
Automated Transformation of PDDL Representations

Pat Riddle, Mike Barley, Santiago Franco, and Jordan Douglas
Department of Computer Science, University of Auckland

Private Bag 92019, Auckland, 1142 NZ

Abstract

This paper describes a system that automatically trans-
forms a PDDL encoding, calls a planner to solve the
transformed representation, and translates the solution
back into the original representation. The approach
involves counting objects that are indistinguishable,
rather than treating them as individuals, which elimi-
nates some unnecessary combinatorial explosion.

Introduction We claim that no single representation is
best, but it is clear that some representations of the same
fundamental problem can be solved much faster by certain
planner-heuristic combinations (Riddle, Holte, and Barley
2011). Given a single representation, how can we efficiently
produce an alternative encoding? We describe a system
that automatically transforms a given PDDL representation,
finds a solution for the transformed representation, and then
translates the solution back into the original representation.

A System for Representation Change We created an
automated transformation system. Given a pair of PDDL
files, this system produces a transformed representation. If
the transformation is applicable, the planner uses this new
PDDL encoding to solve the problem; if not, it returns to
the original representation. After it finds a solution in the
transformed space, the system then translates this solution
back into the original representation. We believe this system
is sound and complete and returns optimal solutions. The
primary Transform procedure calls three subroutines: Mer-
geObjects, MergePreds, and ChangeRep.

MergeObjects MergeObjects, uses three criteria to iden-
tify the objects which can be merged. The objects must be
action-equivalent, single-valued and either goal-equivalent
or initial-state equivalent. To qualify as action-equivalent,
each action in the domain must treat the objects as indistin-
guishable; actions cannot, for instance, refer to these objects
by name. A type is single-valued if every predicate with
an argument of this type is mutex-ed with a predicate (not
necessarily different) with an argument of this type and no
predicate has more than 1 argument of this type. Objects are
single-valued if, the type is single-valued and if only one
predicate in each mutex occurs in the initial state. In gripper,

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

balls are single-valued because they are only in one room at
a time, but rooms are not single-valued because many balls
can be “at” them at the same time. The third and final crite-
rion for transformation stipulates that objects must be either
goal-equivalent or initial-state-equivalent. They are goal-
equivalent if the problem’s goal description treats them as
indistinguishable. Two objects, x and y, are goal-equivalent,
if for every goal predicate that includes x, there must be an-
other goal predicate that has exactly the same arguments ex-
cept that where x appeared in the first predicate, y appears in
the second; and vice versa. The balls in gripper also satisfy
this criterion, as each predicate in the original goal descrip-
tion specifies that a particular ball must be in roomb. The
balls are therefore the only argument that differs between
these predicates. Since they are action-equivalent, single-
valued and goal-equivalent, all of the balls can be merged
into a single bag. In problems where only some of the ob-
jects map to the same goal value, the transformation code
will make multiple bags. For instance, in the gripper domain,
if the goal description had 3 of the balls in roomb and 3 of
the balls in rooma, then 2 bags of balls would be retained
each having 3 instances. The original and transformed rep-
resentations for the examples are given at (Riddle 2015). Ob-
jects can also be merged if they are initial-state-equivalent.
Initial-state-equivalent objects are indistinguishable in the
problem’s initial state. They appear in the same predicates
with the same other arguments (objects and constants) in the
initial state. In the barman domain, two types of objects meet
the criteria for merging: shots and hands.

MergePreds MergePreds, merges predicates into a single
macro-predicate. This is only necessary if the merged ob-
jects occur in more than one type of predicate. In barman,
there are many predicates that contain a shot, so the system
combines the predicates used, clean, contains, empty, hold-
ing, and ontable, to create the (count shotX cl1 em3 on5 4)
predicate. This ensures that the bags of shots are counted
correctly.

ChangeRep The third subroutine is ChangeRep, which al-
ters the problem’s initial state and goal descriptions, and the
domain’s actions, so that they support the new predicates.
In Gripper, the four at predicates — (at ball1 roomb), (at
ball2 roomb), (at ball3 roomb), (at ballX roomb) — become
the (count ballX roomb 4) predicate in the goal descrip-

Proceedings of the Eighth International Symposium on Combinatorial Search (SoCS-2015)

214

tion; and two predicates, (count ballX rooma 4) and (count
ballX roomb 0), appear in the initial state. The system cre-
ates arithmetic predicates, such as (more 0 1) (more 1 2)
(more 2 3) (more 3 4). In the domain file, the pick action has
(count ?obj ?room ?num1) as a precondition; it removes this
in the effects and adds (count ?obj ?room ?num2), where
(more ?num2 ?num1), i.e., the number of balls at that loca-
tion is decreased by 1.

