Monte-Carlo Tree Search for the Multiple Sequence Alignment Problem

Stefan Edelkamp and Zhihao Tang
Bremen University
\{edelkamp,zhihao\}@tzi.de

Abstract

The paper considers solving the multiple sequence alignment, a combinatorial challenge in computational biology, where several DNA RNA, or protein sequences are to be arranged for high similarity. The proposal applies randomized MonteCarlo tree search with nested rollouts and is able to improve the solution quality over time. Instead of learning the position of the letters, the approach learns a policy for the position of the gaps. The Monte-Carlo beam search algorithm we have implemented has a low memory overhead and can be invoked with constructed or known initial solutions. Experiments in the BAliBASE benchmark show promising results in improving state-of-the-art alignments.

Introduction

Multiple sequence alignments (MSA) are frequently used for the analysis of DNA, RNA, or protein sequences in order to determine the evolutionary relation between species with a common ancestor, to predict the so-called secondary/tertiary structure, as well as the functional centers, in which as few possible mutations as possible occur (assuming that similar sequences inherit similar structures and function).

Computational biologists have declared the MSA problem to be a holy grail (Gusfield 1997). One reason is that solving this problem often leads to a high memory demands, which has been partially leveraged with frontier search (Hirschberg 1975; Korf et al. 2005), refined heuristics, and variants of memory-limited (Zhou and Hansen 2002; 2003) or iterativedeepening heuristic search (Schrödl 2005). Most of these approaches provide strategies to limit exploring the search space induced by dynamic programming (Bellman 1957). Tools like Clustal(W/Omega) and Blast compute approximate MSAs with probabilistic models.

Algorithmically, MSA boils down to the cost-optimal alignment of strings. Smaller problems can be solved optimally and the dynamic programming solution relates to

[^0]approximate string matching. Precursor work in AI showed considerable scaling but often neglects biological relevant features like the inclusion of similarity cost matrices and affine gap costs. Exceptions are iterative deepening dynamic programming (Schrödl 2005), its externalization (Edelkamp and Kissmann 2007), and a search variant using partial expansion (Hatem and Ruml 2013). Still, the memory requirements raise exponentially with the problem complexity (measured in the sum of the input sequences).

In this paper we apply fixed-memory-bound randomized search that incorporates no expert knowledge in form of refined heuristics. The algorithm that we chose has successfully been used for vehicle routing (Cazenave 2012; Edelkamp and Gath 2014). It applies a series of random walks (rollouts) and learns a mapping (policy) for sampling the search space. It is able to improve over existing solutions and incorporates initial alignments into the search. As other algorithms are memory-bound, with its low memory profile it can serve as an add-on over existing approaches.

The paper is structured as follows. First, we provide a concise formulation of the MSA problem. Next, we consider the implementation of Monte-Carlo tree search that we have adapted to MSA optimization. Experimental results in the BAliBASE benchmark show advances to the state-of-the-art.

Problem Formulation

We start with some formal definitions.
Definition 1 (Sequence Alignment) Given a set of n sequences $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ with $s_{i} \in \Sigma^{*}$ for all $i=$ $1,2, \ldots, n$, and Σ being a final alphabet. A sequence alignment (of length k) consists of a set of n sequences $A=$ $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ with $a_{i} \in \Sigma^{\prime *}$ for all $i=1,2, \ldots, n$, where $\Sigma^{\prime}=\Sigma \cup\{"-"\}$ and "-" $\notin \Sigma$. For each aligned sequence $a_{i} \in A$ we have length $\left|a_{i}\right|=k$. If all letters "-" are removed from $a_{i} \in A$, we get back s_{i}. For $n=2$, the alignment is pairwise, for $n>2$ multiple.
Definition 2 (Gap, Number, Length, Position) A gap G consists of a single or a sequence of letters $g="-"$.

Figure 1: An MSA and its phylogenetic tree.

Moreover gaps_num $\left(a_{i}\right)$ is the number of empty letters in the aligned sequence $a_{i} \in A$ and $|G|$ the length of gap G. Particularly we have $|G|=1$ for $G=\langle g\rangle$ and letter g is located at position gap_pos $_{i}(g)$ in sequence $a_{i} \in A$.

For DNAs the alphabet $\Sigma_{D N A}$ is $\{\mathrm{A}, \mathrm{G}, \mathrm{C}, \mathrm{T}\}$ denoting the nucleo bases adenin, guanin, cytosin and thymin. For RNA the nucleo base uracil, abbreviated by U is used instead of thymin, so that $\Sigma_{R N A}=\{\mathrm{A}, \mathrm{G}, \mathrm{C}, \mathrm{U}\}$. The protein alphabet contains 20 amino acids.

In an alignment all sequences are written on top of each other such that the number of columns with matching letter is maximized. Gaps are inserted to slide letters in the alignment. A substitution occurs, if two different letters meet; a gap is a deletion and/or an insertion of a letter and called indel. The assumption is that the alignment with the least number of indels is biologically most plausible.

Fig. 1 shows an example of a protein MSA with $n=$ 7 having no gaps, and the according phylogenetic tree where internal nodes denote the ancestor sequences, where I (Isoleucine), L (Leucine), F (Phenylalanine), K (Lysine) and S (Serine) are the one-letter abbreviations for the amino acids. To judge the quality of an MSA an evaluation function is required.
Definition 3 (Evaluation Function) An evaluation is a function $F: A \rightarrow \mathbb{R}$. For a pairwise alignment $A=$ $\left\{a_{1}, a_{2}\right\}$ with $a_{i}=\left\langle c_{i 1} c_{i 2} \ldots c_{i k}\right\rangle$ and $c_{i j} \in \Sigma^{\prime}, i=1,2$ and $j=1,2, \ldots, k$, its evaluation is the sum of similarities f of all alignment columns $F(A)=F\left(a_{1}, a_{2}\right)=$ $\sum_{j=1}^{k} f\left(c_{1 j}, c_{2 j}\right)$. For a MSA $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ the evaluation is the sum of values for all sequence pairs $F(A)=F\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} F\left(a_{i}, a_{j}\right)$.

The evaluation function by (Levenshtein 1966) is used to compute edit distances. For DNA alignment we support scoring matrices used in WU-BLASTN (Altschul et al. 1990) and FASTA (Pearson 1994), and for protein alignment the PAM (Point Accepted Mutation) matrix (Dayhoff, Schwartz, and Orcutt 1978; Boeckenhauer and Bongartz 2010), the PET91 matrix (Jones, Taylor, and Thornton 1992), and BLOSUM (BLOck SUbstitution Matrix) (Henikoff and Henikoff 1992).

