 611 10M 463 5121 1210 10M lgpb 877 17561 4097 53M 878 17578 7891 53M lgtr 466 7671 1162 16M 465 7658 2289 16M llcf 799 2330 8778 58M 799 3392 17135 58M lrthA 565 8897 1120 23M 563 9022 2202 23M ltaq 978 1889 7947 62M <t< td=""><td>1gowA</td><td>542</td><td>1138</td><td>1975</td><td>12M</td><td>542</td><td>1225</td><td>3925</td><td>15M</td></t<>	1gowA	542	1138	1975	12M	542	1225	3925	15M	
2ack 561 -509 3557 20M 556 -215 7039 22M arp 490 435 3209 15M 488 622 6341 20M glg 553 2568 3222 19M 551 2620 6376 19M lad3 464 5133 611 10M 463 5121 1210 10M lgpb 877 17561 4097 53M 878 17578 7891 53M lgtr 466 7671 1162 16M 465 7658 2289 16M llcf 799 2330 8778 58M 799 3392 17135 58M lrthA 565 8897 1120 23M 563 9022 2202 23M ltaq 978 1889 7947 62M 977 1879 15483 62M	1pkm	474	1809	834	10M	473	2081	1652	10M	
arp490435320915M488622634120Mglg5532568322219M5512620637619MIad3464513361110M4635121121010Mlgpb87717561409753M87817578789153Mlgtr4667671116216M4657658228916Mllcf7992330877858M79933921713558MlrthA5658897112023M5639022220223Mltaq9781889794762M97718791548362M	1sesA	494	2917	2238	16M	488	3379	4390	16M	
glg 553 2568 3222 19M 551 2620 6376 19M 1ad3 464 5133 611 10M 463 5121 1210 10M 1gpb 877 17561 4097 53M 878 17578 7891 53M 1gtr 466 7671 1162 16M 465 7658 2289 16M 1lcf 799 2330 8778 58M 799 3392 17135 58M 1rthA 565 8897 1120 23M 563 9022 2202 23M 1taq 978 1889 7947 62M 977 1879 15483 62M	2ack	561	-509	3557	20M	556	-215	7039	22M	
Iad3 464 5133 611 10M 463 5121 1210 10M lgpb 877 17561 4097 53M 878 17578 7891 53M lgtr 466 7671 1162 16M 465 7658 2289 16M llcf 799 2330 8778 58M 799 3392 17135 58M lrthA 565 8897 1120 23M 563 9022 2202 23M ltaq 978 1889 7947 62M 977 1879 15483 62M	arp	490	435	3209	15M	488	622	6341	20M	
lgpb 877 17561 4097 53M 878 17578 7891 53M lgtr 466 7671 1162 16M 465 7658 2289 16M llcf 799 2330 8778 58M 799 3392 17135 58M lrthA 565 8897 1120 23M 563 9022 2202 23M ltaq 978 1889 7947 62M 977 1879 15483 62M	glg	553	2568	3222	19M	551	2620	6376	19M	
lgtr 466 7671 1162 16M 465 7658 2289 16M llcf 799 2330 8778 58M 799 3392 17135 58M lrthA 565 8897 1120 23M 563 9022 2202 23M ltaq 978 1889 7947 62M 977 1879 15483 62M	1ad3	464	5133	611	10M	463	5121	1210	10M	
licf 799 2330 8778 58M 799 3392 17135 58M lrthA 565 8897 1120 23M 563 9022 2202 23M ltaq 978 1889 7947 62M 977 1879 15483 62M	1gpb	877	17561	4097	53M	878	17578	7891	53M	
1rthA 565 8897 1120 23M 563 9022 2202 23M 1taq 978 1889 7947 62M 977 1879 15483 62M	1gtr	466	7671	1162	16M	465	7658	2289	16M	
1taq 978 1889 7947 62M 977 1879 15483 62M	1lcf	799	2330	8778	58M	799	3392	17135	58M	
	1rthA	565	8897	1120	23M	563	9022	2202	23M	
	1taq	978	1889	7947	62M	977	1879	15483	62M	
3pmg 619 6744 2006 16M 620 6731 3936 16M	3pmg	619	6744	2006	16M	620	6731	3936	16M	
actin 416 7883 824 13M 416 7916 1622 13M	actin	416	7883	824	13M	416	7916	1622	13M	

