
Type System Based Rational Lazy IDA*

Oded Betzalel
Computer Science Dept.
Ben Gurion University

Beer-Sheva, Israel 84105
odedbetz@cs.bgu.ac.il

Ariel Felner
Information Systems Engineering Dept.

Ben Gurion University
Beer-Sheva, Israel 84105

felner@bgu.ac.il

Solomon Eyal Shimony
Computer Science Dept.
Ben Gurion University

Beer-Sheva, Israel 84105
shimony@cs.bgu.ac.il

Abstract

Meta-reasoning can improve numerous search algorithms,
but necessitates collection of statistics to be used as prob-
ability distributions, and involves restrictive meta-reasoning
assumptions. The recently suggested scheme of type systems
in search algorithms is used in this paper for collecting these
statistics. The statistics are then used to better estimate the
unknown quantity of expected regret of computing a heuris-
tic in Rational Lazy IDA* (RLIDA*), and also facilitate a
second improvement due to relaxing one of the unrealistic
meta-reasoning assumptions in RLIDA*.

Introduction
All search algorithms have decision points on how to con-
tinue search. Traditionally, tailored rules are hard-coded
into the algorithms. Meta-reasoning techniques based on
value of information or other ideas can significantly speed
up the search, by making these rules dependent on expected
benefit (runtime and/or result quality). This was shown for
depth-first search in CSPs (Tolpin and Shimony 2011), for
Monte-Carlo tree search (Hay et al. 2012), and recently for
A* (Tolpin et al. 2013) and IDA* (Tolpin et al. 2014).

As stated in (Tolpin et al. 2013; Hay et al. 2012;
Tolpin et al. 2014), success of meta-reasoning depends heav-
ily on the type of meta-reasoning assumptions made in de-
veloping the meta-reasoning rules, and on estimating prior
distributions over outcomes of evaluating heuristics. A typi-
cal case we examine here is Rational Lazy IDA* (RLIDA*),
a state of the art variant of IDA* appearing in (Tolpin et al.
2014). In RLIDA*, two heuristics, h1 and h2, are available,
and meta-reasoning is used to make the RLIDA* decision:
whether to compute h2(n) after having seen the value h1(n)
for a search node n. The decision is based on an expected
regret criterion, computed under a set of meta-reasoning as-
sumptions. This paper re-examines the meta-reasoning as-
sumptions used in RLIDA*, and introduces two improve-
ments: a “relaxed” RLIDA*, where one unrealistic meta-
reasoning assumption of RLIDA* is relaxed, and a better
scheme to estimate the needed distributions.

The latter estimation issue is handled through the no-
tion of type systems, recently coined in (Lelis, Zilles, and

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Holte 2013), although it was used before (Korf, Reid, and
Edelkamp 2001). A type system partitions the state-space
nodes into “similar valued” classes of nodes, called types.
Type systems were typically used to predict the number of
nodes generated by search algorithms. In this paper we use
the type system attributes as features in collecting statistics.
These statistics are then used in the RLIDA* decision.

In (Tolpin et al. 2014), results on RLIDA* were compared
to to an unrealizable “clairvoyant” scheme that computes h2
only if it is helpful. RLIDA* was close in preformance to
the clairvoyant scheme for tile puzzles, and we thus did not
expect to get additional improvement here. But for the con-
tainer relocation problem (Zhang et al. 2010), RLIDA* did
much worse that “clairvoyant”, so we expected to do better
using the methods proposed here. These expectations were
indeed confirmed by the experimental results.

Rational Lazy IDA*
We begin by briefly revisiting lazy IDA* and its rational ver-
sion, RLIDA* (Tolpin et al. 2014). We are given two ad-
missible heuristics, h1 and h2, which take time t1 and t2 to
compute, respectively. The assumption is that h2 is more in-
formed than h1, but t2 is much greater than t1, so the main
question is whether one should invest the time to compute
h2 after obtaining the value of h1 at a node n.

