
Dynamic Potential Search – A New Bounded Suboptimal Search Algorithm

Daniel Gilon
ISE Department

Ben-Gurion University
Be’er-Sheva, Israel

(gilond@post.bgu.ac.il)

Ariel Felner
ISE Department

Ben-Gurion University
Be’er-Sheva, Israel
(felner@bgu.ac.il)

Roni Stern
ISE Department

Ben-Gurion University
Be’er-Sheva, Israel

(roni.stern@gmail.com)

Abstract

Potential Search (PS) is an algorithm that is designed to solve
bounded cost search problems. In this paper, we modify PS
to work within the framework of bounded suboptimal search
and introduce Dynamic Potential Search (DPS). DPS uses
the idea of PS but modifies the bound to be the product of
the minimal f -value in OPEN and the required suboptimal
bound. We study DPS and its attributes. We then experimen-
tally compare DPS to WA* and to EES on a variety of do-
mains and study parameters that affect the behavior of these
algorithms. In general we show that in domains with unit
edge costs (e.g., many standard benchmarks) DPS signifi-
cantly outperforms WA* and EES but there are exceptions.

1 Introduction
Best-first search algorithms maintain an OPEN list of nodes
throughout the search. At each expansion cycle the “best”
node from OPEN is chosen and expanded, i.e., removed
from OPEN and its children are generated and are inserted to
OPEN. Best-first search algorithms differ in their evaluation
function, which chooses which node in OPEN is considered
the “best”. The A* algorithm (Hart, Nilsson, and Raphael
1968) is a well-known best-first search algorithm. Its eval-
uation function is f(n) = g(n) + h(n), where h(n) is a
heuristic function estimating the cost from n to a goal node.
If h(n) is admissible (i.e., is always a lower bound) then A*
is guaranteed to find an optimal (lowest-cost) solution.

However, some problems require a large amount of com-
puting resources (i.e., both time and memory). In addition,
some applications (e.g., video games, embedded systems
or mobile apps) significantly restrict the amount of time
(sometimes below 1ms (Bulitko et al. 2011)) or restrict the
memory that is allowed for the problem solving. In such
cases, one must settle for a suboptimal solution by trading
time/memory for solution quality. Moreover, sometimes an
optimal solution is not necessary and the aim is to minimize
some other objective. Two such non-optimal search settings
are the following:
(1) Bounded suboptimal search (denoted here as BSS). In
BSS(B) we are given a bound B and the task is to find a
solution with cost ≤ B × Popt where Popt is the cost of the
optimal solution.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(2) Bounded cost search (Stern et al. 2014) (denoted here
as BCS). In BCS(C) we are given a cost C and the task is to
find a solution with cost ≤ C.

Potential Search (PS) (Stern et al. 2014) is an algorithm
specifically designed for BCS. PS is a best-first search algo-
rithm that chooses to expand the node n from OPEN with
the largest u(n) = C−g(n)

h(n) . u(n) is also known as the “po-
tential” of n and under certain conditions, the node with the
largest u(n) is the node that is most likely to be part of a
solution with cost ≤ C.

In this paper we show a general way to migrate algo-
rithms from BCS to BSS and vice versa, given some con-
ditions. Based on that we modify PS to the BSS setting and
introduce a new algorithm called dynamic potential search
(DPS). In PS the cost bound C remains constant throughout
the search. In DPS we dynamically modify C and always set
C = fmin×B. Then, we expand the node in OPEN with the
largest potential with respect to the current C. We prove that
DPS is a special case of focal search and is thus guaranteed
to find a solution within the desired suboptimality bound.

A weakness of DPS is that the priority of a node in OPEN
depends on fmin, which increases throughout the search.
Thus, OPEN is reordered every time this happens. We intro-
duce a bucket-based data structure that remedies this. Each
node is associated with a bucket based on its (g, h) pair.
Then, we only need to reorder these buckets.