Table 4: BeamNRPA_gap for BAliBASE optima (BBO)

BBO $beam = 2$ $beam = 4$ scorelenscoretimememlenscoretimememlajsA-1292449-1264l6989852K449-1258337813Mlcpt52046155813978440K461 602 275010Mllvl-750516-750228412M516-720452216MlpamA-2366677-5252871539M678-32901721554Mlped-42398-156474548K3964012745956K2myr-1490554-1561401821M554-1452804828M4enl-336441-29311647428K438-26522989804Kgal4-876439-811216811M438-779428315Mlac523755242375214111M5242375424715Mladj403742140642002192K42140873952556Klbgl739410027394226311M10027394450515Mldc4906638490617339724K6384906341911Mleft221141222579216100K412225718317232KlifeA68156896815640	Table 4: BeamNKPA_gap for BAIIDASE opuma (BBO)									<i>)</i>
IajsA -1292 449 -1264 1698 9852K 449 -1258 3378 13M 1cpt 520 461 558 1397 8440K 461 602 2750 10M 1lv1 -750 516 -750 2284 12M 516 -720 4522 16M 1pamA -2366 677 -5252 8715 39M 678 -3290 17215 54M 1ped -42 398 -15 647 4548K 396 40 1274 5956K 2myr -1490 554 -1561 4018 21M 554 -1452 8048 28M 4enl -336 441 -293 1164 7428K 438 -265 2298 9804K gal4 -876 439 -811 2168 11M 438 -779 4283 15M 1ac5 2375 524 2375 2141 11M <		BBO				beam = 4				
1 cpt 520 461 558 1397 8440K 461 602 2750 10M 1lvl -750 516 -750 2284 12M 516 -720 4522 16M 1pamA -2366 677 -5252 8715 39M 678 -3290 17215 54M 1ped -42 398 -15 647 4548K 396 40 1274 5956K 2myr -1490 554 -1561 4018 21M 554 -1452 8048 28M 4enl -336 441 -293 1164 7428K 438 -265 2298 9804K gal4 -876 439 -811 2168 11M 438 -779 4283 15M 1ac5 2375 524 2375 2141 11M 524 2375 4247 15M 1adj 4037 421 4064 200 2192K <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
11.vl-750516-750228412M516-720452216M1pamA-2366677-5252871539M678-32901721554M1ped-42398-156474548K3964012745956K2myr-1490554-1561401821M554-1452804828M4enl-336441-29311647428K438-26522989804Kgal4-876439-811216811M438-779428315M1ac523755242375214111M5242375424715M1adj403742140642002192K42140873952556K1bgl739410027394226311M10027394450515M1dlc4906638490617339724K6384906341911M1eft221141222579216100K412225718317232K1fieA681568968156404300K689681512795628K1gowA27105462712211211M5452730413515M1pkm298146829816174252K468298412315428K1sesA5896465589610866488K46559072167 <td>1ajsA</td> <td>-1292</td> <td>449</td> <td>-</td> <td>1698</td> <td>9852K</td> <td>449</td> <td>-1258</td> <td></td> <td>13M</td>	1ajsA	-1292	449	-	1698	9852K	449	-1258		13M
1pamA -2366 677 -5252 8715 39M 678 -3290 17215 54M 1ped -42 398 -15 647 4548K 396 40 1274 5956K 2myr -1490 554 -1561 4018 21M 554 -1452 8048 28M 4enl -336 441 -293 1164 7428K 438 -265 2298 9804K gal4 -876 439 -811 2168 11M 438 -779 4283 15M 1ac5 2375 524 2375 2141 11M 524 2375 4247 15M 1adj 4037 421 4064 200 2192K 421 4087 395 2556K 1bgl 7394 1002 7394 263 11M 1002 7394 4505 15M 1dc 4906 638 4906 1733 9724K 638 4906 3419 11M 1dc 4906 6815 640 <td>1cpt</td> <td>520</td> <td>461</td> <td>558</td> <td>1397</td> <td>8440K</td> <td>461</td> <td>602</td> <td>2750</td> <td>10M</td>	1cpt	520	461	558	1397	8440K	461	602	2750	10M
