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Abstract

Monte-Carlo Tree Search (MCTS) algorithms estimate the
value of MDP states based on rewards received by perform-
ing multiple random simulations. MCTS algorithms can use
different strategies to aggregate these rewards and provide an
estimation for the states’ values. The most common aggre-
gation method is to store the mean reward of all simulations.
Another common approach stores the best observed reward
from each state. Both of these methods have complemen-
tary benefits and drawbacks. In this paper, we show that
both of these methods are biased estimators for the real ex-
pected value of MDP states. We propose an hybrid approach
that uses the best reward for states with low noise, and other-
wise uses the mean. Experimental results on the Sailing MDP
domain show that our method has a considerable advantage
when the rewards are drawn from a noisy distribution.

Introduction and background
The Monte-Carlo Tree Search (MCTS) framework (Browne
et al. 2012) was shown to be a successful solving approach
for both Markov Decision Processes (MDP) and adversar-
ial domains (Gelly and Silver 2007; Ramanujan and Sel-
man 2011; Kocsis and Szepesvári 2006). MCTS algorithms
grow asymmetric search trees by repeatedly adding a sin-
gle node to the frontier of the tree. Nodes are evaluated by
aggregating multiple rewards received by sampling the state
space. These samples are performed according to a prede-
fined default policy which is often noisy and sometimes even
completely random. This is common to MCTS applications
since MCTS is especially successful with domains lacking
strong domain knowledge (e.g., heuristic function). When a
sample terminates, a reward is observed and propagated up
to the root of the tree. This propagation procedure requires
a predefined backup operator which determines how a node
value should be updated given a new reward.

Recent work (Domshlak and Feldman 2013; Ramanu-
jan and Selman 2011; Keller and Helmert 2013) has dis-
cussed two commonly used backup operators. The Monte-
Carlo (MC) backup operator, as used by the UCT algo-
rithm (Kocsis and Szepesvári 2006), which averages all re-
wards received through a node and the Dynamic program-
ming (DP) backup operator which updates a node value ac-

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cording to the value of their best successor. Both methods
are widely used but are known to have drawbacks.

In this paper we suggest a new approach to perform ag-
gregation of rewards. Our method examines the variance in
the overall series of rewards observed from a given node and
compares it to the individual variances of rewards obtained
from each of the successors. We then decide which of these
rewards should be used to estimate the value of the node.
We discuss our method in the context of MDPs.

Markov Decision Process (MDP) (Puterman 2009) is a
well-studied model for sequential decision making under un-
certainty. An MDP instance is a tuple 〈S,A, T,R〉, where
S is the set of all states, and A(s) are the sets of actions
available from state s ∈ S. The transition model T (s, a, s′)
represents the probability of moving from state s to state s′
by performing action a. An immediate reward R(s, a) is re-
ceived when performing an action a from state s. The term
horizon of an MDP denotes the number of consecutive deci-
sions possible until reaching a terminal state. A solution for
an MDP is a policy that maps each state s ∈ S to an action
a ∈ A(s) such that a high expected reward is received.

The Monte-Carlo Tree Search (MCTS) frame-
work (Browne et al. 2012) was shown to be a successful
solving approach for MDPs. The search tree built by
MCTS contains two types of nodes, frontier nodes and
internal nodes. Frontier nodes were not sampled yet and
their successors are not part of the tree. Internal nodes
were already sampled and expanded. Initially, the tree only
includes the root node as a single frontier node.

Each nodem in the tree maintains two variables which are
updated in each iteration; (1) current value estimate v(m)
and (2) number of observations, ob(m), which is the number
of samples that were performed from node m. We denote
v∗(m) as the optimal expected value of node m.

In MDP, the tree contains interleaved layers of chance and
decision nodes. Decision nodes represent states where deci-
sion is required and chance nodes represent a chosen action.