Finally, we experimentally compare DPS to other known
algorithms that are designed for BSS, namely to WA∗ (Pohl
1970) and to EES (Thayer and Ruml 2011). We study some
parameters that influence the behavior of these algorithms.
In general, in domains with non-uniform edge costs, it is
beneficial to use EES as it commonly outperforms both WA∗
and DPS (but not always). However, in domains with unit
edge costs such as many of the traditional testbeds in the
field of heuristic search (e.g., combinatorial puzzles, grid
based path finding etc.) DPS significantly outperforms EES
and WA∗ by a factor of up to 180 in the number of nodes
expanded and in the CPU time. Exceptions exist here, too.

2 Background and Previous Work

Suboptimal search algorithms can be divided into a number
of classes based on the different guarantees they provide on
the quality of the solution they return. Next, we discuss these

Proceedings of the Ninth International
Symposium on Combinatorial Search (SoCS 2016)

36

classes and related existing algorithms.

2.1 Any Solution

Perhaps the simplest class of suboptimal algorithms has no
constraint on the solution quality: any solution is accept-
able. Greedy-best-first search (GBFS, AKA pure heuristic
search) is perhaps the most famous algorithm for this pur-
pose. At each expansion cycle, the node with the minimal
h in OPEN is expanded. A more recent example is Speedy
search (Wilt and Ruml 2014), which is similar to GBFS but
uses d instead of h, where d is the estimated number of edges
(without considering the weights of the edges) to the closest
goal. The rationale behind Speedy search is that there is no
constraint on the cost of the returned solution, so it can focus
on finding a solution with minimal search effort regardless
of its cost. Thus, Speedy search only considers the number
of edges until the goal is found and ignores their weights. Of
course, in unit-cost domains (where all edges weigh 1) d and
h are identical, and thus Speedy and GBFS are equivalent.

Sometimes finding any solution is not enough as there are
restrictions on the quality of the solution that is acceptable.
We next describe two important classes that are the main
focus of this paper.

2.2 Bounded Suboptimal Search

In bounded suboptimal search (denoted by BSS) we have a
constraint on the relation between the cost of the returned
solution and the optimal solution cost (Popt). Formally: let
B ≥ 1 be a given constant bound. In BSS(B) the task is to
find a solution with cost ≤ B × Popt. We say that a solution
is B-admissible if it satisfies this requirement1 and an algo-
rithm is called a BSS algorithm if it is guaranteed to return a
B-admissible solution.

2.2.1 Focal Search A large number of BSS algorithms
have been proposed over the years (see a nice survey by
Thayer and Ruml, 2011). Virtually all of these algorithms
can be viewed as implementations of a general search frame-
work that is sometimes called Focal Search (Pearl and Kim
1982; Ebendt and Drechsler 2009; Valenzano et al. 2013).2

Focal Search is a special case of best-first search that
maintains two sets of nodes. Similar to any best-first search,
it maintains OPEN which includes all nodes that were gener-
ated but not expanded. In addition, Focal Search maintains a
list of nodes FOCAL ⊆ OPEN.

Definition 1 (Focal) Let fmin be the minimal f -value in
OPEN. FOCAL = {n ∈ OPEN|f(n) ≤ B × fmin}

As a special case of best-first search, a Focal Search al-
gorithm chooses in every step a single node from OPEN and
expands it, but it is constrained to only choose to expand a

1Sometimes B is written as B = 1 + ε (Ebendt and Drechsler
2009; Pearl and Kim 1982) and the related term is ε-admissible.
Similarly, some authors use the term W instead of B. We choose to
use B to differentiate between the desired bound B and the weight
W used by the search algorithms like WA*.

2Focal Search was first called A∗
ε (Pearl and Kim 1982). How-

ever, nowadays A∗
ε is associated with a special case of Focal Search

in which nodes in FOCAL are chosen according to their h value.