Definition 4 (Optimal MSA) Let \mathscr{A} be the set of all MSAs that can be generated by a set of sequences $S=$ $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$. The optimal MSA $A^{\star} \in \mathscr{A}$ is an MSA with $F\left(A^{\star}\right)=\min _{A \in \mathscr{A}} F(A)$, if the evaluation is based on distances or $F\left(A^{\star}\right)=\max _{A \in \mathscr{A}} F(A)$.
Definition 5 (MSA Problem) Given a set of sequences $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$, the MSA problem is to find the optimal MSA for A^{\star} for S.

For a set of sequences more than one optimal MSAs may exist (Fig.2) yielding different biological explanations. All solutions have the same edit-distance 4. $F(A)$ can calculate not only the similarities (maximum problems) but also the dissimilarities (minimum problems).

Figure 2: Two sequences with 7 optimal MSAs.
We consider affine gap costs where gap opening has cost $o p$ and gap extension cost ex (per extension), so that gap G has total cost $P(G)=o p+e x \cdot|G|$. Unfortunately, for biologists the values of $o p$ and $e x$ in this refined cost model may vary (Hodgman, French, and Westhead 2010).

For a rising number of sequences the MSA problem is NPhard (Wang and Jiang 1994). For n sequences of maximal length q, standard dynamic programming (DP) computes an optimal solution with memory $O\left(q^{n}\right)$ and time $O\left(2^{n} \cdot q^{n}\right)$, so that alternative algorithms are required.

The algorithm iterative-deepening dynamic programming (IDDP) (Schrödl 2005) combines dynamic programming with iterative-deepening A^{*} on the graph representation of the DP matrix. It expands edges not nodes. A lower bound $h(e)$ is devised based on precomputed pattern database of triples. We have $f(e)=g(e)+h(e)$, so that $f(e)$ for an edge e is the estimated cost of a path of the start edge to reach the end edge via the current edge e IDDP inherits the advantages of DP and IDA*, it has a fixed ordering so that every node is visited once and includes a lower bound for guidance. A partial expansion alternative to IDDP has been proposed and parallelized by (Hatem and Ruml 2013).

Monte-Carlo Tree Search

Monte-Carlo search denotes a class of randomized tree search algorithms that has been designed for search spaces with large node branching factors and weak evaluation functions. By learning the proper choice of successors over time they can converge to the overall optimal solutions. In single-agent search, a series of optimization problems have been solved, e.g., TSPs with Time Windows (Rimmel, Teytaud, and Cazenave 2011; Cazenave and Teytaud 2012; Cazenave 2012) and Morpion Solitaire (Cazenave 2009; Rosin 2011).

Nested Monte-Carlo Search (NMCS) (Cazenave 2009) is a recursive algorithm that contributes to the fact that it is more important to erect the solution on the result of a recursive optimization process than looking at the next step only.

Nested Rollout Policy Adaptation (NRPA) (Rosin 2011) combines NMCS with policy learning. In NRPA we also apply nested search but a state-to-state policy is adapted. The branching being defined by an additional parameter called iteration. In every iteration a new random simulation (rollout) is conducted by sampling the policy. Improved solutions induce changes. In each level of the search an individual policy obtains a compromise between exploration and exploitation.

Algorithm 1: BeamNRPA(level, pol)

```
if level \(=0\) then
    seq \(\leftarrow \operatorname{alignment}(\) seq, pol)
    return (weight(seq), seq, pol)
else
beam \(\leftarrow\{(\infty,\{ \}\), pol \()\}\)
for \(N\) iterations do
        new_beam \(\leftarrow\}\)
        for all \((v, s, p)\) in beam do
            insert \((v, s, p)\) in new_beam
            temp_beam \(\leftarrow\) BeamNRPA (level \(-1, p)\)
            for all \(\left(t_{-} v, t_{-} s, t_{-} p\right)\) in \(t e m p_{-} b e a m\) do
                \(t_{-} p \leftarrow \operatorname{adapt}\left(p, t_{-} s\right)\)
                insert \(\left(t_{-} v, t_{-} s, t_{-} p\right)\) in new_beam
        beam \(\leftarrow\) the \(B\) best beams in new_beam
    return beam
```


Figure 3: The search tree for a sample pairwise alignment.

Beam Nested Rollout Policy Adaptation (BeamNRPA) (Cazenave 2012) is a variant of NRPA that maintains a policy for each solution, and a set of good solutions for each search level. The size of the set in level i is called beam and denoted by B_{i}. The pseudo-code is shown in Alg. 1. For each solution in a level BeamNRPA is called with level -1 . At the end $B_{\text {level }}$ best solutions are generated return, so that the policies in higher search levels can be adapted. The adaptation of the policy is based on Bellmann updates and the same as in NRPA. The advantage of BeamNRPA is that it generalizes NRPA and naturally supports prior knowledge in form of solutions seeds.

MCTS for MSA

The intuitive method for the MSA problem is to enumerate possible alignments and after evaluating them, to choose the best one. The search tree can be constructed by a sequence of decisions and solved via NRPA and BeamNRPA. We study two possible encodings.

We assume that each letter v in Σ^{\prime} has a fixed location $\operatorname{index}(v)$, so that for a string $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ in $\Sigma^{\prime *}$ we obtain $\operatorname{index}(V)=\sum_{i=1}^{n} \operatorname{index}\left(v_{i}\right) \cdot\left|\Sigma^{\prime}\right|^{n-i}$, where n is the length of V and $\left|\Sigma^{\prime}\right|$ the size of the alphabet.

Construction of All Alignment Columns

An MSA consists of columns. Every column is a string in $\Sigma^{\prime n}$. In the search tree we generate, the root represents an empty node and all other nodes a column in the alignment. Thus, an MSA corresponds to a path from the root to the leaf (Fig. 3, optimal MSAs of Fig. 2 have bold edges).

```
Algorithm 2: alignment_col(alignment, policy)
char_idx \(\leftarrow\{1, \ldots, 1\}\)
align_idx \(\leftarrow 1\)
col \(\leftarrow\) alignment.start
repeat
    col.num \(\leftarrow\) enumeration(col.alternatives, char_idx, 0 )
    sum \(=0.0\)
    for \(i \leftarrow 1\) to col.num do
        value \([i] \leftarrow \exp (\) policy \([\) align_idx \(][\) col.alternatives \([i]])\)
        sum \(\leftarrow\) sum + value \([i]\)
    \(r \leftarrow \operatorname{rand}([0, \ldots\), sum \(])\)
    \(i \leftarrow 1\)
    sum \(\leftarrow\) value[1]
    while sum \(<r\) do
        \(i \leftarrow i+1\)
        sum \(\leftarrow\) sum + value \([i]\)
        col.index \(\leftarrow\) col.alternatives \([i]\)
    transform the index col.alternatives \([i]\) to the corresponding string
        and save in col.string
    for \(i \leftarrow 1\) to \(n\) do
        if col.string \([i]\) is not a gap then
            char_idx \([i] \leftarrow\) char_idx[i] +1
        align_idx \(\leftarrow\) align_idx +1
        col \(\leftarrow\) col.next
    until all sequences are read through
return alignment
```

During the construction the first step is to recursively enumerate all possible strings that may appear in this column (see Alg. 3). The depth of the tree is n as all strings have to have the same length. In each level for every letter of an alternative string s_{i} we have a) if all letters have been inserted then the following columns are labeled by a gap (line 6). b) if there are remaining letters that have a fit, then they are inserted to the MSA and the position i in this column either is the corresponding letter in s_{i} (lines 11-12) or a singletonletter gap (line 8). Additionally, the number of all alternative strings is returned. Temporary variables char_idx $[i]$ store, how many letters have already been inserted to s_{i}.