Translating the Solution into the Original Representa-
tion Once the planner generates a PDDL solution in the
transformed space, our system translates that solution back
into the original representation. There is a one-to-many map-
ping between the solution in the transformed space and solu-
tions in the original space. The translator starts with the ini-
tial state of the original representation and the first action of
the transformed solution. The transformer previously stored
the original action from which each the new action was cre-
ated. It copies over any action parameters which are param-
eters in the original action and are not merged objects. The
transformer saved the set of original objects that it merged
into bags. It picks an object from this set and places it in
the action. It checks that the action can be applied in the
initial state and that it matches all the additional predicates
from the transformed action. For example in the first bar-
man grasp action, the shot that is grasped must be clean and
empty, since cl1 and em3 are arguments in the grasp2a ac-
tion. If the action can be applied, it instantiates the action
arguments and moves on to the next action. It generates the
second state in the original representation (using the first ac-
tion it just instantiated) and recurses. The first object it picks
might not make the first action applicable in the current state.
It might have to try several objects to find one that works.
But it never backtracks to a previous state.

If our system merged objects that were initial-state-
equivalent, it might find that the goal description and the
final state of our plan do not match. For instance, our
final state might now contain (contains shot2 cocktail3)
(contains shot3 cocktail1) (contains shot1 cocktail2), while
the goal state specifies (contains shot1 cocktail3) (contains
shot2 cocktail1) (contains shot3 cocktail2). The system must
complete a comparison of initial-state-equivalent objects
and create a list of swaps. In this example: [shot2/shot1,
shot3/shot2, shot1/shot3]. The solution is now traversed re-
placing each instance of the object with its correct replace-
ment in each solution action.

Complexity We only bag objects that are ”indistinguish-
able” either in the initial state or in the goal description.
Additionally they are action-equivalent, so they are indistin-
guishable to all the operators. Since they are indistinguish-
able we can use a bagged representation. If there exists a
solution to the bagged representation, there exists a solution
in the original solution and vice versa. The complexity of the
transformation is theoretically dominated by O(|OBJ |2) as
the number of objects grow (or more precisely O(|OBJ |3)
if the goal description or initial state is growing along with
the number of objects), where OBJ is the number of merged
objects. The complexity of the translation process is |OBJ |
x |SP |, where |SP | is the length of the solution path.

Concluding Remarks We have developed a transforma-
tion that creates a better representation any time there are a
large number of objects merged. In our previous paper (Rid-
dle et al. 2015), we have shown that one can effect substan-
tial savings in solution time by transforming the represen-
tation. Our transformation involves grouping into bags, ob-
jects that are indistinguishable with respect to the actions
and the initial state or the goal description. By doing so, we
only have to keep track of their counts instead of identifying
them individually, and we avoid unnecessary combinatorial
explosion. Since the transformations produce PDDL files,
they can be used with any planning system seamlessly. This
opens up a new approach to improving planning systems.
Another advantage is that we can run with any PDDL plan-
ner and the system does not have to waste time grounding a
large number of objects that are then merged during symme-
try reduction.

These encouraging results suggest many directions for
future work. First, we should explore additional types of
transformations. A second direction for future work relates
to heuristics. Certain heuristics perform poorly on these
bagged representations. It is irrelevant whether they are au-
tomatically generated or not, they could have been created
manually. We believe that, at present, the field is mostly fo-
cused on domain representations for which their heuristics
work well. To really judge the current state of the art heuris-
tics, we must look at very different representations.

We should create a problem solver that can take advan-
tage of multiple representations. One possibility is a portfo-
lio system that runs each different representation and returns
the first solution. This would be effective with a few rep-
resentations; but with many choices it would no longer be
a viable option. Another alternative is to use the cross-over
studies to predict when each representation will perform bet-
ter. The final possibility is to use the RIDA* system (Barley,
Franco, and Riddle 2014; Franco, Barley, and Riddle 2013),
which uses sampling to determine the heuristic branching
factor and the cost of applying heuristics, then uses these re-
sults to choose a heuristic to apply. We could apply this tech-
nique to multiple representations, to determine which one is
most likely to solve the problem.

References
Barley, M.; Franco, S.; and Riddle, P. 2014. Overcoming the
utility problem in heuristic generation: Why time matters. In
ICAPS.
Franco, S.; Barley, M.; and Riddle, P. 2013. In situ selection
of heuristic subsets for randomization in IDA* and A. In
Heuristics and Search for Domain-Independent Planning.
Riddle, P.; Barley, M.; Franco, S.; and Douglas, J. 2015.
Analysis of bagged representations in pddl. In Heuristics
and Search for Domain-Independent Planning.
Riddle, P.; Holte, R.; and Barley, M. 2011. Does represen-
tation matter in the planning competition? In SARA.
Riddle, P. 2015. PDDL files for the representations.
http://www.cs.auckland.ac.nz/∼pat/socs-2015/. Created:
2015-02-20.

215

