
Consistent Rounding of Edge Weights in Graphs

Stefan Funke
Universität Stuttgart

funke@fmi.uni-stuttgart.de

Sabine Storandt
Julius-Maximilians-Universität Würzburg

storandt@informatik.uni-wuerzburg.de

Abstract

Often, the edge weights of graphs are given in implicitly in-
finite or overly high precision (think of Euclidean lengths)
which leads to both theoretical as well as practical challenges.
In this paper we investigate how to round edge weights of
a given graph G(V,E,w) such that the rounded weights of
paths satisfy certain consistency criteria. Natural consistency
criteria are, for example, preserving optimality of paths, and
bounding relative change in weight after the rounding proce-
dure. Low precision edge weights allow for more space ef-
ficient implementations, faster arithmetic operations, and in
general more stable and efficient algorithms. We present an
ILP based rounding approach as well as a greedy rounding
heuristic. We show experimentally for large road networks
and grid graphs that our new rounding approaches are sig-
nificantly better than common deterministic or randomized
rounding schemes.

Introduction
An optimal path from A to B in a weighted graph or net-
work is normally defined as the one with the minimum accu-
mulated edge weights among all A-B-paths. Thereby, edge
weights can express a multitude of optimization goals, e.g.
euclidean lengths to get short paths, travel times to get quick
paths, risk factors to get safe paths, ascending slopes to get
energy-saving paths and so on. For real-world networks,
these weights have to be measured or estimated somehow.
For example, euclidean lengths in road networks are nor-
mally inferred from node coordinates (latitude and longi-
tude) and a formula for the spherical distance between those
on the surface of the earth (which involves square root com-
putation). GPS-based techniques allow to get latitude and
longitude values with up to seven decimal places, which
translates into a precision about 11 mm. But the question is,
whether it is reasonable to have such precise edge weights,
especially if e.g. most edges have a length of 10 meters or
more. Overprecise edge weights are often not meaningful
(is a path of length 15 km and 5 cm really perceptible longer
than a 15 km long path?). Moreover they are naturally error-
prone, demand a lot of space, and are expensive to carry
out calculations with. A natural approach to deal with such

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

0.4 (0)
0.4 (0)

0.4 (0)
0.4 (0)

0.4 (0)
0.4 (0)

0.4 (0)
0.4 (0)

0.8 (1)
0.8 (1)

Figure 1: The image depicts two uphill paths with the edge
weights reflecting the differences in altitude. The rounded
weights are given in brackets. The lower path reaches an
altitude of 1.6 and is rounded to 2. The upper path reaches
twice this altitude but is rounded to 0, hence appearing to be
flat.

edge weights would be to round them to the desired preci-
sion. But naive rounding rules lead to accumulated rounding
errors which might distort the structure of optimal paths and
do no longer reflect the real world sufficiently, see Figure 1
for an example.

The goal of this paper is to introduce rounding approaches
which make sure that the accumulated rounding errors on
optimal paths are bounded. Furthermore, we would like to
preserve the structure of optimal paths, i.e. paths that were
optimal before rounding should stay optimal after rounding
as far as possible.

Related Work
Rounding a real valued x ∈ R to a y ∈ Z with |x − y| < 1
comes up in many contexts. In algorithmics and discrete op-
timization, rounding is a way of dealing with the fact that
many problems have a natural formulation as integer lin-
ear programs, but obtaining a non-integral solution followed
by rounding is much easier than determining an integral
solution directly. Many approximation algorithms for NP-
hard problems are obtained in that way, e.g. (Raghavan and
Tompson 1987). In image processing, the digital halftoning
problem asks for the transformation of a grayscale image
with continuous intensities in [0, 1] per pixel into black and
white pixels only, see for example (Asano et al. 2002). In
(Asano, Matsui, and Tokuyama 2000) the authors show that
rounding a matrix with real-valued entries in [0, 1] into a bi-
nary 0/1-matrix such that the difference in sums within any
k × k submatrix of the original and rounded matrix is mini-

Proceedings of the Ninth International
Symposium on Combinatorial Search (SoCS 2016)

28

mized is NP-hard. In general, many such rounding problems
turn out to be NP-hard.

For the very common scenario that edge weights are Eu-
clidean distances in the plane, it is not even clear that the
problem of computing shortest paths is in NP since it re-
quires the comparison of sums of squares, which might
require very expensive arithmetic operations. In fact, for
graphs G(V,E) where the vertices are points in Z

4 and
we have Euclidean edge weights, the shortest path problem
is known to be sums-of-square-roots-hard (Kayal and Saha
2011). So to have polynomial-time algorithms outside the
RealRAM model of computation, approximation of the edge
weights seems to be necessary.