In this model we learn, which string should appear in which column. The maximal length of an MSA is the sum of all input strings. A policy in this model is a mapping $\left(\sum_{i=1}^{n}\left|s_{i}\right|\right) \times\left|\Sigma^{\prime}\right|^{n}$ where $\left|s_{i}\right|$ is the length of s_{i}.

A random MSA is constructed in Alg. 2. Exploiting the policy, a string is randomly chosen (lines 6-18). The variable align_idx represents which column is currently constructed. With the variable and the index of an alternative string, we can access the policy value and determine the probability of choosing it. The last step is to update the variables to prepare for the next column (lines 19-23). The steps are repeated until all letters have been inserted, so that all columns are constructed and stored in a list. At the end, the MSA is evaluated and returned (line 25).

The enumeration process is recursive, starting with seq_idx $=0$ and ending with seq_idx $=n$. As the transformation reads a string of length n, the worst case of Alg. 3 takes $T_{\text {enum }}(n)=2 \cdot T_{\text {enum }}(n-1)$ steps with $T_{\text {enum }}(0)=O(n)$. This induces $T_{\text {enum }}=O\left(n \cdot 2^{n}\right)$. We see that the time for constructing a column is equal to

Algorithm 3: enumerate $(A$, char_idx, seq_idx)
if seq_idx $=1$ then
static $n u m \leftarrow 0$
static str $\leftarrow\{0,0, \ldots, 0\}$
if $s e q_{-} i d x \leq n$ then
if char_idx $_{-}$seq_idx] $>\left|s_{s_{\text {seq_idx }}}\right|$ then
str $[$ seq_idx] \leftarrow the index of the gap character
enumerate $(A$, char_idx, seq_idx +1$)$
else
$\operatorname{str}[$ seq_idx] \leftarrow the index of the gap character
enumerate $(A$, char_idx, seq_idx +1)
$\operatorname{str}\left[s e q_{-} i d x\right] \leftarrow$ the index of the char_idx[seq_idx]-th
character in sequence $s_{\text {seq_idx }}$
enumerate $(A$, char_idx, seq_idx +1$)$
else
$n u m \leftarrow n u m+1$
transform the string $s t r$ to the corresponding index
and save in $a[n u m]$
return num

Figure 4: Resolving gap-only columns.
$T_{\text {col }}=T_{\text {enum }}+2 \cdot O\left(2^{n}\right)+2 \cdot O(n)+O(1)=O\left(n \cdot 2^{n}\right)$. Moreover, as we use the sum-of-pairs evaluation we get $T_{\text {eval }}=C_{n}^{2} \cdot k=O\left(k \cdot n^{2}\right)$, where k is the length of the sequence alignment. Together we have $T_{\text {colalign }}=$ $k \cdot T_{\text {col }}+T_{\text {eval }}=O\left(k \cdot n \cdot 2^{n}+k \cdot n^{2}\right)=O\left(q \cdot n^{2} \cdot 2^{n}\right)$, with $k=n \cdot q$ being the worst case, and q being the maximal length of all sequences.

Construction of All Alignment Gaps

Def. 1 implies that a sequence alignment is fully determined by the position of gaps. Based on this state representation idea for each sequence s_{i} the policy is stored as a matrix of size $\operatorname{gap}\left(a_{i}\right) \cdot k$, where $\operatorname{gap}\left(a_{i}\right)$ is the number of gap letters in the aligned sequence a_{i} and k the length of the alignment. Again, Monte-Carlo tree search is used to learn, where a gap letter is present in which column of the alignment.

If the length of the alignment is known the number of gap letters can be determined upfront (line 2). Then the positions of all gaps letters can be chosen one after the other (lines 517). The temporary variable $i s_{-} g a p$ helps to determine all legal gap positions (lines 3, 6-11 and 19). The algorithm is executed for all sequences until the entire MSA can be evaluated (line 21). After all gaps in one sequence are done, we can sort them (line 20) which has pros and cons.

We avoid gap-only columns by moving the gap in the longest sequence to gap_pos ${ }_{\text {new }}=\left(\right.$ gap_pos $_{\text {org }}+(-1)^{i}$. $\lfloor(i+1) / 2\rfloor) \bmod k, i=1,2,3, \ldots$ (see Fig. 4). We check that there are no gap-only columns left. If no satisfying position can be found, the original one is maintained. Alg. 4 does, however, not cover this special case. Alternatively, we may allow gap columns, as they do not change the score.

The running time of this model is easy to analyze. A

Algorithm 4: alignment_gap(alignment, policy)
for $s_{\text {seq_ }} i d x \leftarrow 1$ to n do
alignment.gaps_num $[$ seq_idx] \leftarrow
alignment.length $-\left|s_{s e q-i d x}\right|$
alignment.is_gap[seq_idx] $\leftarrow \leftarrow\{F A L S E, \ldots, F A L S E\}$
for gap_idx $\leftarrow 1$ to alignment.gaps_num [seq_idx] do sum $\leftarrow 0.0$
for pos $\leftarrow 1$ to alignment.length do
if \neg alignment.is_gap $[$ seq_idx] $[p o s]$ then value $[$ pos $] \leftarrow \exp ($ policy $[$ seq_idx $][$ gap_idx $][p o s])$ sum \leftarrow sum + value $[p o s]$ else
value $[p o s] \leftarrow 0.0$
$r \leftarrow \operatorname{rand}([0, \ldots$, sum $])$
pos $\leftarrow 1$
sum \leftarrow value[1]
while sum $<r$ do
pos \leftarrow pos +1
sum \leftarrow sum + value[pos]
alignment.gaps_pos[seq_idx][gap_idx] \leftarrow pos
alignment.is_gap[seq_idx][pos] $\leftarrow T R U E$
/* sort alignment.gaps_pos[seq_idx] or not */
return alignment

$$
\begin{array}{lll}
\mathrm{A}-\mathrm{CGG} & \\
\text { A-CGG } \\
\text { ATCGG } & \text { A-GG } & \text { A-TG } \\
\text { ATCGG }
\end{array}
$$

Figure 5: Sample MSA projections.
random alignment is constructed one by one. Sequence s_{i} contains $k-\left|s_{i}\right|$ gap letters. We obtain $T_{\text {gapalign }}=$ $O\left(\sum_{i=1}^{n} \sum_{j=1}^{k-\left|s_{i}\right|}(2 k)\right)+T_{\text {eval }}=O\left(q^{2} \cdot n^{3}\right)$, with $k=n \cdot q$ in the worst case and q being the maximal sequence length.