An iteration of MCTS consists of four steps. (1) Selec-
tion: a single frontier node in the search tree is selected
to be sampled next. This is usually performed by a tree-
descent procedure starting from the root and ending when
the first frontier node is reached and then selected. Imple-
mentations of this stage vary. For instance, the UCT al-
gorithm (Kocsis and Szepesvári 2006) uses the UCB for-
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mula (Auer, Cesa-Bianchi, and Fischer 2002) (designed for
the multi-armed bandit problem) to balance exploration and
exploitation when deciding on the next sample to perform.
For every internal decision node m, UCT selects the succes-
sor node n that maximizes the following formula:

C

√
log ob(m)

ob(n)
+R(m, a) + v(n)

where a is the action that transitions from node m to node
n and C is an exploration constant. On each chance node,
UCT selects the next node by drawing from the distribution
defined by the transition function T .

(2) Expansion: the selected frontier node n is expanded.
The successor nodes (denoted as N(n)) are generated and
added as new frontier nodes to the tree and n becomes an
internal node.

(3) Simulation: a default policy for selecting moves is
executed starting from n, usually until a terminal node t is
reached. This is called a playout. A value r (the reward)
associated with the complete playout is observed.

(4) Backup: the observed reward r propagates up to n
and then up the tree using a backup operator. During this
phase the values of all internal nodes on the relevant trajec-
tory are updated. This stage is the main focus of our paper.

Backup Operators
The most common backup operator updates the current
value estimate, v(m), to be the mean of the entire set of
rewards received from within the subtree rooted at m. This
value is referred to as the Monte-Carlo mean (MC) and it is
computed recursively as follows:

v(m) =

 0 m is terminal∑
n∈N(m)

ob(n)
ob(m) [v(n) + η(m,n)] otherwise

Equation 1: MC update

where η(m,n) is the reward received in the transition from
m to n. If m is a decision node, this value is the immediate
reward of performing the action a that leads from m to suc-
cessor node n, i.e., η(m,n) = R(m, a). If m is a chance
node, this term equals 0.

The MC backup operator has drawbacks also presented
by others (Bubeck, Munos, and Stoltz 2011; Feldman and
Domshlak 2013). Letm be a decision node and let a∗ be the
action that produces the optimal value for m. The optimal
value of m is v∗(m) = R(m, a∗) + v∗(n) where v∗(n) is
the expected optimal value of the chance node to which a∗
leads. The MC backup estimates v(m) by also averaging
rewards from performing actions other than a∗. These re-
wards are not drawn from the distribution for which v∗(m)
is the expected value and in some cases they could be en-
tirely unrelated. Therefore, although MC averages these re-
wards, ideally they should be ignored. Usually, MCTS al-
gorithms such as UCT explore moves even when they are
probably not optimal. These explorations provide valuable

information regarding what is the best action. However, in-
cluding these rewards in the average value of the node weak-
ens the estimation of the node’s value. Note that using the
MC backup operator still guarantees that v(m) converges to
v∗(m) when used as part of the UCT algorithm since as the
number of observations of m increases, the best move (a∗)
is visited most of the time. However, convergence could re-
quire an extremely large number of iterations, which is the
major drawback of using the MC operator.

Bubeck et al. (2011) describes a related problem by show-
ing that the simple regret (i.e., expected loss or rewards in a
single decision) and cumulative regret (i.e., expected loss
of rewards over time) are somewhat competing objectives.
Feldman et al. (2013) describe a similar idea called “sepa-
ration of concerns”. That is, in MCTS there are two similar
(but no identical) goals; learning the best action to perform
from a node, and learning the correct value of this node.

An alternative backup operator uses the principle of Dy-
namic Programming (DP). On each update, the DP operator
updates v(m) to be the value of its best successor. Given
an MDP decision node (the value of MDP chance nodes are
calculated as in MC), DP performs the following update:

v(m) =

{
0 m is terminal
maxn∈N(m) v(n) + η(m,n) otherwise

Equation 2: DP update

The DP operator might update the value estimates of the
nodes based on promising but “under-sampled” successors,
whose value estimations are very far from their actual op-
timal expected value. This could be extremely misleading,
especially when the simulation is based on a random pol-
icy and the branching factor is large, which makes sampling
even less informative. As with MC, the DP operator is also
guaranteed to converge to the optimal solution eventually.