Contribution
We first analyze the potential of deterministic and random-
ized rounding for our application. We show that both of
these baseline approaches are not sufficient to solve the
weight rounding problem in graphs, as the accumulated
rounding errors become too large. We then introduce an ILP
formulation, which allows to bound the maximum relative
error which occurs on a path. As this ILP is too expensive
to be set up already for small graphs, we introduce a greedy
rounding heuristic which provides us with an a posteriori
maximum relative error guarantee. We conduct experiments
on real-world road networks and synthetic grid graphs. On
both benchmark sets our rounding heuristic outperforms de-
terministic and randomized rounding significantly.

Notation, Baselines and Error Analysis
From now on, we will use w : E → R

+ to indicate the
original edge weights and w′ : E → N for the rounded
weights. This might involve some scaling first, e.g. if we
have edge lengths with a precision of centimeters and want
to have the precision of meters, we first divide each weight
by 100. If we want our weights to fit in a certain data type,
e.g. only allowing integers in the range 0, · · · , 255, then we
scale with maxe∈E�w(e)�/255. The resulting weight on an
edge e is then w(e). With �w(e)� we refer to the largest in-
teger smaller than w(e) and with �w(e)� to the smallest inte-
ger larger than w(e). We only allow a weight to be rounded
to the next smaller or next larger integer. If w(e) already is
integer, we do not allow any kind of rounding.

Deterministic Rounding
The classic deterministic rounding rule demands to round a
number down when w(e)− �w(e)� < 0.5 and up otherwise
(sometimes with special treatment for the = 0.5 case). The
maximum error per edge is hence bounded by 0.5. There-
fore, the maximum absolute error on a path p of length k is
0.5k and the maximum relative error if w′(p) > w(p) is

w′(p)/w(p) = (0.5k + 0.5k)/0.5k = 2.

If w′(p) < w(p), the relative error is unbounded, though, as
w′(p) might be zero if all e ∈ p have weights in]0, 0.5[.
If we assume that w(e) ≥ 1 for all e ∈ E, the ratio
w′(p)/w(p) is maximized for 2/1.5 = 4/3 and w(p)/w′(p)
for 1.49/1 ≈ 3/2. So we have an ad hoc maximum relative
error of max(4/3, 3/2) = 3/2 for any fixed path.

1.1 1.1 1.1 1.1 1.1

1.4 1.4

1.41.4

Figure 2: The upper blue path consists of 5 edges with a
weight of 1.1, so the total weight is 5.5. The lower red path
consists of 4 edges of weight 1.4, hence the total weight is
5.6 and therefore larger than the weight of the blue path.
If all edge weights are rounded down to one, though, the
red path gets a total weight of 4, while the blue path gets a
rounded weight of 5. Hence the structure of the optimal path
changes.

But in a graph, due to rounding, the structure of optimal
paths might change. Hence it could be that after rounding
some alternative path p becomes cheaper than the original
path π, see Figure 2. The following Lemma shows that our
maximum error bounds are still obeyed in this scenario.

Lemma 1 Let G(V,E,w) be a weighted graph with edge
weights w(e) ≥ 1 and G′(V,E,w′) the same graph with
deterministically rounded weights. For every s, t ∈ V , the
optimal s-t-path π in G and the optimal s-t-path p in G′
fulfill the following inequalities:

w(π)

w′(p)
≤ 4

3

w′(p)
w(π)

≤ 3

2

Proof. Assume for contradiction that w(π) > 4/3 · w′(p).
As π is an optimal path in G, we know that w(p) ≥ w(π).
Hence we get w(p) > 4/3 · w′(p) which contradicts our
maximum relative error bound for path p.

Assume further for contradiction that w′(p) > 3/2 ·w(π).
We know that w′(π) ≤ 3/2 · w(π), hence it follows
w′(p) > w′(π). But in this case, p can not be an optimal
path in G′, which contradicts our definition of p.

Observation 2 If we allow any kind of rounding to the next
smallest or largest integer (deterministic, arbitrary, random-
ized), the maximum relative error becomes 2 if all original
weights w are larger or equal to 1. The proof from Lemma
1 carries over to this scenario (as it is oblivious to the used
constants), hence the bound of 2 also applies for alternative
s-t-paths which become optimal after rounding.

Randomized Rounding
The idea of randomized rounding is to interpret

(w(e)− �w(e)�) ∈ [0, 1]

as probability for rounding up. So 1.2 is rounded to 2 with a
probability of 0.2 and to 1 with a probability of 0.8. Hence
the expected path cost E is the same as the original cost
w(p) of a path, as

E =
∑

e∈p
(�w(e)�+1·(w(e)−�w(e)�)) =

∑

e∈p
w(e) = w(p).

29

Unfortunately, this does not mean that the probability of
some path exhibiting a large relative rounding error is small
as the following example shows.