Construction of an Initial Alignment

In the second model, prior knowledge is requested in the form of the length of the optimized alignment. This information can be supplied by the user or via an initial alignment. This section provides an algorithm to construct an initial alignment automatically (Kurtz 2007).
Definition 6 (Projection) Let $S=\left\{s_{1}, \ldots, s_{n}\right\}$ be a set of sequences and S^{\prime} a subset of S. Assume $A_{S}=\left\{a_{1}, \ldots, a_{n}\right\}$ to be an MSA of S. The projection of A_{S} wrt. S^{\prime} is the MSA $\operatorname{proj}\left(A_{S}, S^{\prime}\right)$, constructed as follows

- all rows in A_{S} that do not correspond to sequences in S^{\prime} are removed
- all columns that only contain gap letters are removed.

If $A_{S^{\prime}}=\operatorname{proj}\left(A_{S}, S^{\prime}\right)$, where $A_{S^{\prime}}$ is an MSA of S^{\prime}, we say that A_{S} is compatible with $A_{S^{\prime}}$.
An example for $S=\{$ "ACGG", "ATG", "ATCGG" $\}$, $S^{\prime}=\{" A C G G ", " A T G "\}$ and $S^{\prime \prime}=\{" A T G ", " A C T C G G "\}$ is shown in Fig. 5. We see an MSA A_{S} of S, a projection $\operatorname{proj}\left(A_{S}, S^{\prime}\right)$, and another projection $\operatorname{proj}\left(A_{S}, S^{\prime \prime}\right)$.
Definition 7 (Alignment Tree) An alignment tree for a set of sequences S is a labeled tree. In this tree the node set is S and every edge (i, j) is labeled by the optimal pairwise alignment of two sequences s_{i} and s_{j}.

Figure 6: A star alignment tree of sequences $\left\{c, s_{1}, \ldots, s_{6}\right\}$.

```
            Algorithm 5: initial_alignment()
for \(i \leftarrow 1\) to \(n\) do
    for \(j \leftarrow i+1\) to \(n\) do
        compute the optimal alignment of \(s_{i}\) and \(s_{j}\) with distance \(d_{*}\left(s_{i}, s_{j}\right)\).
    for \(i \leftarrow 1\) to \(n\) do
    total \([i] \leftarrow 0\)
    for \(j \leftarrow 1\) to \(n\) do
        total \([i] \leftarrow \operatorname{total}[i]+d_{*}\left(s_{i}, s_{j}\right)\)
    \(c \leftarrow \arg \min _{i}\) total \([i]\)
    choose an arbitrary sequence \(s \in S \backslash\left\{s_{c}\right\}\)
    let \(A\) be the optimal pairwise alignment of \(s_{c}\) and \(s\)
    \(S^{\prime} \leftarrow\left\{s_{c}, s\right\}\)
    while \(S^{\prime} \neq S\) do
        choose an arbitrary sequence \(s \in S \backslash S^{\prime}\)
        combine \(A\) with the optimal pairwise alignment of \(s_{c}\) and \(s\)
        \(S^{\prime} \leftarrow S^{\prime} \cup\{s\}\)
    return \(A\)
```

In an alignment tree the relation between all sequence pairs are represented. There are different options for constructing such tree. We consider the special case of the tree being star-shaped (Fig. 6).

The algorithm for constructing an initial MSA has two stages. The basis is a set of precomputed pairwise alignments (see Alg. 5). For each pair of sequences $\left(s_{i}, s_{j}\right)$ the distance to the optimal alignment is computed (lines $1-5$). For each sequence s_{i} all distances of the optimal alignment corresponding to s_{i} are added (lines 6-11). The sequence with the minimal total distance is chosen as the center (line 12), all other sequences are leaves.

The second stage is to construct an MSA based on the pairwise alignment stored at the edges. Whenever an MSA of the sequences $\left\{c, s_{1}, \ldots, s_{i}\right\}$ is constructed, the optimal pairwise alignment of c and s_{i+1} is inserted. This insertion preserves the rule once a gap always a gap. Therefore, the constructed MSA is compatible with all pairwise alignments in the alignment tree. For example, $c=$ "ATGCATT", $s_{1}=$ "AGTCAAT" and $s_{2}=$ "ACTGTAATT". The alignments of c and s_{1} or c and s_{2} are

$$
\begin{array}{rlr}
a & =\mathrm{ATG}-\mathrm{CATT} & a^{\prime}=\mathrm{A}-\mathrm{TGC}-\mathrm{ATT} \\
a_{1} & =\mathrm{A}-\mathrm{GTCAAT} \quad \text { and } & a_{2}^{\prime}=\mathrm{ACTGTAATT}
\end{array}
$$

In the second alignment we find a gap prior to letter ' T ' in d sequence a^{\prime}. According to the golden rule the gap in $a^{\prime \prime}$ is preserved. Through the combination from a and a^{\prime} we can generate $a^{\prime \prime}=$ "A-TG-C-ATT", so that the final MSA is

The MSA is not optimal as we could substitute $a_{2}^{\prime \prime}$ by "ACTGT-AATT". It is, however, a good approximation.