Backup operators as biased estimators

MCTS aims for a minimal difference between the estimated
value v(m) and the optimal expected value of the state
v∗(m). The value v(m) acts as a statistical estimator for
v∗(m). We show that both MC and DP act as biased statis-
tical estimators and thus they are, for a large extent, wrong.
The estimation bias of an estimator ŝ is defined as the dif-
ference between the expected value of ŝ and the expected
value it estimates. The bias of an estimator ŝ for the value
of a MCTS node m is defined as B[ŝ] = E[ŝ] − v∗(m).
When an estimator has a bias of 0 it is called an unbiased
estimator.

Theorem 1 Given a set of rewards observed from a deci-
sion node m. The MC backup operator MC(m) is a biased
estimator for the value of m.

proof: The value of MC(m) can be expressed as∑
n∈N(m)

ob(n)
ob(m) [MC(n) + η(n,m)].
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The expected value E[MC(m)] is calculated as: 1

∑
n∈N(m)

∫ ∫
Pr(ob(n))

ob(n)

ob(m)
Pr(MC(n))[MC(n) + η(n,m)]

For simplicity, we assume that chance nodes’ estimates are
unbiased such that E[MC(n)] = v∗(n).

The optimal value of m is v∗(m) = R(m, a∗) + v∗(n∗),
where a∗ is the optimal action and n∗ is the optimal suc-
cessor node. Since each action needs to be sampled at
least once, the probability Pr(ob(n))Pr(MC(n)) for any
non-optimal actions and successor is nonzero and thus:
B[v(m)] = E[MC(m)]− v∗(n) 6= 0 Thus, decision nodes
calculated via the MC operators are biased estimators. We
now show the same for DP operator:

Theorem 2 Given a set of rewards observed from a deci-
sion node m. The DP backup operator DP (m) is a biased
estimator for the value of m.

Proof: DP (m) is calculated as maxn∈N(m)[MC(n) +
η(m,n)].

Again we assume that chance nodes estimators MC(n)
are unbiased for all chance nodes values v∗(n). The ex-
pected value of DP (m) is calculated as:

E[DP (m)] =
∑

n∈N(m)

Prmax(n)[MC(n) + η(m,n)]

where Prmax(n) is defined as∏
l∈N(m)/{n}

Pr[MC(n) > MC(l)]

Since there are no guarantees that Prmax(MC(n)) is 0 for
every non-optimal successor n, B[DP (d)] = E[DP (d)] −
v∗(m) 6= 0

Confidence DP Backup Operator
We introduce a novel backup operator called the Con-
fidence Dynamic Programming backup operator (denoted
CDP) which aims to overcome some of the drawbacks of
MC and DP backup operators by reducing the estimation
bias. On each call CDP first selects a subset of successors
with reliable value estimates (relative to the MC value es-
timate of the parent). Then CDP performs the aggregation
only on these reliable values and excludes the rest.

Stable nodes We define the stable successors set
N+(m) ⊆ N(m) to be the subset of successors whose re-
wards are included in the CDP aggregation. Successor nodes
not in N+(m) are called unstable.

If N+(m) = ∅, none of the successors’ estimates are
more reliable than MC(m). If, however, stable successors
exist (N+(m) 6= ∅), CDP switches to the DP backup opera-
tor and updates v(m) to the value of the best stable node.