Iped-42398-156474548K3964012745956K2myr-1490554-1561401821M554-1452804828M4enl-336441-29311647428K438-26522989804Kgal4-876439-811216811M438-779428315M1ac523755242375214111M5242375424715M1adj403742140642002192K42140873952556K1bgl739410027394226311M10027394450515M1dic4906638490617339724K6384906341911M1eft221141222579216100K412225718317232K1fieA681568968156404300K689681512795628K1gowA27105462712211211M5452730413515M1pkm298146829816174252K468298412315428K1sesA5896465589610866488K465590721678520K2ack34705363473322111M5363473454215Marp3875450388914928556K45038912974<	1lvl	-750	516	-750	2284	12M	516	-720	4522	16M
21490554.1561401821M554.1452804828M4enl-336441-29311647428K438-26522989804Kgal4-876439-811216811M438-779428315M1ac523755242375214111M5242375424715M1adj403742140642002192K42140873952556K1bgl739410027394226311M10027394450515M1dic4906638490617339724K6384906341911M1eft221141222579216100K412225718317232K1fieA681568968156404300K689681512795628K1gowA27105462712211211M5452730413515M1pkm298146829816174252K468298412315428K1sesA5896465589610866488K465590721678520K2ack34705363473322111M5363473454215Marp3875450388914928556K4503891297411Mglg4959514500715029268K51351092937<	1pamA	-2366	677	-5252	8715	39M	678	-3290	17215	54M
4eni -336 441 -293 1164 7428K 438 -265 2298 9804K gal4 -876 439 -811 2168 11M 438 -779 4283 15M lac5 2375 524 2375 2141 11M 524 2375 4247 15M ladj 4037 421 4064 200 2192K 421 4087 395 2556K lbgl 7394 1002 7394 263 11M 1002 7394 4505 15M ldc 4906 638 4906 1733 9724K 638 4906 3419 11M left 2211 412 2257 921 6100K 412 2257 1831 7232K lfieA 6815 689 6815 640 4300K 689 6815 1279 5628K lgowA 2710 546 2712 2112 11M 545 2730 4135 15M lpkm 2981 467 452 </td <td>1ped</td> <td>-42</td> <td>398</td> <td>-15</td> <td>647</td> <td>4548K</td> <td>396</td> <td>40</td> <td>1274</td> <td>5956K</td>	1ped	-42	398	-15	647	4548K	396	40	1274	5956K
gal4-876439-811216811M438-779428315M1ac523755242375214111M5242375424715M1adj403742140642002192K42140873952556K1bgl739410027394226311M10027394450515M1dlc4906638490617339724K6384906341911M1eft221141222579216100K412225718317232K1fieA681568968156404300K689681512795628K1gowA27105462712211211M5452730413515M1pkm298146829816174252K468298412315428K1sesA5896465589610866488K465590721678520K2ack34705363473232111M5363473454215Marp3875450388914928556K4503891297411Mglg4959514500715029268K5135109293710M1ad3540945954154914100K45954269824752K1gpb2014185420141260512M854201415145<	2myr	-1490	554	-1561	4018	21M	554	-1452	8048	28M
Iac5 2375 524 2375 2141 11M 524 2375 4247 15M 1adj 4037 421 4064 200 2192K 421 4087 395 2556K 1bgl 7394 1002 7394 263 11M 1002 7394 4505 15M 1dlc 4906 638 4906 1733 9724K 638 4906 3419 11M 1eft 2211 412 2257 921 6100K 412 2257 1831 7232K 1fieA 6815 689 6815 640 4300K 689 6815 1279 5628K 1gowA 2710 546 2712 2112 11M 545 2730 4135 15M 1pkm 2981 468 2981 617 4252K 468 2984 1231 5428K 1sesA 5896 465 5896 1086 6488K	4enl	-336	441	-293	1164	7428K	438	-265	2298	9804K
ladj 4037 421 4064 200 2192K 421 4087 395 2556K lbgl 7394 1002 7394 263 11M 1002 7394 4505 15M ldlc 4906 638 4906 1733 9724K 638 4906 3419 11M left 2211 412 2257 921 6100K 412 2257 1831 7232K lfteA 6815 689 6815 640 4300K 689 6815 1279 5628K lgowA 2710 546 2712 2112 11M 545 2730 4135 15M lpkm 2981 467 4252K 468 2984 1231 5428K lsesA 5896 465 5896 1086 6488K 465 5907 2167 8520K 2ack 3470 536 3473 3221 11M 536 3473	gal4	-876	439	-811	2168	11M	438	-779	4283	15M