Definition 8 (Proper Cost Function) A

similarity

$$
\begin{aligned}
& a^{\prime \prime}=\mathrm{A}-\mathrm{TG}-\mathrm{C}-\mathrm{ATT} \\
& a_{1}^{\prime \prime}=\mathrm{A}--\mathrm{GTC}-\mathrm{AAT} \\
& a_{2}^{\prime \prime}=\mathrm{ACTG}-\mathrm{TAATT}
\end{aligned}
$$

cost function f is proper if 1) for all $x \in \Sigma^{\prime}$, we have $f(x, x)=0 ; 2$) for all $x, y, z \in \Sigma^{\prime}$, we have $f(x, z) \leq f(x, y)+f(y, z)$.
Lemma 1 Assume a proper similarity cost function f, and d being the column sum of f, a set of sequences $S=$ $\left\{c, s_{1}, \ldots, s_{n}\right\}$ and a star alignment tree T with center c. If $A=\left\{a, a_{1} \ldots, a_{n}\right\}$ is an MSA of S with length k that is compatible with all optimal alignments in T, then for all $1 \leq i, j \leq n$ we have $F\left(a_{i}, a_{j}\right) \leq F\left(a_{i}, a\right)+F\left(a, a_{j}\right)=$ $F_{*}\left(s_{i}, c\right)+F_{*}\left(c, s_{j}\right)$.
Proof: We consider column r in MSA A. According to the second property of a proper cost function for an arbitrary letter $b \in \Sigma^{\prime}$ we have $f\left(a_{i}[r], a_{j}[r]\right) \leq f\left(a_{i}[r], b\right)+f\left(b, a_{j}[r]\right)$. If $b=a[r]$, we have $f\left(a_{i}[r], a_{j}[r]\right) \leq f\left(a_{i}[r], a[r]\right)+$ $f\left(a[r], a_{j}[r]\right)$. The distance of a pairwise alignment is the sum of distances of all columns. Thus,

$$
\begin{aligned}
F\left(a_{i}, a_{j}\right) & =\sum_{r=1}^{k} f\left(a_{i}[r], a_{j}[r]\right) \\
& \leq \sum_{r=1}^{k}\left(f\left(a_{i}[r], a[r]\right)+f\left(a[r], a_{j}[r]\right)\right) \\
& =\sum_{r=1}^{k} f\left(a_{i}[r], a[r]\right)+\sum_{r=1}^{k} f\left(a[r], a_{j}[r]\right) \\
& =F\left(a_{i}, a\right)+F\left(a, a_{j}\right)
\end{aligned}
$$

Following the assumption we have that the MSA A is compatible with all optimal alignments in T. Therefore, the projections of A wrt. $\left\{s_{i}, c\right\}$ are optimal alignments of s_{i} and c. Folling the first property of a proper cost fucntion, we have $f(-,-)=0$, so that the distance of a pairwise sequence alignment does not change if an only-gap column is removed. Hence, $F\left(a_{i}, a\right)=F_{*}\left(s_{i}, c\right)$, and $F\left(a, a_{j}\right)=$ $F_{*}\left(c, s_{j}\right)$.
Theorem 1 Let $S=\left\{s_{1}, \ldots, s_{n}\right\}$ be a set of sequences, f be a proper similarity cost function, F be the column sum of f, and $A=\left\{a_{1}, \ldots, a_{n}\right\}$ be an MSA of S, constructed via Alg. 5. Then, $F\left(a_{1}, \ldots, a_{n}\right) \leq\left(2-\frac{2}{n}\right) \cdot F_{*}\left(s_{1}, \ldots, s_{n}\right)$.
Proof: We assume that MSA $A^{\star}=\left\{a_{1}^{\star}, \ldots, a_{n}^{\star}\right\}$ is optimal for S, i.e., $F\left(a_{1}^{\star}, \ldots, a_{n}^{\star}\right)=F_{*}\left(s_{1}, \ldots, s_{n}\right)$., and $c=s_{n}$ is the center. We compute the distance between A and A^{\star}.

$$
\begin{aligned}
F\left(a_{1}, \ldots, a_{n}\right) & =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} F\left(a_{i}, a_{j}\right)=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} F\left(a_{i}, a_{j}\right) \\
& \leq \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(F_{*}\left(s_{i}, c\right)+F_{*}\left(c, s_{j}\right)\right) \\
& =\frac{1}{2}\left(\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} F_{*}\left(s_{i}, c\right)+\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} F_{*}\left(s_{j}, c\right)\right) \\
& =\frac{1}{2}\left(\sum_{j=1}^{n-1} \sum_{i=1}^{n-1} F_{*}\left(s_{i}, c\right)+\sum_{j=1}^{n-1} \sum_{i=1}^{n-1} F_{*}\left(s_{i}, c\right)\right) \\
& =(n-1) \cdot \sum_{i=1}^{n-1} F_{*}\left(s_{i}, c\right)
\end{aligned}
$$

Figure 7: Space (top) and time needed by (Beam)NRPA.
and

$$
\begin{aligned}
F\left(a_{1}^{\star}, \ldots, a_{n}^{\star}\right) & =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} F\left(a_{i}^{\star}, a_{j}^{\star}\right) \\
& =\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} F\left(a_{i}^{\star}, a_{j}^{\star}\right) \\
& \geq \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} F_{*}\left(s_{i}, s_{j}\right) \\
& =\frac{1}{2} \sum_{i=1}^{n}\left(\sum_{j=1}^{n} F_{*}\left(s_{i}, s_{j}\right)\right) \\
& \geq \frac{1}{2} \sum_{i=1}^{n}\left(\sum_{j=1}^{n} F_{*}\left(c, s_{j}\right)\right) \\
& =\frac{1}{2} n \cdot \sum_{j=1}^{n} F_{*}\left(c, s_{j}\right)=\frac{1}{2} n \cdot \sum_{i=1}^{n} F_{*}\left(s_{i}, c\right)
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
\frac{F\left(a_{1}, \ldots, a_{n}\right)}{F_{*}\left(s_{1}, \ldots, s_{n}\right)} & =\frac{F\left(a_{1}, \ldots, a_{n}\right)}{F\left(a_{1}^{\star}, \ldots, a_{n}^{\star}\right)} \\
& =\frac{(n-1) \cdot \sum_{i=1}^{n-1} F_{*}\left(s_{i}, c\right)}{\frac{1}{2} n \cdot \sum_{i=1}^{n} F_{*}\left(s_{i}, c\right)}=2-\frac{2}{n}
\end{aligned}
$$

The MSA that is constructed via the star-shaped alignment tree is, therefore, an upper bound for the distance of the optimal MSA (Kurtz 2007).

Experimental Results

Experiments were ran on a Debian v7.8 32 GB RAM PC (using 1 of the AMD FX(tm)-8350's $4,0 / 4,2 \mathrm{GHz} 8$-cores), taking GNU's g++ (v4.7.2, -O3). For scoring, PAM250 and affine gap cost wrt. $-10 x-1$ for gap length x were used.

We took the BAliBASE benchmark (ftp://bess.ustrasbg.fr/pub/BAliBASE2), which has been designed to
compare the efficiency of different MSA algorithms ${ }^{1}$. BAliBASE is a library of biologically alignments that optimize an informal biological meaning. Having a formal sum of pairwise scores on BAliBASE entries cannot replace a comparison with bioinformatics competitors such as Clustal-Omega (Clu 2011), MUSCLE (Edgar 2004a; 2004b) or MAFFT (Katoh 2013). However, our interest was showing the potential of MCTS for the MSA problem in terms of saving space and posthoc optimization during the search. Originally, we wanted to compare our algorithm with Genetic Algorithms (e.g., the program SAGA). But we did not do it, due to the non-optimal results for the search without the initial alignment.