To keep track of which nodes should go into the stable set,
we maintain an additional variable, o(m) ≥ 0 for each node

1We abbreviate Pr[ob(n)|ob(m)] to Pr(ob(n)) for clarity.

m in the tree, which represents the level of noise observed
in v(m). Low noise means high confidence. Both v(m)
and o(m) are updated by the backup operator in a recursive
manner. Terminal nodes and new frontier nodes both have
o(m) = 0 since in both cases there is only one sample and
therefor no noise. o(m) is defined as follows:

o(m) =

{
0 ob(m) = 1 ∨ terminal(m)

V ar(m) otherwise

Where V ar(m) = 1
ob(m)−1

ob(m)∑
i=1

[ri −MC(m)]2 is the

sample variance of rewards observed from node m. In our
implementation, we use the sample variance as our measure
of o(m). However, we expect other forms of o(m) to be suc-
cessful, but leave that for future work. Calculating the vari-
ance of a series of rewards can be done online without stor-
ing the entire history of rewards (Welford 1962). This makes
our method memory efficient (requiring us to store only a
single additional variable per node). In fact, in our exper-
iments, the execution time difference between our method
and CDP/MC was insignificant.

Stable set selection criteria On each call to back propa-
gation, CDP builds the stable successor set. Stable nodes
N+(m) are defined as nodes n ∈ N(m) that satisfy the
following two conditions: (1) v(n) + η(m,n) > MC(m)
and (2) o(n) < V ar(m)

Satisfying condition (2) means that the estimated value
of the successor v(n) is generally less noisy than that of its
parent v(m).

In most cases, at least some stable nodes exist. Sampling
variance in the individual successors’ rewards tend to de-
crease compared to the variance of the parent’s, since the
parent’s rewards originate from many actions. Additionally,
before any update is done, at least one successor has a better
average value than the average value of the parent MC(m).

If however, none of the successor nodes are stable, we
update the estimate of m exactly as in the MC operator. In
our experiments we observed that only 10% to 30% of back
propagation calls produced an empty stable set.

If N+(m) 6= ∅, we propagate the values of the best stable
node and modify both v(m) and o(m) as follows:

v(m) = max
n∈N+(m)

v(n)

o(m) = o(argmaxn∈N+(m)v(n))

Related work Perhaps the closest work to ours is by
Coulom (2007), who showed an improvement over MC in
9 x 9 Go. His suggested backup operator updates nodes to
the value of the successor move with the maximum num-
ber of visits if it also has the best value. Otherwise, it uses
the MC mean. In CDP, we use a more general criteria to
decide which successors are to be considered. We base our
decision on the noise level instead of on the number of vis-
its. In addition to considering the best move, we consider all
moves that have a better value than the MC mean. We im-
plemented Coulom’s method (which we denote as Trails in
the results) and we show that on noisy MDP’s, this method
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(a) ε ∼ U [0.2,−0.2] (b) ε ∼ U [0.5,−0.5]

(c) ε ∼ U [0.7,−0.7] (d) ε ∼ U [0.9,−0.9]
Figure 1: Mean error as a function of iterations.

is not as successful as in Go, although it also reduces some
of the estimation bias when compared to MC.

Experimental results
We performed empirical experiments demonstrating that our
CDP operator reduces some of the estimation bias com-
pared to MC, DP and Coulom’s Trails backup operators. We
construct multiple MCTS trees (using the UCT algorithm)
and then estimate the root node value using one of the four
backup operators. We also ”off-line” calculated the exact
expected value of each built tree. We report the mean error
achieved by each propagation method.

We performed our experiments on the sailing domain, a
simple MDP where a sailboat needs to find the shortest ex-
pected path between two points in a grid under fluctuating
wind conditions. We used the same settings as described
in (Kocsis and Szepesvári 2006). We tried different grid
sizes and got similar results. The results reported in this
paper are for 10× 10 grids.