Let T be the current IDA* threshold. After h(n) is evalu-
ated, if f(n) = g(n)+h(n) > T , then n is pruned and IDA*
backtracks to n’s parent. Given both h1 and h2, a naive im-
plementation of IDA* will evaluate them both and use their
maximum in comparing against T . In Lazy IDA* and its ra-
tional variant, RLIDA*, the idea is to avoid computing the
heavy h2 as much as possible, which can sometimes cost
additional node expansions.

The pseudo-code for lazy IDA* and RLIDA* is depicted
as Algorithm 1. If the trivial cutoff conditions in lines 8 or 10
do not hold, h1 is evaluated first (line 12), and if f1 is already
above the threshold (i.e. h1 causes a cutoff), the search (in
both LIDA* and RLIDA*) backtracks (line 14). h2 is thus
only evaluated (in lines 15-18) if f1(n) ≤ T . In lazy IDA*,
the “optional condition” in line 15 is defined to be “always
true”, so h2 is always evaluated if h1 failed to cause a cut-
off. RLIDA* is more conservative in deciding to compute
h2, and the “optional condition” in line 15 is based on an es-
timated regret criterion (Tolpin et al. 2014), i.e. how much

Proceedings of the Eighth International Symposium on Combinatorial Search (SoCS-2015)

151



Algorithm 1: Rational Lazy IDA*
1 Lazy-IDA* (root) {
2 Let Thresh = max(h1(root), h2(root))
3 Let solution = null
4 while solution == null and Thresh <∞ do
5 solution, Thresh = Lazy-DFS(root, Thresh)
6 return solution
7 Lazy-DFS(n, Thresh) {
8 if g(n) > Thresh then
9 return null, g(n)

10 if goal-test(n) then
11 return n, Thresh
12 Compute h1 and update statistics
13 if g(n)+h1(n) > Thresh then
14 return null, g(n)+h1(n)
15 if opt-cond then
16 Compute h2 and update statistics
17 if g(n)+h2(n) > Thresh then
18 return null, g(n)+h2(n)

19 Let next-Thresh =∞
20 for n’ in successors(n) do
21 Let solution, temp-Thresh = Lazy-DFS(n’,

Thresh)
22 if solution ¬ = null then
23 return solution, temp-Thresh
24 else
25 Let next-Thresh = min(temp-Thresh,

next-Thresh)

26 return null, next-Thresh

extra computation time is wasted vs. the post-facto correct
decision. Note that, like IDA*, RLIDA* returns the optimal
solution regardless of how opt-cond is defined and com-
puted. The regret estimate in (Tolpin et al. 2014) is based
on the following meta-reasoning assumptions:

1. The decision is made myopically: we work under the as-
sumption that opt-cond will be true in every child n′ of
n, and therefore that h2(n′) will always be computed if
h1(n

′) does not cut off n′.

2. h2 is consistent: if evaluating h2(n) causes a cutoff in n,
it also causes a cutoff in every child of n.

3. h1 will not cause a cutoff in any of the children of n.

There are two possible outcomes for h2:
Outcome 1: h2(n) does not cause a cutoff. Thus, if we

choose to bypass computation of h2(n), we lose nothing.
But if we compute h2(n), the effort (time t2) invested in
evaluating h2(n) is wasted.

Outcome 2: h2(n) does cause a cutoff (henceforth called
“helpful”). So, if we compute h2(n) we lose nothing. But
if we bypass h2(n), we needlessly expand n. Due to as-
sumptions 1 and 3, we now evaluate both h1 and h2 for all

children of n. Since h2(n) is helpful, the children of n will
not be expanded in this IDA* iteration due to assumption 2.

Since we do not know which outcome is true before h2(n)
is computed, we assume a known probability ph2

(n) for out-
come 2, i.e. that h2(n) is helpful.1 Denoting the time to ex-
pand n by te(n), and the branching factor (number of chil-
dren) of n by b(n), minimizing the expected regret defined
by the above quantities results in the following expression
as opt-cond (Tolpin et al. 2014):

t2 <
ph2

(n)

1− ph2
(n)b(n)

(te(n) + b(n)t1) (1)

RLIDA* issues, proposed improvements
Relaxed RLIDA*
Assumption 3 in RLIDA*, that h1 will not cause a cutoff
in any of the children of the current node n, is obviously
frequently violated. We relax it so that there is some proba-
bility ph1

(n) that such pruning will occur. (We assume that
ph1

(n) is i.i.d. for all the children of n.)