Reference 1 consists of 82 sequence groups, partitioned into 9 classes according to the length (short, medium, long) and similarity (large, medium, small). Among those we chose test 3 , consisting of 28 sequence groups with three to six sequences of different similarity. From the set of MSAs we chose 1ped and 4enl (3 sequences) and 1lcf (6 sequences), together with the groups 2 myr (4), ga14 (5), and 1pamA (4), which are supposedly the hardest (Hatem and Ruml 2013; Schrödl 2005). The implementation supports FASTA and MSF formats. The web presentation comes with manual close-to-optimal solutions.

For these sequence groups at most 20MB RAM was allocated, which is by far lower than the one in IDDP and variants. On the other hand, BeamNRPA was better than NRPA: the wider the beam, the better the solution. The number of rollouts for BeamNRPA its beam • iteration ${ }^{\text {level }}$ (we allow a beam width other than 1 only in level 1), and chose beam $=1,2,4$, iteration $=50$ and level $=3$. BeamNRPA with beam = 1 is NRPA. The initial alignment is defined by the star algorithm and improved by the optimizer.

In NRPA_col a policy is a matrix of size $\left(\sum_{i=1}^{n}\left|s_{i}\right|\right) \times$ $\left|\Sigma^{\prime}\right|^{n}$, so that the memory requirements are exponential in n. This leads NRPA_col to fail for 5-6 sequences and to bad results in many others.

For NRPA_gap a policy is a matrix of size $\left(k-\left|s_{i}\right|\right) \times k$ for every s_{i}, so that memory requirements are polynomial in $\left|s_{i}\right|$ and k. Only 4 of 28 groups needed more than 10MB space, and 20MB was the overall maximum. For DP and its variants the space complexity is $O\left(\left|s_{1}\right| \cdot \ldots \cdot\left|s_{n}\right|\right)$. A biological sequence (DNA/protein) may have over one thousand bases/amino acids. Hence, the memory requirements are huge. Our algorithm saves only the positions of all gaps in an alignment. Obviously, the number of gaps is much less than the length of an aligned sequence. Therefore, the required memory in our program is very small.

Sample learning curves for 1ped and 1pamA are shown in Fig. 8 and Fig. 9), respectively. NRPA_gap without sorting often resulted in a better quality than with sorting, where IpamA, $2 m y r$ and llcf are the only exceptions (see Table 1). Thus, we used no sorting in BeamNRPA. Memory and time performances of NRPA and BeamNRPA are cross-compared

[^1]

Figure 8: Learning curves of 1 ped.
in Fig. 7 and listed in Table 1 and 2. The wider the beam, the higher the computational cost. On the other hand, as shown in Fig. 8, the larger the search tree, the better the solution found by BeamNRPA.

Next, we tested whether an initial alignment could be improved (see Table 3). After determining the alignment, we called the adaptation function 10 time (α-value of 1) to come up with an initial policy. For the sequence group lped an alignment better than the initial one was found quickly (see Fig. 8). The initial alignment of 1 pamA had a score of -8291 . Unfortunately, for this hardest group BeamNRPA did not improve much within the given parameter range (see Fig. 9).

Finally, we optimize best-known solutions from the BAliBASE benchmark with BeamNRPA_gap. Table 4 shows an improvement (wrt. our cost function) in 20 groups, equal results in 6 groups ($1 \mathrm{ac} 5,1 \mathrm{bgl}, 1 \mathrm{dlc}, 1$ fieA, $1 \mathrm{gpb}, 1 \mathrm{gtr}$) and worse result in 2 groups (1 pamA and 1 taq).

Altogether there are 28 sequence groups. For the groups 1 pamA and 1taq our program cannot return a better solution than BAliBASE (from beam $=2$ and 4). For these 6 groups ($1 \mathrm{ac} 5,1 \mathrm{bgl}, 1 \mathrm{dlc}$, 1 fieA, 1 gpd and 1 gtr) our program returns the same good solutions as BAliBASE (from beam $=2$ and 4). For the other 20 groups the better solutions are found from beam $=2$ or 4 (beam $=2$ sometimes can return a better solution than beam $=4$).

Figure 9: Learning curves of 1 pamA.

Conclusion and Outlook

In this paper we pioneered Monte-Carlo tree search for the multiple sequence problem. The results for learning gaps with BeamNPRA are very promising. The approach has a very low memory overhead, can be used from scratch and for post-hoc optimization, Wrt. our cost function we found improvements to many published BAliBASE alignments.

It is possible to improve the policy representation by learning inter-dependencies of gap positions within the set of sequences. A further yet unexplored option is the parallelization of BeamNRPA. In (Rosin 2011) it has been said that parallelizing NRPA is involved, since the policy has to be shared among the threads. The advantage of BeamNRPA is that it is easier to parallelize as all policies in the beam can be read and updated concurrently. It has the additional feature that it can be parallized in every level of the search. As the number of iterations is usually larger than the number of threads, the searches in each thread are iterative. Another option to deal with concurrency issues in the parallelization is to use low-level compare-and-swap.

Table 1: NRPA_gap

	with sorting				without sorting			
	len	score	time	mem	len	score	time	mem
1ajsA	433	-6456	573	5524 K	434	-4871	579	5516 K
1cpt	455	-5711	471	4926 K	458	-4509	477	4656 K
1lvl	506	-7335	761	6778 K	510	-6709	767	6770 K
1pamA	656	-22053	2546	20 M	677	-22877	2568	20 M
1ped	385	-1909	223	3022 K	386	-1239	225	2748 K
2myr	543	-9800	1308	11 M	546	-9890	1324	11 M
4enl	433	-2701	407	4256 K	426	-2031	412	4250 K
gal4	431	-10423	720	6604 K	433	-8866	736	6600 K
1ac5	517	-7690	708	6390 K	519	-6932	708	6386 K
1adj	421	2931	71	1609 K	421	2954	69	$1612 / \mathrm{K}$
1bgl	1002	-7085	746	6402 K	1002	-6403	750	6394 K
1dlc	636	-6008	585	5556 K	637	-5683	588	5544 K
1eft	420	-3371	316	3432 K	419	-2658	318	3422 K
1fieA	689	-641	221	2808 K	689	-268	222	2800 K
1gowA	542	-7471	692	6378 K	541	-6706	700	6370 K
1pkm	466	-2231	213	2812 K	468	-1534	214	2800 K
1sesA	463	-6949	373	3848 K	465	-5766	376	3838 K
2ack	534	-11462	752	6594 K	534	-10214	757	6586 K
arp	449	-8972	507	4912 K	449	-7536	511	4904 K
glg	513	-8423	508	4922 K	514	-7127	513	4916 K
1ad3	459	-2086	172	2350 K	459	-277	173	2342 K
1gpb	854	-9015	847	7012 K	854	-8726	867	7002 K
1gtr	451	-3715	230	2800 K	451	-1842	236	2792 K
1lcf	747	-20636	1361	10 M	747	-20645	1374	10 M
1rthA	556	-1284	269	3004 K	556	-318	270	2998 K
1taq	948	-17728	1656	13 M	950	-16778	1667	13 M
3pmg	588	-2868	329	3656 K	589	-2105	330	3648 K
actin	415	-4411	272	3238 K	415	-3619	273	2964 K