We found that the success of CDP depends on the level
of “randomness” in the observed playout rewards. Thus, we
experiment with several default policy settings that generate
different series of rewards, with different noise levels. We
define a general playout default policy Πb

k as follows. First,
Πb

k performs k random steps, where k is drawn from a ge-
ometric distribution. Then, the optimal expected value of
the kth node, v∗(nk) is calculated ”off-line” using the value
iteration algorithm (Bellman 1957). A perturbation rate ε
is drawn from a uniform distribution ε ∼ U [−b,+b]. Fi-
nally Πb

k returns the reward (1 + ε)v∗(nk). We experiment
with different uniform distribution bounds ±b from which ε
is drawn. This allows us to examine CDP performance with
different levels of noise in the rewards series. 2

2We tried three strategies to update the level of
noise. (1)Full-update: which performs o(m) =

(a) iterations = 10 (b) iterations = 100

(c) iterations = 1000 (d) iterations = 10000

Figure 2: Mean error as a function of perturbation bounds
(b)

We execute each method on 300 instances for each data
point we report. Figure 1 shows the mean error on different
perturbation rates. On low noise levels, MC and DP gen-
erate less average error. However, when the level of noise
increases (b ≥ ± 0.7), our CDP method is able to with-
stand it better, and produces more accurate results. Note
that although Figure 1 shows a temporary increase in error
levels, all backup operators in our experiments eventually
converged. Figure 2 demonstrates CDP mean error levels in
relation to noise level. On considerably small number of it-
erations, CDP does not have any advantage. However, when
the number of iterations increases, CDP eliminates some of
the estimation bias in comparison to the other methods. CDP
requires additional book-keeping and comparisons. Thus,
our analysis would not be complete without timing the dif-
ferent operators. We timed the execution of the four backup
operators and we could not see a significant difference in the
execution time for our implementations.

Conclusion and future work
We proposed a novel backup operator for MCTS that per-
forms dynamic programming updates on a limited set of
successors. We believe that our method has the potential of
combining the advantages of DP and MC and reducing esti-
mation bias to some extent. Empirical evaluation on finite-
horizon MDP shows the advantage of our method over both
DP and MC backup operators. Our method shows consid-
erable advantage when the playout default policy generates
noisy rewards, which is a very common condition for many

o(argmaxn∈N+(m)v(n)). (2) Partial-update which performs
o(m) = δ × o(argmaxn∈N+(m)v(n)) where δ is a function of
the depth of node m and (3)no-update where o(m) = V ar(m).
All three strategies performed similarly and we only report results
for no-update strategy because of its simplicity.
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MCTS applications. Our results look promising and there
are many possible future work directions. One direction
is to explore other measurements for the noise level o(m)
and other definitions for the stable set. Another direction is
to apply CDP on game domains and especially on General
Game Playing (GGP), which seems natural to this approach
because of the lack in domain knowledge and noisy rewards.

Acknowledgements
The research was supported by Israel Science Foundation
(ISF) under grant #417/13 to Ariel Felner.

References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-time
analysis of the multiarmed bandit problem. Mach. Learn.
47(2-3):235–256.
Bellman, R. 1957. A markovian decision process. Technical
report, DTIC Document.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of monte
carlo tree search methods. Computational Intelligence and
AI in Games, IEEE Transactions on 4(1):1–43.
Bubeck, S.; Munos, R.; and Stoltz, G. 2011. Pure explo-
ration in finitely-armed and continuous-armed bandits. The-
oretical Computer Science 412(19):1832–1852.
Coulom, R. 2007. Efficient selectivity and backup opera-
tors in monte-carlo tree search. In Computers and games.
Springer. 72–83.
Domshlak, C., and Feldman, Z. 2013. To uct, or not to
uct?(position paper).
Feldman, Z., and Domshlak, C. 2013. Monte-carlo plan-
ning: Theoretically fast convergence meets practical effi-
ciency. arXiv preprint arXiv:1309.6828.
Gelly, S., and Silver, D. 2007. Combining online and offline
knowledge in uct. In Proceedings of the 24th international
conference on Machine learning, 273–280. ACM.
Keller, T., and Helmert, M. 2013. Trial-based heuristic tree
search for finite horizon mdps. In ICAPS.
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