Compute h2 Bypass h2
h2 unhelpful t2 0
h2 helpful 0 te(n)+b(n)t1+b(n) ∗ (1−ph1

(n)) ∗ t2−t2

Table 1: Regret in Relaxed Rational Lazy IDA*

Table 1 summarizes the regret of each possible decision
and outcome. The regret values are as in RLIDA* (Tolpin et
al. 2014), except the case: bypassing h2 when it is helpful.
Here we lose te by expanding n, plus the need to evaluate
h1 in each of the children of n, and also evaluate h2 in each
child with probability 1 − ph1(n). From this value we sub-
tract t2 from the regret, as we saved the time to compute h2.
We thus wish to bypass h2(n) only when:

(1−ph2
)t2 < ph2

(te+b(n)t1+(b(n)∗(1−ph1
)−1)t2 (2)

And so we get a new opt-cond:

t2 <
ph2

(n)

1− ph2
(n)b(n)(1− ph1

(n))
(te(n) + b(n)t1) (3)

We denote the improved RLIDA* that uses Eq. 3 as opt-
cond, by “relaxed” RLIDA*, or RRLIDA* for short.

Type systems in RLIDA* and RRLIDA*
Despite the simplicity of equations 1,3, their implementa-
tion is non-trivial, because all of the quantities b(n), t1, t2,
te(n), and especially ph1(n) and ph2(n) may actually be un-
known. One can try to estimate these unknown values either
off-line or on-the fly. But the way these values change be-
tween different nodes varies quite drastically across different
problem types, and this is especially true for the probability
terms. For some domains, such as sliding tile puzzles, the
algorithm speedups were only slightly affected by the esti-
mate of ph2

(n) over a wide range of values of ph2
(n), and

the determining factor is b(n) which is known. In general,

1ph2(n) is denoted ph(n) in (Tolpin et al. 2014), but we added
the additional subscript as we also have a ph1(n) later on.

152



however, the estimate of ph2(n) can be crucial, and better re-
sults can be achieved if ph2(n) is a variable which depends
on some features of n. In order to assess ph2

we tried the
following type systems:

Type System 1: (TS1). TS1 is simply the value of h1.
A table counting occurences of h2 values as a function of
h1 is generated on the fly in “update statistics” (lines 12, 16
in Algorithm 1). These are used to estimate ph2

, the prob-
ability that h2 will be helpful for the current node. (Note
that this information is available only for nodes where h2
was evaluated.) When used in conjunction with RLIDA*
or RRLIDA*, we use the type system name to indicate the
improved algorithm variant, e.g. RLIDA*+TS1 is RLIDA*
using type system TS1 for estimating ph2

.
Type System 2: (TS2) TS1 ignores important informa-

tion, by assuming that the distribution of h2 given h1 is con-
stant in the entire search tree, which is unlikely to be true.
TS2 creates table of counts similar to TS1, but also as a func-
tion the value of h2 in the closest ancestor for which h2 was
computed, and of the distance to that ancestor.

To estimate ph2(n) using a type system, we divide the
number of times h2 was greater than T − g(n), by the total
count for that row, in the counting table for the appropriate
type. (Recall that T is the current IDA*/RLIDA* threshold).

Type systems for ph1
: we could not effectively assess

ph1
without a type system. To assess ph1

(n) we need in-
formation on h1 in n’s children, which is inconvenient to
obtain. Instead we use a type system that lists the distri-
bution of h1(n) based on h1 at the parent of n, as a proxy
for estimating ph1

(n). We tried several type systems that
yielded similar results, the results shown in this paper are
for the type that counts h1(n) occurences as a function of
h1(parent(n)), and the distance to the last h2 computation.
To estimate ph1(n), divide the number of times where h1
was greater than T − g(n) − cost(n, n′), by the total count
for that row in the counts table. In container relocation and
standard sliding tile puzzles, cost(n, n′) = 1.