Algorithm 1: Focal Search: main procedure
1 focal-search(start state S)
2 OPEN ← {S};
3 FOCAL ← {S};
4 while FOCAL �= ∅ do
5 best ← ChooseNode(FOCAL)
6 Remove best from FOCAL and OPEN
7 if best is a goal then return best;
8 if fmin increased then FixFocal() ;
9 for n ∈ neighbors(best) do

10 Add n to OPEN
11 if f(n) ≤ B × fmin then add n to FOCAL ;
12 end

13 end

14 end

node that is also in FOCAL. As the search progresses, fmin

may increase. When this occurs, the range B × fmin also
grows and more nodes from OPEN are added to FOCAL.
This allows a broader range of nodes to be considered for
expansion in subsequent expansion cycles. Once a goal node
is chosen for expansion, the search halts. When h is consis-
tent and duplicate detection is performed any Focal Search
is a BSS algorithm. This is because fmin is a lower bound
on Popt and when a goal node t is expanded it must be in
FOCAL, and thus f(t) = g(t) ≤ B× fmin ≤ B×Popt. Al-
gorithm 1 presents the main structure of Focal Search. Dif-
ferent Focal Search algorithms differ in which node from
FOCAL they choose to expand (line 5).

Perhaps the simplest form of Focal Search is to choose the
node in FOCAL with the smallest h-value. This algorithm
is usually referred to as A∗

ε (Ebendt and Drechsler 2009)
although the original A∗

ε (Pearl and Kim 1982) is actually
more general, allowing other rules to choose from FOCAL.

In its basic form, Focal Search must keep FOCAL as a sep-
arate list. In this case, any time fmin increases, the relevant
nodes from OPEN are identified and are added to FOCAL.
This is done by FixFocal (line 8 in Algorithm 1) which
incurs some computation overhead. However, in some cases
it is possible to implement Focal Search without maintaining
a separate list of nodes for FOCAL. In these cases the deci-
sion rule for which node to expand from OPEN guarantees
that the node n chosen for expansion is in FOCAL, i.e., that
f(n) ≤ B × fmin. A prominent example of a BSS algo-
rithm that does not explicitly maintain FOCAL is Weighted
A∗ (Pohl 1970; 1973) discussed next.

2.2.2 Weighted A* (WA*) is perhaps the most famous and
simple BSS algorithm. WA∗ is a best-first search algorithm
that prioritizes nodes in OPEN according to fW (n) = g(n)+
W · h(n), where g(n) is the cost of the lowest known path
from the start state to n, h(n) is an admissible heuristic of
reaching the goal from n and W ≥ 1. When W = 1, WA∗ is
identical to A*. When W →∞, WA∗ converges to GBFS. It
was proven that the solution returned by WA∗ when setting
W = B is B-admissible (Pohl 1973).

WA∗ is a special case of Focal Search as was noted
by (Ebendt and Drechsler 2009). Let best be the node cho-

37

sen for expansion (i.e., fW (best) is minimal) and let x be a
node whose f(x) = fmin. It is easy to see that f(best) ≤
fW (best) = g(best) +W · h(best) ≤ g(x) +W · h(x) ≤
W · f(x) = W · fmin. Therefore, using fW does not require
to actually maintain FOCAL in a separate list as all nodes
expanded by WA∗ must be in FOCAL.

2.2.3 Explicit Estimation Search Explicit estimation
search (Thayer and Ruml 2011) is a recently introduced BSS
algorithm. EES uses two heuristics: h (estimation of the cost
to the goal) and d (estimation of the number of edges to the
goal). However, since h and d must be admissible (under-
estimating) they might be inaccurate. Thus, EES uses two
other inadmissible estimates ĥ and d̂ which are supposed to
be more accurate than d and h since they are not restricted to
be admissible. While one may come up with any functions
for ĥ and d̂, Thayer and Ruml (2011) use ĥ and d̂ that are
learned from known mistakes of h and d during the search.
We use their method in the experiments below. EES has spe-
cific rules based on ĥ and d̂ as to which node from FOCAL
to expand next based on the following definitions:

bestf = argmin
n∈OPEN

f(n) (i.e., f(bestf) = fmin) (1)

bestf̂ = argmin
n∈OPEN

f̂(n) (2)

bestd̂ = argmin
n∈OPEN∧f̂(n)≤w·f̂(bestf̂)

d̂(n) (3)

where f̂(n) = g(n) + ĥ(n) and w = B.
At every expansion, EES chooses from among these three

nodes using the following rule:
1. if f̂(bestd̂) ≤ w · f(bestf) then choose bestd̂
2. else if f̂(bestf̂) ≤ w · f(bestf) then choose bestf̂
3. else choose bestf