Consider a path p consisting of k edges, each with weight
0.4 and let Z be random variable denoting the cost of the
path after rounding. Clearly, E(Z) = w(p) = 0.4k. Z
follows the binomial distribution B(k, 0.4) with variance
V (Z) = 0.26k, which implies for example, that for k = 12,
the probability that after the rounding the path p has weight
0 is more than 0.002 and that it has weight 12 is more than
0.000016 – instead of the ideal weights 4 or 5. For larger
graphs it is hence quite likely that such a deviation from the
desired weights appears somewhere.

ILP-Formulation
Next, we are going to introduce a suitable ILP formulation
that leads to correctly rounded edge weights.

Let π(s, t) be an optimal s-t-path in G(E, V). The weight
of π is w(π) =

∑
e∈π w(e) and its rounded weight is

w′(π) =
∑

e∈π w
′(e). We now demand that for some fixed

X ≥ 1, for an optimal path π in G it yields:

1

X
≤ w(π)

w′(π)
≤ X (1)

As seen in Observation 2, if all original weights are ≥ 1,
then for X ≥ 2 every rounding rule produces a feasible so-
lution automatically.

Note, that for X ∈ [1, 2[or when edge costs smaller than
1 are allowed, it does not make sense to enforce constraint
(1) on paths with only a few edges. Especially considering
single edges, rounding to the next integer would be impos-
sible for small X . For example, consider X = 1.1 which
says that the rounded weight of a path should only be 10%
smaller or greater than the original weight. But then an edge
weight of e.g. 0.4 can not be rounded, as the target value
has to be in the range [0.36, 0.44] which does not include
any integer. In general, enforcing this constraint on paths
with small hop length often leads to infeasibility as there is
not enough flexibility left. Therefore, we add a parameter
k which describes the minimum hop length of a path which
we take into consideration.

Basic ILP
To set up the ILP, we introduce a decision variable xe for
every edge e ∈ E. Here, xe = 0 if w′(e) = �w(e)� and
1 otherwise. This allows to rewrite the above introduced
constraints as follows:

∀π ∈ G, |π| ≥ k :
∑

e∈π
�w(e)�+

∑

e∈π
xe ≤ w(π) ·X

∑

e∈π
�w(e)�+

∑

e∈π
xe ≥ w(π) · 1/X

∀e ∈ E : xe ∈ {0, 1}
But extracting and storing every optimal path in G is very
time and space consuming, and leads to O(n2) constraints
in the ILP. Therefore we use the following remedy: It suf-
fices to consider all optimal paths with a hop length between

1.9(1)

1.9(1)

1.9(1)

1.9(1)

1.1(1)

A

B

1.1(1)

1.1(1)

1.1(1)

1.1(1)1.1(1)

p π

Figure 3: We consider the rounding problem with k = 6
and X = 1.5. The optimal path π from A to B is the green
path. Obviously w(π)/w′(π) = 6.6/6 < 1.5. The red path
p has a total weight of w(p) = 7.6 > w(π). After rounding
p becomes optimal as w′(p) = 4 < w′(π) = 6. But now
w(p)/w′(p) = 7.6/4 > 1.5, which is legit as p has a hop
length smaller than k = 6. This leads to w(π)/w′(p) =
6.6/4 > 1.5 also not obeying the maximum relative error
bound.

k and 2k − 1. All other paths are concatenations of such
paths. And if for every subpath of length at least k the mul-
tiplicative error is at most X this also yields for the total
path. For grids and typical road networks, this reduces the
number of constraints to O(nk2).

Preserving Optimal Path Structures
But the above ILP-formulation alone does not solve our
rounding problem completely, as now a path p that was not
optimal before rounding might become optimal after round-
ing. In general, a path p can only become optimal after
rounding if

∑

e∈p
�w(e)� <

∑

e∈π
�w(e)�. (2)

One way to make sure that the structure of all optimal paths
stays unaffected by rounding, is to enumerate all such paths
p and add the constraint

∑

e∈p
(�w(e)�+ xe) ≥

∑

e∈π
(�w(e)�+ xe)

for each such p to the ILP. But note, that there might be ex-
ponentially many such constraints to add for each optimal
path; and not only for optimal paths up to length 2k − 1 but
also for longer ones. This makes setting up the ILP impracti-
cal already for small networks. Therefore, we will relax the
constraint of unaffected optimal path structures, but instead
demand that the weight of the optimal path p after rounding
should obey the relative error of X compared to the weight
of the optimal path π before rounding, i.e. w′(p) ≤ w(π)·X
and w′(p) ≥ w(π)/X .