Empirical evaluation
As this paper is an attempt to improve RLIDA*, we
mostly use the same problems and problem instance sets as
in (Tolpin et al. 2014).

Sliding tile puzzles
We first examine the results on the 15-puzzle. For consis-
tency of comparison, we used as test cases for the 15 puz-
zle the same 98 out of Korf’s 100 instances (Korf 1985) as
in (Tolpin et al. 2014): all the tests that were solved in less
than 20 minutes with standard IDA* using the Manhattan
Distance (MD) heuristic. The h2 heuristic was the linear-
conflict heuristic (LC) (Korf and Taylor 1996) which adds a
value of 2 to MD for pairs of tiles that are in the same row (or
the same column) as their respective goals but in a reversed
order. One of these tiles will need to move away from the
row (or column) to let the other pass.

Results for this problem set are shown in Table 2, list-
ing average runtime in seconds, number of generated nodes,
number of h2 evaluations, and number of helpful h2 eval-
uations. As expected, RLIDA* with an assumed constant

algorithm time generated h2 total h2 helpful
IDA* (MD) 58.84 268,163,969
IDA* (LC) 40.08 30,185,881
LIDA* 32.85 30,185,881 21,886,093 6,561,972
RLIDA* 20.09 47,783,019 8,106,832 4,413,050
Clairvoyant 12.66 30,185,881 6,561,972 6,561,972
RLIDA*+TS1 33.90 49,314,132 14,265,984 9,315,480
RLIDA*+TS2 27.49 39,466,460 11,508,429 7,313,390
RRLIDA*+TS1 35.08 65,269,319 7,908,331 5,351,080
RRLIDA*+TS2 30.23 57,518,574 6,719,180 4,625,750

Table 2: Results for 15 puzzle

ph2
= 0.3, outperforms all other algorithms, an exception

being the unrealizable “Clairvoyant” algorithm, which eval-
uates h2 only if it turned out to be helpful. (The results
for this “algorithm” are obtained by not counting the run-
time for the h2 evaluations which did not cause a cutoff.)
Our new variants, RRLIDA*+TS1 and RRLIDA*+TS2, al-
though they increase the fraction of helpful evaluations of
h2 (Table 2), their overhead and the added number of gener-
ated nodes results in an overall worse runtime performance.
As expected, the additional improvements are therefore con-
traindicated for the sliding tile problem. The rule used by
RLIDA* with ph2

= 0.3 was tantamount to having opt-
cond being true only for nodes with b(n) = 4, which is in
essence a very simple type system based on the branching.
A more complicated type system is not justified here.

We have also experimented on the weighted version of 15
puzzle, where the cost of moving each tile is equal to the
number on the tile. Likewise (not shown) the results were
unfavorable for the new versions of RLIDA*, as expected.
A complication in this variant compared to the unweighted
version is that there are too many types, as the number of
possible values of h1 and h2 is very large. Even limiting
this number by binning did not achieve good results.

Container relocation problem
The container relocation problem is an abstraction of a plan-
ning problem encountered in retrieving stacked containers
for loading onto a ship in sea-ports (Zhang et al. 2010). We
are given S stacks of containers, where each stack consists
of up to T containers. The initial state has N ≤ S × T
containers, arbitrarily numbered from 1 to N . The rules of
stacking and of moving containers is the same as for blocks
in the blocks-world domain. The goal is to “retrieve” all
containers in order of number, from 1 to N , i.e. to place
them on a freight truck that takes the container away to be
loaded onto a ship. The objective function to minimize is the
number of container moves until all containers are gone. The
complication comes from the fact that we can only “retrieve”
a container if it is at the top of one of the stacks. Optimally
solving this problem is NP-hard (Zhang et al. 2010).

As in (Tolpin et al. 2014), we assume here the version
where each container (“block” in blocks-world terminology)
is uniquely numbered, that a stack s that currently has T con-
tainers is “full” and no additional containers can be placed
on s until some container is moved away from the top of s.