We note that f̂(n) ≥ f(n) and thus the conditions in
items 1 and 2 guarantee that at all times the node chosen
from expansion n has f(n) ≤ f̂(n) ≤ w · f(bestf) =
B × fmin. Thus EES is also a BSS algorithm that is based
on Focal Search.

EES was shown to perform very well on many domains
for the BSS setting (Thayer and Ruml 2011). However, EES
has a few weaknesses. First, in order to identify the three
nodes defined above (bestf , bestf̂ and bestd̂) EES sorts all

generated nodes in three different OPEN lists, based on f , d̂
and ĥ.3 Therefore, the constant or logarithmic time per node
of maintaining these lists is three times more than a search
with only one OPEN list such as WA∗. Second, having strong
ĥ and d̂ functions is challenging. Thayer and Ruml (2011)
provide a number of methods to obtain these functions by
learning them during the progress of the search. But these
methods are not trivial. Third, due to the three OPEN lists
and the non-trivial heuristic functions used, EES is rather
complex to implement.

3EES does not maintain an explicit FOCAL as it chooses values
based on ĥ or d̂ but it only checks whether they are in FOCAL. This
can be done by just knowing B and fmin.

2.3 Bounded Cost Search

Bounded cost search (BCS) (Stern et al. 2014) is another
setting for search problems. In BCS we have no knowledge
of the cost of the optimal solution and are indifferent to it.
Instead, in BCS(C) we are given a cost C and the task is
to find a solution with cost ≤ C. Stern et al. (2014) give a
number of scenarios for BCS. For example, one might have
a limited budget and would like to find a solution within the
budget as fast as possible.

2.3.1 Potential Search (PS) (Stern, Puzis, and Felner
2011; Stern et al. 2014) is an algorithm specifically designed
for BCS. PS is a best-first search algorithm which chooses to
expand the node n from OPEN with the largest “potential”,
u(n), which is defined as u(n) = C−g(n)

h(n) .4 In addition, for
an admissible h, the algorithm prunes any node n for which
f(n) = g(n) + h(n) > C, as it will not lead to a solution
within the bound.

Intuitively, given a node n, C − g(n) is an upper bound
on any path in the search tree below node n that will still
be within the bound C. Dividing this by the estimated cost
to the goal, h(n), gives its potential, i.e., how likely there
is a goal node within the bound in the subtree rooted at n.
Stern et al. (2014) showed that under certain conditions PS
expands in every iteration the node that is most likely to be
part of a solution that is within the bound. PS will find a
desired solution if one exists. PS was shown to be very ef-
fective in finding BCS solutions.

2.3.2 Bounded Cost EES Thayer et al. (2012) developed
two variants of EES for BCS called BEES and BEEPS.
These algorithms have different ways of using the rules of
EES to choose which node from OPEN to expand next while
assuring that the solution returned is within the bound C.
BEES and BEEPS were shown to perform better than PS,
especially on non-unit edge cost domains.

3 Migration Between BSS and BCS

We say that a BCS algorithm is reasonable if it has the fol-
lowing two attributes: (1) it has a best-first structure (i.e.,
OPEN and an expansion rule). (2) any node n that is gener-
ated with f(n) > C is pruned and not added to OPEN as it
may never lead to a solution ≤ C.

We now show that BSS and BCS have relatively simi-
lar structure and thus any Focal Search algorithm (for BSS)
may be modified to work for BCS. Similarly, any reasonable
BCS algorithm may be modified to work for BSS as a Focal
Search.