Ibgi 7394 1002 7394 2263 11M 1002 7394 4505 15M Idlc 4906 638 4906 1733 9724K 638 4906 3419 11M 1eft 2211 412 2257 921 6100K 412 2257 1831 7232K 1ficA 6815 689 6815 640 4300K 689 6815 1279 5628K 1gowA 2710 546 2712 2112 11M 545 2730 4135 15M 1pkm 2981 468 2981 617 4252K 468 2984 1231 5428K 1sesA 5896 465 5896 1086 6488K 465 5907 2167 8520K 2ack 3470 536 3473 2321 11M 536 3473 4542 15M arp 3875 450 3889 1492 8556K	1ac5	2375	524	2375	2141	11M	524	2375	4247	15M
Idic 4906 638 4906 1733 9724K 638 4906 3419 11M left 2211 412 2257 921 6100K 412 2257 1831 7232K lfteA 6815 689 6815 640 4300K 689 6815 1279 5628K lgowA 2710 546 2712 2112 11M 545 2730 4135 15M lpkm 2981 468 2981 617 4252K 468 2984 1231 5428K lsesA 5896 465 5896 1086 6488K 465 5907 2167 8520K 2ack 3470 536 3473 2321 11M 536 3473 4542 15M arp 3875 450 3889 1492 8556K 450 3891 2974 11M glg 4959 514 5007 1502 9268K	1adj	4037	421	4064	200	2192K	421	4087	395	2556K
left 2211 412 2257 921 6100K 412 2257 1831 7232K lfieA 6815 689 6815 640 4300K 689 6815 1279 5628K lgowA 2710 546 2712 2112 11M 545 2730 4135 15M lpkm 2981 468 2981 617 4252K 468 2984 1231 5428K lsesA 5896 465 5896 1086 6488K 465 5907 2167 8520K 2ack 3470 536 3473 2321 11M 536 3473 4542 15M arp 3875 450 3889 1492 8556K 450 3891 2974 11M glg 4959 514 5007 1502 9268K 513 5109 2937 10M lads 5409 459 5415 491 <	1bgl	7394	1002	7394	2263	11M	1002	7394	4505	15M
IfieA 6815 689 6815 640 4300K 689 6815 1279 5628K IgowA 2710 546 2712 2112 11M 545 2730 4135 15M Ipkm 2981 468 2981 617 4252K 468 2984 1231 5428K IsesA 5896 465 5896 1086 6488K 465 5907 2167 8520K 2ack 3470 536 3473 2321 11M 536 3473 4542 15M arp 3875 450 3889 1492 8556K 450 3891 2974 11M glg 4959 514 5007 1502 9268K 513 5109 2937 10M lad3 5409 459 5415 491 4100K 459 5426 982 4752K lgpb 20141 8507 655 12M 8507	1dlc	4906	638	4906	1733	9724K	638	4906	3419	11M
1gowA27105462712211211M5452730413515M1pkm298146829816174252K468298412315428K1sesA5896465589610866488K465590721678520K2ack34705363473232111M5363473454215Marp3875450388914928556K4503891297411Mglg4959514500715029268K5135109293710M1ad3540945954154914100K45954269824752K1gb2014185420141260512M85420141514517M1gtr880745188076654320K451880713215660K1lcf2500174725007416819M74725015826826M1rthA10400556104757884940K5561047215756336K1taq1354594913048522225M949133001048234M3pmg786758978699566080K589786818997912K	1eft	2211	412	2257	921	6100K	412	2257	1831	7232K
Ipkm298146829816174252K468298412315428KIsesA5896465589610866488K465590721678520K2ack34705363473232111M5363473454215Marp3875450388914928556K4503891297411Mglg4959514500715029268K5135109293710M1ad3540945954154914100K45954269824752K1gpb2014185420141260512M85420141514517M1gtr880745188076654320K451880713215660K1lcf2500174725007416819M74725015826826M1rthA10400556104757884940K5561047215756336K1taq1354594913048522225M949133001048234M3pmg786758978699566080K589786818997912K	1fieA	6815	689	6815	640	4300K	689	6815	1279	5628K
115896465589610866488K465590721678520K2ack34705363473232111M5363473454215Marp3875450388914928556K4503891297411Mglg4959514500715029268K5135109293710M1ad3540945954154914100K45954269824752K1gb2014185420141260512M85420141514517M1gtr880745188076654320K451880713215660K1lcf2500174725007416819M74725015826826M1rthA10400556104757884940K5561047215756336K1taq1354594913048522225M949133001048234M3pmg786758978699566080K589786818997912K	1gowA	2710	546	2712	2112	11M	545	2730	4135	15M