The heuristics we used as h1 for the experiments are the

153



Small instances All instances
algorithm time generated h2 total h2 helpful time generated h2 total h2 helpful
IDA* (LB1) 336 853,094,579 1641 3,811,296,602
IDA* (LB3) 967 128,798,338 5761 715,385,239
LIDA* 366 128,798,338 44,527,029 19,564,237 2770 1,050,197,101 262,718,267 108,780,900
RLIDA*(ph2 = 0.3) 337 233,077,220 27,628,566 13,575,017 2764 1,073,191,297 254,291,856 106,366,804
Clairvoyant 228 128,798,338 19,564,237 19,564,237 1656 1,050,197,101 108,780,900 108,780,900
RLIDA*+TS1 327 166,781,023 35,931,245 21,292,089 1924 1,502,283,957 138,031,927 87,720,923
RLIDA*+TS2 292 159,923,334 29,460,335 19,250,841 1967 1,337,796,749 146,545,466 94,988,940
RRLIDA*+TS1 207 318,146,242 9,001,091 6,653,964 1311 2,378,791,883 24,727,136 17,317,818
RRLIDA*+TS2 201 300,623,173 8,751,578 6,876,705 1304 2,342,370,343 23,816,116 18,299,499

Table 3: Container Relocation: 49 small instance (left), all 63 instances(right).

same as in (Tolpin et al. 2014), as summarized below. Ev-
ery container numbered X which is above at least one con-
tainer Y with a number smaller than X must be moved
from its stack in order to allow Y to be retrieved. The
number of such containers in a state is used as the admis-
sible heuristic h1 (called LB1 in (Zhang et al. 2010)). h2
adds one relocation for each container that must be relo-
cated a second time as any place to which it is moved will
block some other container. This heuristic is called LB3

in (Zhang et al. 2010). In the experiments, we used the
same 49 instances as in (Tolpin et al. 2014): the hard-
est instances out of those that were solved in less than
20 minutes with the LB1 heuristic, from the CVS test
suite described in (Caserta, Voβ, and Sniedovich 2011;
Jin, Lim, and Zhu 2013). Mean results are shown in Table 3
(left). In this domain Rational Lazy IDA* shows some per-
formance improvement over lazy IDA*. However, as noted
in (Tolpin et al. 2014), there was much room for improve-
ment by making ph2 dependent on features of the search
node, achieved here by using type systems. Thus, we tried
to estimate ph2(n) differently for each node, as a function of
the node type. We report results for type systems TS1 and
TS2, for both RLIDA* and RRLIDA*. Indeed (see Table
3(left)), using type systems to estimate ph2

improves RL-
IDA*, but the most significant improvement here is due to
dropping assumption 3, that h1 is unhelpful in the children
(RRLIDA*).

We then conjectured that the timing differences should
increase when we include harder problem instances, and
added an additional 14 instances with 5 stacks and 9 or 10
tiers, with a runtime greater than 20 minutes in IDA*, se-
lected arbitrarly from the above mentioned test-set. The re-
sults (Table 3 (right)), are mean values, for both the smaller
and larger instances. Using type systems with RLIDA* was
faster than LIDA*, but was actually slower than just using
IDA* with only h1. The reason is evident from examin-
ing the line “IDA*(LB3)”. Although h2 drastically reduces
generated node numbers, its runtime with these larger prob-
lem instances outweighed its usefulness to such an extent
that RLIDA* can at best approach IDA* by evaluating h2
very rarely. But lifting the assumption that h1 does not
cause a cutoff in the children (RRLIDA*) achieves further
speedup and the best performance of all. The difference
between TS1 and TS2 does not appear significant: TS2
achieves better accuracy, but has higher overhead for meta-

reasoning, so in overall runtime performance, TS2 is usually
only slightly better than TS1, and sometimes slightly worse.
(In large instances, we had a time-out of twice the time of
“IDA*(LB1)”, hence some discrepancies in node counts).