While w′(p) > w(π) · X cannot happen (as otherwise
π would still be optimal instead of p), w′(p) < w(π)/X
might occur. To avoid this, we add the constraint w′(p) ≥
w(π)/X to the ILP for every path up to length 2k − 1 if∑

e∈p�w(e)� ≤ w(π)/X . These might still be exponen-
tially many paths, but only a small fraction of all paths in
the network. Note that it does not suffice to only add the
constraints for paths in the range of k, · · · , 2k − 1 as other-
wise the X bound might still be violated, see Figure 3 for an
example.

30

1.3 1.3 1.4 X1 X2 X3 max %

1 1 1 1.3 1.35 1.3 1.35 29.4
1 1 2 1.3 1.1 1 1.3 19.6
1 2 1 1.16 1.1 1 1.16 12.6
2 1 1 1.16 1.35 1 1.35 12.6

∗ ≥1.25 ≥1.25 25.8

Table 1: The first three columns show the rounding re-
sult. The ∗ summarizes all results with at least two values
rounded to 2. Xi indicates the relative error for path Pi. The
last column gives the probability of the rounding being result
of randomized rounding.

Example
We provide a small example to show that the ILP solution
can be significantly better than the baseline solutions. Con-
sider a path of three edges with weights 1.3, 1.3 and 1.4 and
k = 2. So we have three subpaths to consider: P1 of weight
1.3 + 1.3 = 2.6, P2 of weight 1.3 + 1.4 = 2.7 and P3
the complete path of weight 4. Table 1 sketches all possible
rounding results. The first row corresponds to determinis-
tic rounding, which creates a relative rounding error of 1.35.
The best solution would be rounding to 1, 2, 1 with a rela-
tive error of only 1.16. This would be the outcome of our
ILP, e.g. with X = 1.2. The probability that this solution is
derived from randomized rounding is less than 13%.

Heuristic Edge Weight Rounding
The ILP formulations are not suitable to solve large in-
stances, though, as even with the introduced modifications
the number of constraints is huge. Therefore, we now
describe a heuristic approach that allows to achieve small
rounding errors in practice while requiring significantly less
processing time.

Algorithm
The basic idea of our approach is to also consider the paths
of length k, · · · , 2k− 1 like in the ILP. But instead of estab-
lishing constraints and using the ILP solving machinery, we
apply much simpler greedy strategy.

We assume we are given a set of paths P and the orig-
inal weight w for each edge. The goal is to compute the
rounded weight w′ for each edge. Initially, we set w′ = w
for all edges. We then build an index data structure, which
returns for some edge e ∈ E the set P ′(e) ⊆ P of paths
that contain e. Afterwards, we sort the edges in E de-
creasingly by the number of paths they appear in. Then,
we parse through the list of edges and overwrite the weight
of the actual edge e with its rounded weight w′ (such that
w′(e) ∈ {�w(e)�, �w(e)�}) as follows: For each path
p ∈ P ′(e), we compute its original weight w(p) and and
its (partially) rounded weight w′(p). We calculate w1(p) =
w′(p) − w(e) + �w(e)� and w2 = w′(p) − w(e) + �w(e)�
to simulate what happens if we round w(e) down or up. We
then compute the relative error of w1 and w2 compared to
w(p). We keep track of the largest occurring maximum rel-
ative errors Xup, Xdown over all paths in P ′ when round-

A 0.4

B 2.6

C 0.1
D 1.8

Figure 4: Example instance. The greedy algorithm considers
the edges in order C, A, B, D setting the rounded costs to 0,
1, 3, 2.

ing up or down. In the end, we set w′(e) = �w(e)� if
Xup > Xdown and w′(e) = �w(e)� otherwise.

Example
As an example, we consider the graph shown in Figure 4.
Using k = 2, the set of paths consists of AB with cost 3,
AC with cost 0.5, ACD with cost 2.3, BC with cost 2.7,
BCD with cost 4.5 and CD with cost 1.9. We observe that
C appears in 5 of these 6 paths, all other edges in 3 paths,
respectively. With arbitrary broken ties, lets assume the al-
gorithm considers the edges in order C, A, B, D. Setting the
cost of C to 1, the highest relative error would arise from
path AB with Xup = 1.4/0.5 = 2.8. For C=0, the high-
est relative error would also arise from AB, but the ratio
Xdown = 0.5/0.4 = 1.25 is smaller than Xup. Hence we
round C down to 0. Then we proceed with edge A. As C was
rounded to 0, we observe that rounding A down to 0 as well
would lead to Xdown =∞. Hence A is rounded up to 1 for
sure. Next, we consider edge B. Xdown = 2.7/2 = 1.35
is defined by BC, Xup = 4/3 = 1.3 by AB. Hence, B is
rounded up to 3. Last, we consider D. Xdown = 1.9/1 = 1.9
arises from CD and Xup = 3/2.3 < 1.4 from ACD. So fi-
nally D is rounded up to 2 and all edges have integer weights.