We note that in both settings we aim to find a solution with
cost smaller than or equal to some quantity (B × Popt for
BSS and C for BCS). FOCAL is used in BSS(B) to ensure
that any node chosen from it has f -value below the bound.
Thus, a Focal Search algorithm may choose any node from
FOCAL. Similarly, we may define a similar list for reason-
able BCS(C) algorithms that includes all nodes n in OPEN
with f(n) ≤ C. We call this list of nodes FOCAL(C).

4For cases where h(n) = 0, u(n) is defined to be ∞, causing
such nodes to be expanded first.

38

Algorithm 2: Focal Search for BCS: main procedure
1 focal-search(start state S)
2 FOCAL ← {S};
3 while FOCAL �= ∅ do
4 best ← ChooseNode(FOCAL)
5 Remove best from FOCAL
6 if best is a goal then return best;
7 for n ∈ neighbors(best) do
8 if f(n) ≤ C then add n to FOCAL;
9 end

10 end

11 end

Given this definition of FOCAL(C), one can migrate any
reasonable BCS to a Focal Search BSS algorithm and vice
versa. The general framework of maintaining FOCAL is a
little different. In FOCAL for BSS, the upper threshold for
nodes from OPEN (B × fmin) is dynamically changing and
depends on the changes of fmin. By contrast the upper
threshold (C) for FOCAL(C) remains constant. Neverthe-
less, the same decision rule (ChooseNode, line 5 of Algo-
rithm 1) of which node to expand from the current FOCAL
can migrate between these frameworks.

A general reasonable BCS algorithm which is built this
way is shown in Algorithm 2. It has the same structure
as Algorithm 1 but the maintenance of FOCAL is differ-
ent as just defined. The core of these algorithms is the
ChooseNode(FOCAL) (line 4 of Algorithm 2) which can
migrate between the two frameworks.

The different algorithms are summarized in Table 1. In
fact, Thayer et al. (2012) transformed the concept of EES,
originally developed for BSS, to BCS exactly along these
lines (the up arrow in the table). In this paper, based on our
general understanding we are completing the picture and mi-
grating PS from BCS to BSS.5

4 Dynamic Potential Search
We now introduce our new algorithm, Dynamic Potential
Search (DPS). Based on our observation on the transfor-
mation of ChooseNode(), we transform PS from BCS
to BSS. PS can be implemented using Algorithm 2. DPS
is implemented using Algorithm 1 but uses the same
ChooseNode() rule as PS.

DPS uses a FOCAL list just as every Focal Search BSS
algorithm. That is, DPS maintains: FOCAL = {n ∈ OPEN |
f(n) ≤ B × fmin}. Similar to PS we now choose the
node n with the highest “potential”, but now the potential
relates to the likelihood of finding a node below n with cost
≤ B × fmin. In other words, given the current FOCAL, we
use the same ChooseNode() as PS but set C = B× fmin.
Formally, DPS chooses to expand a node n from FOCAL that
maximizes:

ud(n) =
B × fmin − g(n)

h(n)

5We note that while PS and EES can directly migrate from BCS
to BSS and vice versa, WA∗ does not directly migrate to BCS be-
cause WA∗ does not directly define FOCAL in its pseudo code.

FOCAL EES PS WA∗

BCS f ≤ C BEES PS N/A
⇑ ⇓

BSS f ≤ B × fmin EES DPS WA∗

Table 1: The different algorithms

4.1 Theoretical Analysis

We now prove that similar to WA∗, DPS does not need to
maintain an explicit FOCAL and maintaining OPEN suffices.
That is, when we choose a node with the maximal ud()̇ from
OPEN then this node is guaranteed to be inside FOCAL.

Let m be the node whose f(m) = g(m) + h(m) is min-
imal in OPEN, i.e., fmin = f(m). Let n be the node whose
ud(n) = (B×f(m))−g(n)

h(n) is maximal in OPEN. We want to
prove that:

f(n) = g(n) + h(n) ≤ B × (g(m) + h(m))

We write:6
ud(m) = (B×f(m))−g(m)

h(m) =
(B−1)×g(m)+Bh(m)

h(m) =
(B−1)×g(m)

h(m) +B > B ≥ 1

The leftmost fraction in the last line is nonnegative be-
cause all its internal terms are nonnegative.