Table 2: BeamNRPA_gap

	beam $=2$					beam $=4$			
	len	score	time	mem	len	score	time	mem	
1ajsA	437	-4262	1810	9080 K	432	-3684	3546	12 M	
1cpt	457	-3766	1483	7656 K	452	-2857	3024	10 M	
1lvl	502	-4693	2517	10 M	497	-3833	4935	15 M	
1pamA	665	-17679	9235	35 M	665	-14016	17458	49 M	
1ped	388	-1209	677	4224 K	383	-1075	1399	5556 K	
2myr	532	-6520	4469	18 M	536	-5930	8662	26 M	
4enl	433	-1796	1302	6760 K	424	-1381	2571	9128 K	
gal4	431	-7133	2459	10 M	429	-6751	4686	14 M	
1ac5	519	-4733	2351	10 M	513	-4304	4598	13 M	
1adj	421	1594	205	2188 K	421	2804	409	2548 K	
1bgl	1002	-2510	2602	10 M	1002	-892	5128	13 M	
1dlc	636	-2295	1935	8752 K	636	-1986	3775	11 M	
1eft	420	-1618	993	5092 K	420	-1361	1943	6780 K	
1fieA	689	3033	705	4012 K	689	3652	1345	5216 K	
1gowA	537	-4415	2413	10 M	537	-3049	4628	14 M	
1pkm	466	207	655	4240 K	467	-132	1280	5164 K	
1sesA	465	-3060	1192	6052 K	464	-1713	2329	8112 K	
2ack	533	-6562	2537	10 M	534	-5442	4960	14 M	
arp	447	-5633	1632	7864 K	447	-5169	3277	11 M	
glg	513	-4263	1632	6888 K	514	-2804	3202	10 M	
1ad3	459	906	520	3368 K	458	690	1042	4548 K	
1gpb	854	257	2905	11 M	854	1708	5555	15 M	
1gtr	451	759	715	4036 K	451	2076	1385	5368 K	
1lcf	747	-8938	4725	17 M	747	-6393	9068	24 M	
1rthA	556	3992	825	4592 K	555	4744	1624	5976 K	
1taq	950	-9353	5771	22 M	950	-7945	11080	32 M	
3pmg	589	606	1055	5580 K	589	1632	2055	7444 K	
actin	414	-255	854	4776 K	414	991	1667	6248 K	

Table 3: BeamNRPA_gap with initial alignment

	beam $=2$				beam $=4$			
	len	score	time	mem	len	score	time	mem
1ajsA	457	-2663	2126	11 M	459	-2680	4169	15 M
1cpt	468	-937	1669	9792 K	467	-828	3313	12 M
1lvl	501	-2027	1915	11 M	502	-1961	4117	13 M
1pamA	730	-11736	12350	53 M	728	-11896	23831	73 M
1ped	402	-556	722	5128 K	402	-430	1447	6664 K
2myr	598	-4788	6150	26 M	595	-4501	11504	37 M
4enl	425	-892	997	6124 K	427	-903	1959	8228 K
gal4	492	-4643	4813	22 M	488	-4342	8832	30 M
1ac5	551	641	3084	13 M	545	802	6090	19 M
1adj	432	3210	479	9552 K	429	3392	964	9552 K
1bgl	1072	1958	7248	47 M	1071	3890	13190	47 M
1dlc	655	2555	2550	18 M	654	2615	5029	18 M
1eft	419	1355	957	8572 K	417	1440	1888	8576 K
1fieA	702	5565	1147	22 M	703	5567	2250	22 M
1gowA	542	1138	1975	12 M	542	1225	3925	15 M
1pkm	474	1809	834	10 M	473	2081	1652	10 M
1sesA	494	2917	2238	16 M	488	3379	4390	16 M
2ack	561	-509	3557	20 M	556	-215	7039	22 M
arp	490	435	3209	15 M	488	622	6341	20 M
glg	553	2568	3222	19 M	551	2620	6376	19 M
1ad3	464	5133	611	10 M	463	5121	1210	10 M
1gpb	877	17561	4097	53 M	878	17578	7891	53 M
1gtr	466	7671	1162	16 M	465	7658	2289	16 M
1lcf	799	2330	8778	58 M	799	3392	17135	58 M
1rthA	565	8897	1120	23 M	563	9022	2202	23 M
1taq	978	1889	7947	62 M	977	1879	15483	62 M
3pmg	619	6744	2006	16 M	620	6731	3936	16 M
actin	416	7883	824	13 M	416	7916	1622	13 M

Table 4: BeamNRPA_gap for BAliBASE optima (BBO)