A Posteriori Error Guarantee
If P is the set of all paths of length k to 2k − 1 in G, and X
is the maximum observed rounding error that resulted from
any edge weight rounding in the course of the greedy algo-
rithm, we can certify that for all optimal paths in G′ longer
than k the maximum relative error will never exceed X (if
the respective optimal path in G has a length of at least k as
well).

In the experiments, we will also test our approach on P
containing only the shortest paths of length k to 2k−1. And
to tackle graphs with millions of nodes and edges even only
a subset of those. While this does not provide us with an
a posteriori approximation guarantee, we will show that the
outcome is still superior to rounded edge weights produced
by deterministic or randomized rounding.

Experiments
We implemented our proposed heuristic as well as the base-
line approaches in C++. Experiments were conducted on
a single core of an Intel i5-4300U CPU with 1.90GHz and
12GB RAM.

31

nodes # edges min w max w

SA 78,413 151,009 0.070606 591.98
SL 279,268 553,662 0.022239 1436.77
TU 669,875 1,375,845 0.014850 1723.52
ST 1,012,381 2,059,668 0.011119 1042.33
SWG 2,362,948 4,833,341 0.007428 1809.92
SG 6,546,614 13,367,955 0.007217 2747.86
GER 21,721,465 44,108,723 0.006560 4799.16

Table 2: Benchmark road networks of various size (SA –
Saarbrücken, SL – Saarland, TU – Tübingen, ST – Stuttgart,
SWG – South-West-Germany, SG – Southern Germany,
GER – Germany). The min/max weights are given in me-
ters.

n × n # edges min w max w

10a 10 × 10 180 0 5
10b 10 × 10 180 1 100
100a 100 × 100 19,800 0 5
100b 100 × 100 19,800 1 100
1000a 1000 × 1000 1,998,000 0 5
1000b 1000 × 1000 1,998,000 1 100

Table 3: Grid graph benchmarks of various size and with
two kinds of weight ranges.

Data Sets
We use real and synthetic data in our evaluation. We ex-
tracted several real-world road networks from OSM1 along
with high precision node coordinates from which we inter-
fere the Euclidean lengths of the edges. Table 2 provides
an overview of this data set. We observe that edge weights
in the range of a few centimeters (or less) as well as several
kilometers occur. Note that computing the edge weights, e.g.
using the haversine formula for getting the great-circle dis-
tance between two points, involves square root calculations
and the usage of trigonometric functions. Therefore, the re-
sulting weights might have no finite representation. We will
use our developed rounding approaches to make all weights
integer. Furthermore, we will look for the smallest data type
to store the weights, such that reasonable route planning is
still possible. In addition, we generated grid graphs of var-
ious size. Edge weights are chosen uniformly at random
from some prespecified interval. We differentiate between
instances where rounded costs of 0 can occur (and hence the
maximum relative error can be unbounded) and instances
with all weights≥ 1 for which the maximum error bound of
2 applies according to Observation 2. Table 3 lists our grid
benchmarks.

Baseline Evaluation
We will first investigate the quality of the classic determin-
istic and randomized rounding schemes. For each of our
benchmark graphs, we compute the maximum absolute and
relative error for 1,000 example shortest path queries. More-
over, we count the number of paths for which the structure
of the optimal path changes after rounding. Table 4 summa-

1www.openstreetmap.org

deterministic randomized
A X % A X %

SA 23.71 1.006 7.8 26.54 1.010 18.8
SL 27.74 1.003 14.5 40.34 1.003 23.0
TU 35.36 1.003 29.3 60.80 1.002 45.1
ST 58.08 1.001 40.2 77.96 1.003 52.9
SWG 65.51 1.001 42.9 71.99 1.002 54.8
SG 81.25 1.001 55.2 102.75 1.001 63.6
GER 85.61 1.001 70.4 126.43 1.001 81.6
10a 2.86 ∞ 28.3 6.43 62.978 45.3
10b 2.89 1.081 4.8 4.96 1.109 1.2
100a 13.14 1.222 90.3 18.41 1.293 94.6
100b 8.97 1.008 16.8 11.15 1.008 15.2
1000a 118.17 1.086 99.8 117.20 1.225 99.9
1000b 24.33 1.002 74.8 38.12 1.003 80.4

Table 4: Maximum errors observed in 1,000 random queries.
’A’ denotes the maximum absolute error, ’X’ the maximum
relative error and % the percentage of queries where the
structure of the optimal path changed after rounding.

rizes the results for all our benchmark graphs when rounding
the given weights to integers. The results give the impres-
sion that these rounding approaches work well, especially
for larger graphs. But in reality, just the percentage of the
paths with a large relative error is smaller in large graphs.
Hence a random sample of 1,000 queries is unlikely to de-
tect them.