Note that in both container relocation results RRLIDA*
performs better than the clairvoyant scheme, which seems
surprising. However, upon deeper examination, it turns out
that even if h2 cuts off a node n after h1 fails to do so, it
does not follow that one should evaluate h2. For example,
consider a node n with b(n) children, where h2 cuts off the
search at node n, where h1 would cut off the search at all of
its b(n) children. Then, if evaluating h2(n) is more expen-
sive than computing h1 for all b(n) children, then bypassing
h2 may be better than evaluating it. RRLIDA* takes such
cases into account, whereas the clairvoyant scheme does not.

Conclusion
Rational Lazy IDA* (Tolpin et al. 2014) are an instance of
the rational meta-reasoning framework (Russell and Wefald
1991). Applying this framework necessitates extreme meta-
reasoning assumptions that are frequently violated in prac-
tice, and estimation of distributions. This paper improves
upon RLIDA* in both aspects: it relaxes the meta-reasoning
assumption that the “weak” h1 heuristic causes no cutoff in
the children of the current node. Estimating the distributions
of the probability of pruning for both h1 and h2 is improved
by leveraging the notion of type systems (Lelis, Zilles, and
Holte 2013). Experimental results on container relocation
and sliding tile puzzles show that these improvements of
RLIDA* achieving better accuracy in deciding when h2 is
helpful. A overall runtime improvement occurs for container
relocation, where there is significant room for improvement
over RLIDA*, but not for sliding tile puzzles, where RL-
IDA* already did sufficiently well in this respect. It is also
interesting that RRLIDA* sometimes outperformed the un-
realizable “clairvoyant” scheme, due to relaxing a meta-
reasoning assumption. While the latter improvement is spe-
cific to RLIDA*, applying type-systems to meta-reasoning
can be generalized, especially to rational lazy A* (Tolpin et
al. 2013) which faces a similar meta-level decision.

Acknowledgments. This research was supported by the
Israel Science Foundation (ISF) grant #417/13 and the
Frankel Center For Computer Science.

154



References
Caserta, M.; Voβ, S.; and Sniedovich, M. 2011. Apply-
ing the corridor method to a blocks relocation problem. OR
Spectr. 33(4):915–929.
Hay, N.; Russell, S.; Tolpin, D.; and Shimony, S. E. 2012.
Selecting computations: Theory and applications. In de Fre-
itas, N., and Murphy, K. P., eds., UAI, 346–355. AUAI Press.
Jin, B.; Lim, A.; and Zhu, W. 2013. A greedy look-ahead
heuristic for the container relocation problem. In IEA/AIE,
volume 7906 of LNCS, 181–190. Springer.
Korf, R. E., and Taylor, L. A. 1996. Finding optimal solu-
tions to the twenty-four puzzle. In AAAI, 1202–1207.
Korf, R. E.; Reid, M.; and Edelkamp, S. 2001. Time
complexity of iterative-deepening-A*. Artificial Intelligence
129(1-2):199–218.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence 27(1):97–
109.
Lelis, L. H. S.; Zilles, S.; and Holte, R. C. 2013. Predicting
the size of IDA*’s search tree. Artificial Intelligence 196:53–
76.
Russell, S., and Wefald, E. 1991. Principles of metereason-
ing. Artificial Intelligence 49:361–395.
Tolpin, D., and Shimony, S. E. 2011. Rational deployment
of CSP heuristics. In IJCAI, 680–686.
Tolpin, D.; Beja, T.; Shimony, S. E.; Felner, A.; and Karpas,
E. 2013. Toward rational deployment of multiple heuristics
in A*. In IJCAI.
Tolpin, D.; Betzalel, O.; Felner, A.; and Shimony, S. E.
2014. Rational deployment of multiple heuristics in IDA.
In ECAI 2014, 1107–1108.
Zhang, H.; Guo, S.; Zhu, W.; Lim, A.; and Cheang, B. 2010.
An investigation of IDA* algorithms for the container re-
location problem. In Proc. of the 23rd Inter. Conf. on In-
dustrial Engineering and Other Applications of Applied Int.
Systems - Part I, IEA/AIE’10, 31–40. Berlin, Heidelberg:
Springer-Verlag.

155