2ack34705363473232111M5363473454215Marp3875450388914928556K4503891297411Mglg4959514500715029268K5135109293710Mlad3540945954154914100K45954269824752Klgb2014185420141260512M85420141514517Mlgtr880745188076654320K451880713215660Kllcf2500174725007416819M74725015826826MlrthA10400556104757884940K5561047215756336Kltaq1354594913048522225M949133001048234M3pmg786758978699566080K589786818997912K	1pkm	2981	468	2981	617	4252K	468	2984	1231	5428K
arp3875450388914928556K4503891297411Mglg4959514500715029268K5135109293710M1ad3540945954154914100K45954269824752K1gpb2014185420141260512M85420141514517M1gtr880745188076654320K451880713215660K1lcf2500174725007416819M74725015826826M1rthA10400556104757884940K5561047215756336K1taq1354594913048522225M949133001048234M3pmg786758978699566080K589786818997912K	1sesA	5896	465	5896	1086	6488K	465	5907	2167	8520K
gig4959514500715029268K513 5109 293710M1ad3540945954154914100K459 5426 9824752K1gpb 20141 854 20141 260512M854 20141 514517M1gtr 8807 451 8807 6654320K451 8807 13215660K1lcf2500174725007416819M747 25015 826826M1rthA10400556 10475 7884940K5561047215756336K1taq 13545 94913048522225M949133001048234M3pmg7867589 7869 9566080K589786818997912K	2ack	3470	536	3473	2321	11M	536	3473	4542	15M
Iad3 5409 459 5415 491 4100K 459 5426 982 4752K 1gpb 20141 854 20141 2605 12M 854 20141 5145 17M 1gtr 8807 451 8807 665 4320K 451 8807 1321 5660K 1lcf 25001 747 25007 4168 19M 747 25015 8268 26M 1rthA 10400 556 10475 788 4940K 556 10472 1575 6336K 1taq 13545 949 13048 5222 25M 949 13300 10482 34M 3pmg 7867 589 7869 956 6080K 589 7868 1899 7912K	arp	3875	450	3889	1492	8556K	450	3891	2974	11M
1ad3 5409 459 5415 491 4100K 459 5426 982 4752K 1gpb 20141 854 20141 2605 12M 854 20141 5145 17M 1gtr 8807 451 8807 665 4320K 451 8807 1321 5660K 1lcf 25001 747 25007 4168 19M 747 25015 8268 26M 1rthA 10400 556 10475 788 4940K 556 10472 1575 6336K 1taq 13545 949 13048 5222 25M 949 13300 10482 34M 3pmg 7867 589 7869 956 6080K 589 7868 1899 7912K	glg	4959	514	5007	1502	9268K	513	5109	2937	10M
1 1 gtr880745188076654320K451880713215660K11cf2500174725007416819M74725015826826M1rthA10400556104757884940K5561047215756336K1taq1354594913048522225M949133001048234M3pmg786758978699566080K589786818997912K		5409	459	5415	491	4100K	459	5426	982	4752K
11cf2500174725007416819M74725015826826M1rthA10400556104757884940K5561047215756336K1taq1354594913048522225M949133001048234M3pmg786758978699566080K589786818997912K	1gpb	20141	854	20141	2605	12M	854	20141	5145	17M
11cf2500174725007416819M74725015826826M1rthA10400556104757884940K5561047215756336K1taq1354594913048522225M949133001048234M3pmg786758978699566080K589786818997912K	lgtr	8807	451	8807	665	4320K	451	8807	1321	5660K
1rthA10400556104757884940K5561047215756336K1taq1354594913048522225M949133001048234M3pmg786758978699566080K589786818997912K	1lcf	25001	747	25007	4168	19M	747	25015		26M
3pmg 7867 589 7869 956 6080K 589 7868 1899 7912K	1rthA	10400	556	10475	788		556	10472	1575	6336K
3pmg 7867 589 7869 956 6080K 589 7868 1899 7912K	1taq	13545	949	13048	5222	25M	949	13300	10482	34M
	-	7867	589	7869	956	6080K	589	7868	1899	7912K
	1 0	8489	415	8556	793	5108K	415	8530	1575	6620K