Because of that, we also compute the maximum relative
error over all paths of length k, · · · , 2k − 1 in the network
for several k. This provides us with the real maximum error.
The results are shown in Table 5. Only for the small road
networks (SA and SL), we get a bound at all. In the larger
road networks, both deterministic and randomized rounding
lead to paths of length at least k having a rounded weight of
0. Hence the maximum relative error is ∞. For the grids,
due to the edge weights being chosen randomly, this only
happened for the 10a instance and the deterministic algo-
rithm. But we observe that the weight range has an enor-
mous impact on the result quality. For 10a, the randomized
strategy produces a maximum relative error of over 62, while
for all grids of type b we know, that it can be no more than 2.
Also the absolute error and the number of affected paths are
much smaller for the grids of type b with all edge weights
≥ 1.

ILP Solutions
Ideally we would like to compare with an optimum solu-
tion. Unfortunately, solving our ILP formulation turns out
to be too expensive even on the SA dataset. So addition-
ally we extracted a small part (n = 1000 nodes, m = 1982
edges) of the SA dataset evaluating deterministic and greedy
rounding in comparison to ILP generated upper and lower
bounds. The lower bound was determined by the largest X
value where we could certify infeasibility of the ILP; the up-
per bound likewise was determined by the smallest X where
our ILP could still be shown to be feasible within a reason-
able time frame. See Table 6 for the results. For k = 6
solving the ILP for values of X close to the optimal X value

32

k 3 4 6 8 12
SA d 1.390 1.362 1.332 1.249 *1.118

r 1.502 1.430 1.336 1.264 *1.135
SL d 1.390 1.362 1.332 1.270 *1.243

r 1.685 1.531 1.304 1.232 *1.174
others d ∞ ∞ ∞ ∞ ∞

r ∞ ∞ ∞ ∞ ∞
10a d 2.169 1.727 1.571 *1.317 *1.190

r ∞ 2.978 2.104 *1.536 *1.599
10b d 1.036 1.022 1.020 *1.016 *1.012

r 1.127 1.052 1.037 *1.039 *1.031
100a d ∞ ∞ ∞ *2.799 *1.801

r ∞ ∞ ∞ *3.205 *1.887
100b d 1.144 1.109 *1.048 *1.030 *1.020

r 1.208 1.136 *1.078 *1.052 *1.024
1000a d ∞ ∞ ∞ ∞ **2.103

r ∞ ∞ ∞ ∞ **2.401
1000b d *1.286 *1.151 **1.064 **1.033 **1.023

r *1.451 *1.248 **1.082 **1.052 **1.034

Table 5: Maximum relative error for paths with a hop dis-
tance longer than k for r(andomized) and d(eterministic)
rounding. Entries with a * are only based on all shortest (in-
stead of all) paths in the network of hop length k, · · · , 2k−1,
as enumerating all paths was infeasible. Entries with ** are
only based on a subset of these shortest paths.

k 3 4 6
small determistic 1.212 1.145 1.104

greedy 1.099 1.073 1.060
ILP upper bound 1.064 1.055 1.088
ILP lower bound 1.058 1.040 (1.000)

Table 6: Comparison of rounding schemes with ILP lower
(and upper) bounds. For k = 6, a meaningful lower bound
using the ILP formulation could not be computed within rea-
sonable time.

took too much time. For k = 3 and k = 4, though, our ILP
lower bound shows that the greedy rounding approach gets
reasonably close to the optimum whereas the deterministic
rounding scheme fares considerably worse (this is probably
also true for larger k). The more advanced ILP formulation
for preserving the structure of optimal paths unfortunately
is still too inefficient to be solved on anything larger than
miniscule toy graphs.

Heuristic Solutions
Next, we evaluate the performance of our greedy heuristic
for several choices of k.

We use three variants, depending on the graph size and k.
If possible, we extract all paths of length k, · · · , 2k − 1 in
the network and use them as basis for our heuristic. Unfor-
tunately, this is not always possible. For example, for the
TU graph and k = 8 this would be more than 159 million
paths each of length at least 8, for GER with k = 3 there
are more than 256 million paths already, which making cal-
culations on exceeds the capability of our used hardware.
If we consider only shortest paths, the number of paths for
TU and k = 8 reduces to about 25 million. Hence we can
tackle larger instances when restricting ourselves to shortest

paths. But note, that the a posteriori approximation guar-
antee then only holds for paths for which the optimal path
structure does not change after rounding. And even extract-
ing all shortest paths of a certain length is not always pos-
sible. In that case, we permuted the vertices of the graph
randomly, and then extracted the shortest paths starting at a
vertex (in the permuted order) until some upper bound on
the number of paths was reached. We used a bound of 100
million in our experiments. For edges not contained in any
extracted path, we use deterministic rounding as a fall back.
Then, no a posteriori guarantee can be given, but our eval-
uations show that our heuristic outperforms the baseline ap-
proaches even with this restricted input.