	BBO	beam $=2$				beam $=4$			
	score	len	score	time	mem	len	score	time	mem
1ajsA	-1292	449	-1264	1698	9852 K	449	$\mathbf{- 1 2 5 8}$	3378	13 M
1cpt	520	461	558	1397	8440 K	461	$\mathbf{6 0 2}$	2750	10 M
1lvl	-750	516	-750	2284	12 M	516	$\mathbf{- 7 2 0}$	4522	16 M
1pamA	-2366	677	-5252	8715	39 M	678	-3290	17215	54 M
1ped	-42	398	-15	647	4548 K	396	$\mathbf{4 0}$	1274	5956 K
2myr	-1490	554	-1561	4018	21 M	554	$\mathbf{- 1 4 5 2}$	8048	28 M
4enl	-336	441	-293	1164	7428 K	438	$\mathbf{- 2 6 5}$	2298	9804 K
gal4	-876	439	-811	2168	11 M	438	$\mathbf{- 7 7 9}$	4283	15 M
1ac5	$\mathbf{2 3 7 5}$	524	$\mathbf{2 3 7 5}$	2141	11 M	524	$\mathbf{2 3 7 5}$	4247	15 M
1adj	4037	421	4064	200	2192 K	421	$\mathbf{4 0 8 7}$	395	2556 K
1bgl	$\mathbf{7 3 9 4}$	1002	$\mathbf{7 3 9 4}$	2263	11 M	1002	$\mathbf{7 3 9 4}$	4505	15 M
1dlc	$\mathbf{4 9 0 6}$	638	$\mathbf{4 9 0 6}$	1733	9724 K	638	$\mathbf{4 9 0 6}$	3419	11 M
1eft	2211	412	$\mathbf{2 2 5 7}$	921	6100 K	412	$\mathbf{2 2 5 7}$	1831	7232 K
1fieA	$\mathbf{6 8 1 5}$	689	$\mathbf{6 8 1 5}$	640	4300 K	689	$\mathbf{6 8 1 5}$	1279	5628 K
1gowA	2710	546	2712	2112	11 M	545	$\mathbf{2 7 3 0}$	4135	15 M
1pkm	2981	468	2981	617	4252 K	468	$\mathbf{2 9 8 4}$	1231	5428 K
1sesA	5896	465	5896	1086	6488 K	465	$\mathbf{5 9 0 7}$	2167	8520 K
2ack	3470	536	$\mathbf{3 4 7 3}$	2321	11 M	536	$\mathbf{3 4 7 3}$	4542	15 M
arp	3875	450	3889	1492	8556 K	450	$\mathbf{3 8 9 1}$	2974	11 M
glg	4959	514	5007	1502	9268 K	513	$\mathbf{5 1 0 9}$	2937	10 M
1ad3	5409	459	5415	491	4100 K	459	$\mathbf{5 4 2 6}$	982	4752 K
1gpb	$\mathbf{2 0 1 4 1}$	854	$\mathbf{2 0 1 4 1}$	2605	12 M	854	$\mathbf{2 0 1 4 1}$	5145	17 M
1gtr	$\mathbf{8 8 0 7}$	451	$\mathbf{8 8 0 7}$	665	4320 K	451	$\mathbf{8 8 0 7}$	1321	5660 K
1lcf	25001	747	25007	4168	19 M	747	$\mathbf{2 5 0 1 5}$	8268	26 M
1rthA	10400	556	$\mathbf{1 0 4 7 5}$	788	4940 K	556	10472	1575	6336 K
1taq	$\mathbf{1 3 5 4 5}$	949	13048	5222	25 M	949	13300	10482	34 M
3pmg	7867	589	$\mathbf{7 8 6 9}$	956	6080 K	589	7868	1899	7912 K
actin	8489	415	$\mathbf{8 5 5 6}$	793	5108 K	415	8530	1575	6620 K

References

Altschul, S. F.; Gish, W.; Miller, W.; Myers, E. W.; and Lipman, D. J. 1990. Basic local alignment search tool. Journal of Molecular Biology 215(3):403-410.
Bellman, R. 1957. Dynamic Programming. Princton University Press.
Boeckenhauer, H.-J., and Bongartz, D. 2010. In Algorithmic Aspects of Bioinformatics. Springer. 94-96.
Cazenave, T., and Teytaud, F. 2012. Application of the nested rollout policy adaptation algorithm to the traveling salesman problem with time windows. In Learning and Intelligent Optimization. Springer. 42-54.
Cazenave, T. 2009. Nested monte-carlo search. In IJCAI, 456-461.

Cazenave, T. 2012. Monte carlo beam search. Computational Intelligence and AI in Games, IEEE Transactions on 4(1):68-72.
2011. Fast, scalable generation of high quality protein multiple sequence alignments using clustal omega. Mol. Syst. Biol. 7(539).
Dayhoff, M. O.; Schwartz, R. M.; and Orcutt, B. C. 1978. A model of evolutionary change in proteins. In Atlas of Protein Sequence and Structure, volume 5. National Biomedical Research Foundation. chapter 22, 345-352.
Edelkamp, S., and Gath, M. 2014. Solving single vehicle pickup and delivery problems with time windows and capacity constraints using nested monte-carlo search. In ICAART, 22-33.
Edelkamp, S., and Kissmann, P. 2007. Externalizing the multiple sequence alignment problem with affine gap costs. In KI, 444-447.
Edgar, R. C. 2004a. MUSCLE: a multiple sequence alignment method with high accuracy and throughput. Nucleic acids research 32(5):1792-7.
Edgar, R. C. 2004b. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC bioinformatics 5(113).
Gusfield, D. 1997. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press.
Hatem, M., and Ruml, W. 2013. External memory best-first search for multiple sequence alignment. In $A A A I$.
Henikoff, S., and Henikoff, J. G. 1992. Amino acid substitution matrices from protein blocks. Proceedings of the National Academy of Sciences 89(22):10915-10919.
Hirschberg, D. S. 1975. A linear space algorithm for computing common subsequences. Communications of the ACM 18(6):341-343.
Hodgman, T. C.; French, A.; and Westhead, D. R. 2010. BIOS Instant Notes in Bioinformatics. Garland Science, 2nd edition.
Jones, D. T.; Taylor, W. R.; and Thornton, J. M. 1992. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8(3):275-282.

Katoh, S. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30:772-780.
Korf, R. E.; Zhang, W.; Thayer, I.; and Hohwald, H. 2005. Frontier search. Journal of the ACM 52(5):715-748.
Kurtz, S. 2007. Lecture notes on basics of sequence analysis.
Levenshtein, V. 1966. Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics Doklady 10(8):707-710.
Pearson, W. R. 1994. Using the fasta program to search protein and dna sequence databases. Methods in Molecular Biology 24:307-331.
Rimmel, A.; Teytaud, F.; and Cazenave, T. 2011. Optimization of the nested monte-carlo algorithm on the traveling salesman problem with time windows. Applications of Evolutionary Computation 501-510.
Rosin, C. D. 2011. Nested rollout policy adaptation for monte carlo tree search. In IJCAI, 649-654.
Schrödl, S. 2005. An improved search algorithm for optimal multiple sequence alignment. Journal of Artificial Intelligence Research 23:587-623.
Wang, L., and Jiang, T. 1994. On the complexity of multiple sequence alignment. Journal of Computational Biology 1(4):337-348.
Zhou, R., and Hansen, E. A. 2002. Multiple sequence alignment using A*. In AAAI. Student abstract.
Zhou, R., and Hansen, E. 2003. Sweep a*: space-efficient heuristic search in partially ordered graphs. In 15th IEEE International Conference on Tools with Artificial Intelligence, 427-434.

[^0]: Copyright (C) 2015, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

[^1]: ${ }^{1}$ BAliBASE3 (http://www.ncbi.nlm.nih.gov/pubmed/ 16044462) is considered by specialists as a bad benchmarking resource even for identifying good scoring functions. Moreover, BAliBASE version 2 is used in all precursing AI publications.