References

Altschul, S. F.; Gish, W.; Miller, W.; Myers, E. W.; and Lipman, D. J. 1990. Basic local alignment search tool. *Journal* of *Molecular Biology* 215(3):403–410.

Bellman, R. 1957. *Dynamic Programming*. Princton University Press.

Boeckenhauer, H.-J., and Bongartz, D. 2010. In *Algorithmic Aspects of Bioinformatics*. Springer. 94–96.

Cazenave, T., and Teytaud, F. 2012. Application of the nested rollout policy adaptation algorithm to the traveling salesman problem with time windows. In *Learning and Intelligent Optimization*. Springer. 42–54.

Cazenave, T. 2009. Nested monte-carlo search. In *IJCAI*, 456–461.

Cazenave, T. 2012. Monte carlo beam search. *Computational Intelligence and AI in Games, IEEE Transactions on* 4(1):68–72.

2011. Fast, scalable generation of high quality protein multiple sequence alignments using clustal omega. *Mol. Syst. Biol.* 7(539).

Dayhoff, M. O.; Schwartz, R. M.; and Orcutt, B. C. 1978. A model of evolutionary change in proteins. In *Atlas of Protein Sequence and Structure*, volume 5. National Biomedical Research Foundation. chapter 22, 345–352.

Edelkamp, S., and Gath, M. 2014. Solving single vehicle pickup and delivery problems with time windows and capacity constraints using nested monte-carlo search. In *ICAART*, 22–33.

Edelkamp, S., and Kissmann, P. 2007. Externalizing the multiple sequence alignment problem with affine gap costs. In *KI*, 444–447.

Edgar, R. C. 2004a. MUSCLE: a multiple sequence alignment method with high accuracy and throughput. *Nucleic acids research* 32(5):1792–7.

Edgar, R. C. 2004b. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. *BMC bioinformatics* 5(113).

Gusfield, D. 1997. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press.

Hatem, M., and Ruml, W. 2013. External memory best-first search for multiple sequence alignment. In *AAAI*.

Henikoff, S., and Henikoff, J. G. 1992. Amino acid substitution matrices from protein blocks. *Proceedings of the National Academy of Sciences* 89(22):10915–10919.

Hirschberg, D. S. 1975. A linear space algorithm for computing common subsequences. *Communications of the ACM* 18(6):341–343.

Hodgman, T. C.; French, A.; and Westhead, D. R. 2010. *BIOS Instant Notes in Bioinformatics*. Garland Science, 2nd edition.

Jones, D. T.; Taylor, W. R.; and Thornton, J. M. 1992. The rapid generation of mutation data matrices from protein sequences. *Comput. Appl. Biosci.* 8(3):275–282.

Katoh, S. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Molecular Biology and Evolution* 30:772–780.

Korf, R. E.; Zhang, W.; Thayer, I.; and Hohwald, H. 2005. Frontier search. *Journal of the ACM* 52(5):715–748.

Kurtz, S. 2007. Lecture notes on basics of sequence analysis.

Levenshtein, V. 1966. Binary codes capable of correcting deletions, insertions and reversals. *Soviet Physics Doklady* 10(8):707–710.

Pearson, W. R. 1994. Using the fasta program to search protein and dna sequence databases. *Methods in Molecular Biology* 24:307–331.

Rimmel, A.; Teytaud, F.; and Cazenave, T. 2011. Optimization of the nested monte-carlo algorithm on the traveling salesman problem with time windows. *Applications of Evolutionary Computation* 501–510.

Rosin, C. D. 2011. Nested rollout policy adaptation for monte carlo tree search. In *IJCAI*, 649–654.

Schrödl, S. 2005. An improved search algorithm for optimal multiple sequence alignment. *Journal of Artificial Intelligence Research* 23:587–623.

Wang, L., and Jiang, T. 1994. On the complexity of multiple sequence alignment. *Journal of Computational Biology* 1(4):337–348.

Zhou, R., and Hansen, E. A. 2002. Multiple sequence alignment using A*. In *AAAI*. Student abstract.

Zhou, R., and Hansen, E. 2003. Sweep a*: space-efficient heuristic search in partially ordered graphs. In *15th IEEE International Conference on Tools with Artificial Intelligence*, 427–434.