Road Networks The results for our road network bench-
marks are shown in Table 7. Naturally, the larger k, the bet-
ter the error bound B gets. Comparing the bound results to
those of our baselines in Table 5, we observe that the greedy
heuristic produces significantly smaller maximum relative
errors for SA and SL. For example, for SA and k = 8, the
deterministic approach has a maximum error of 1.249 and
the error produced by the heuristic is only 1.131. For all
benchmarks larger than SL, neither of the baselines lead to
a finite error bound. But with the heuristic, we always get a
finite error bound. For small k, this bound tends to be large.
This is due to short paths with very small edge weights only.
If all such weights would be rounded to 0, the error bound
would be ∞. Our heuristic is explicitly designed to not let
this happen; at least the last edge considered on such a path
will be rounded to 1 as this minimizes the maximum error.
But the relative error in such a case might still be huge, e.g.
over 12 for SG and k = 3. For larger k, the bound decreases
quickly and we always end up with a maximum relative error
bound smaller than 2.

Also considering the 1,000 sample queries, the heuristic
leads to smaller absolute and relative errors than the base-
lines (compare Table 7 and Table 4) for k large enough.
For SA and k = 6, the maximum observed absolute er-
ror is less than half the one observed after deterministically
weight rounding and the percentage of affected paths is re-
duced from 7.8% to 2%. For larger graphs, the percentage
of affected graph also becomes quite large when using our
greedy heuristic. In up to about 70% of the queries, the
structure of the optimal paths changed. But on the one hand,
the observed weight errors are nevertheless very small and
on the other hand often only small sections of the optimal
paths changed after rounding. Computing the percentage of
edges that were in an optimal path before rounding, but are
no longer after rounding, we end up with only about 5% also
for the larger graphs.

Grid Graphs For the grid benchmarks, the results of the
evaluation of the greedy heuristic are shown in Table 8. In
general, we observe the same trend as for road networks:
The heuristic leads to smaller bounds as well as absolute
and relative errors in a set of sample queries. One notable
exception is the 10a instance. Here, the maximum relative
error observed in the example queries is∞ for the heuristic.
Note that queries in this sample are not restricted to have
optimal paths of hop length at least k. And in a 10 × 10

33

k 3 4 6 8 12
SA B 1.258 1.2021 1.147 1.131 *1.073

A 14.18 10.09 10.44 16.61 *7.42
X 1.003 1.002 1.002 1.004 *1.001
% 9.4 8.0 2.0 8.8 *3.2

SL B 1.258 1.202 1.166 1.156 *1.073
A 18.76 17.14 13.22 11.86 *11.62
X 1.001 1.001 1.001 1.001 *1.001
% 8.6 8.2 6.1 8.8 *7.6

TU B 2.595 2.103 1.760 *1.407 **1.071
A 20.86 21.40 18.08 *19.03 **18.4
X 1.001 1.001 1.000 *1.001 **1.000
% 32.8 29.2 27.2 *27.2 **29.1

ST B 2.014 1.907 1.496 *1.322 **1.175
A 30.02 21.84 18.32 *14.06 **14.72
X 1.002 1.001 1.001 *1.000 **1.000
% 34.0 37.6 35.2 *29.6 **31.4

SWG B 2.595 2.103 *1.602 **1.084 **1.094
A 43.06 27.73 *30.18 **24.28 **29.92
X 1.000 1.001 *1.001 **1.000 **1.000
% 41.6 26.8 *24.4 **39.0 **33.1

SG B 12.463 *1.906 **1.215 **1.167 **1.088
A 51.51 *25.07 **42.14 **34.92 **38.74
X 1.001 *1.000 **1.000 **1.001 **1.000
% 52.4 55.3 **54.0 ** 38.7 **52.7

GER B **55.362 **1.580 **1.504 **1.182 **1.118
A **61.42 **62.39 **65.22 **65.99 **48.79
X **1.000 **1.000 **1.000 **1.001 **1.000
% **73.1 **70.2 **66.7 **68.0 **71.4

Table 7: Experimental results for the road networks using our greedy heuristic on a set of paths P . Entries without a * are
obtained from P containing all paths, entries with a * are obtained from P containing only shortest paths (as all paths could
not be stored anymore), and entries with ** of a subset of these shortest paths to make the heuristic feasible. B denotes the
maximum relative error for P . A, X and % indicate the maximum absolute and relative error as well as the percentage of
affected optimal path structures for 1,000 random queries.

k 3 4 6 8 12
10a B 1.457 1.720 1.257 *1.145 *1.103

A 2.48 2.26 2.76 *1.93 *1.42
X 2.053 ∞ ∞ ∞ ∞
% 40.3 38.8 40.8 23.6 35.2

10b B 1.023 1.022 1.017 *1.009 *1.005
A 2.32 3.08 2.92 *2.03 *1.77
X 1.049 1.026 1.044 *1.171 *1.086
% 0.8 0.4 0.4 *0.4 *0.4

100a B 8.895 2.372 *1.621 *1.372 *1.237
A 9.05 10.28 *4.65 *3.34 *2.69
X 1.087 1.130 *1.121 *1.110 *1.070
% 95.6 94.0 *91.6 *91.6 *87.2

100b B 1.071 1.056 *1.034 *1.023 *1.011
A 10.88 7.44 *4.17 *3.59 *3.51
X 1.005 1.011 *1.003 *1.003 *1.008
% 20.4 19.6 *9.2 *18.0 *19.2

1000a B *29.821 *15.015 **1.809 **1.535 **1.226
A *56.39 *40.46 **24.16 **28.66 **29.36
X *1.045 *1.041 **1.025 **1.023 **1.043
% 100.0 100.0 **100.0 **100.0 **100.0

1000b B *1.146 *1.078 **1.038 **1.016 **1.008
A *18.12 *13.98 **13.21 **13.21 **11.62
X *1.002 *1.001 **1.001 **1.002 **1.001
% *63.6 *66.1 **63.0 **68.1 **71.5

Table 8: Experimental results for the grid graph benchmarks using the greedy heuristic.

34

1.2

1.8
1.5

1

2
?

1

2
2

3

A

B

C

Figure 5: The goal is to round the weights in the leftmost
image, such that the relative error on the paths A↔ B,B ↔
C and C ↔ A is minimized. The smallest ratio would be
achieved if all rounded path weights would equal 3. But the
image in the middle illustrates that this is impossible, as at
least one of the paths has a weight of 2 or 4 after rounding.
However, if we allow to insert an additional edge {B,C}
with a weight of 3, the optimum can be realized.

grid, performing 1,000 random queries leads automatically
to at least some of the optimal paths being short (sometimes
containing only a single edge). For these paths, the bound B
does not apply, of course. So while the absolute error is very
small, the relative error is unbounded. But for the larger
instances, the maximum relative error gets remarkably
small. Still, the grids of type ’a’ (with weights ≤ 1 being
allowed) are more difficult to handle than those of type
’b’. The relative error is an order of magnitude larger,
and almost all optimal path structures are affected by the
rounding. For 100b, for example, less than 10% of the paths
are affected when choosing k = 6.

We conclude that the greedy heuristic is suitable to get
smaller error bounds than the baselines, by taking the struc-
ture of paths explicitly into account.

Conclusions and Future Work
We have shown that paying attention to consistently round-
ing edge weights in networks is worthwhile. We can achieve
much smaller maximum relative errors compared to deter-
ministic or randomized rounding, and optimal path struc-
tures are better preserved. Not only does rounding edge
weights save memory, but having integer edge weights also
allows to use more efficient algorithms and data structures.
For example, sorting operations on the edges can now be
carried out with RadixSort, taking only linear time. Also
shortest paths could be computed with breadth first search
instead of Dijkstra, by subsampling all edges. This would
only blow up the graph by a factor of at most maxe∈E w′(e).

Natural extensions for future work are considering also
negative edge costs and other rounding rules beside round-
ing to the next smaller or larger integer (but instead have
some range Δ). The problem of accumulating rounding er-
rors could also be mitigated by allowing additional opera-
tions besides simple rounding. For example, inserting addi-
tional edges might be an operation that could help to reduce
the maximum rounding error further as indicated in Figure
5.

Also, new heuristics are needed to get an a posteriori max-
imum relative error guarantee also for larger graphs (and

larger k).

References
Asano, T.; Katoh, N.; Obokata, K.; and Tokuyama, T. 2002.
Matrix rounding under the l p-discrepancy measure and its
application to digital halftoning. In Proceedings of the
thirteenth annual ACM-SIAM symposium on Discrete algo-
rithms, 896–904. Society for Industrial and Applied Mathe-
matics.
Asano, T.; Matsui, T.; and Tokuyama, T. 2000. Optimal
roundings of sequences and matrices. Nordic J. of Comput-
ing 7(3):241–256.
Kayal, N., and Saha, C. 2011. On the sum of square roots of
polynomials and related problems. In Computational Com-
plexity (CCC), 2011 IEEE 26th Annual Conference on, 292–
299.
Raghavan, P., and Tompson, C. D. 1987. Randomized
rounding: A technique for provably good algorithms and al-
gorithmic proofs. Combinatorica 7(4):365–374.

35