Now, by definition ud(n) ≥ ud(m) ≥ 1.
So, ud(n) = B×fmin−g(n)

h(n) ≥ 1 this means that

B × (g(m) + h(m)) ≥ g(n) + h(n)

�

4.2 Challenge of Sorting OPEN

The priority function that is used to sort nodes inside an ordi-
nary OPEN list remains fixed throughout the search. This is
not the case for DPS because it sorts the entries according to
ud(n) which depends on fmin but fmin changes over time.
So, every time fmin changes, we need to reorder OPEN to re-
flect the new priority of nodes. This may cause a significant
overhead as every time this happens it may incur O(N) op-
erations where N is the number of nodes in OPEN. We note
that all three algorithms discussed in this paper are special
cases of Focal Search. However, DPS is unique in the sense
that unlike EES and WA∗, DPS has to reorder its OPEN ev-
ery time fmin is increased.

We overcame this problem of DPS through the following
mechanism (Burns et al. 2012). We note that each pair of
values (g, h) is associated with the same ud-value. There-
fore we implemented OPEN as a priority queue which main-
tains buckets of (g, h) pairs. Each bucket maintains a linked
list of nodes. Therefore, every time fmin changes, we only
need to reorder the relative position of the buckets while the
list of nodes inside each bucket remains untouched. For unit-
edge cost domains, let D be the diameter of the search space.

6If h(m) = 0 then ud(m) = ∞. Thus, ud(m) > 1 as we want
to prove now.

39

Domain depth h0 Inc Max-B Max-nodes Exp
15 puzzle 51 36 10 47 1,869,786 846,320
Dock robot 25 33 149 999 21,299 78,363
Vacuum 845 555 245 999 26,265 530,087
P40 GAP 39 36 0 0 0 885
P40 GAP-2 40 33 1 70 1,697,563 9,693

Table 2: The (g, h)-pair data structure effectiveness

The number of different (g, h) pairs is at most D2. Let T be
the number of times during the search that fmin is changed.
The overhead of keeping OPEN sorted at all times is there-
fore O(T × D2). If the number of states in the domain is
exponential in D then this is an exponential reduction.

Table 2 shows data from our experiments (details be-
low) that impact the performance of the bucket-based OPEN.
Each row corresponds to one of our benchmark domains and
all the numbers are for B = 1.1. The depth column gives the
depth in the search tree of the solution that was found. The
h0 column reports the h-value of the start state. The Inc col-
umn gives the number of times during the execution of DPS
that fmin has increased. As can be seen, there is a strong
correlation between these three measures. Vacuum is at the
extreme case, with 245 increases of fmin. The next columns,
Max-B and Max-nodes report the maximal numbers of buck-
ets that existed at any given point where fmin increased and
the maximal number of nodes at those times, respectively.
In most cases, the ratio between these two measures shows
a substantial reduction of up to 4 orders of magnitude. Rel-
ative to the number of expanded nodes, shown in the last
column, the overhead of sorting the buckets is negligible.

5 Experimental Domains

We evaluated experimentally the performance of DPS on
four search domains. We describe them next.

The 15 Puzzle The 15-puzzle is a well-known benchmark.
As a heuristic, we used the classical Manhattan Distance
(MD). To provide more comprehensive experimental eval-
uation, we also experimented on two non-unit edge costs
variants of this domain: the heavy 15-puzzle, in which mov-
ing tile #X costs X , and the inverse 15-puzzle, in which
moving tile #X costs 1/X . The MD heuristic can be easily
modified for these variants (Thayer and Ruml 2011).

The Pancake Puzzle The K-pancake puzzle is another
standard benchmark domain. The task is to sort a vector of
numbers V [K] where there are K − 1 operators, where op-
erator i reverses a prefix of size i + 1. As a heuristic, we
used the GAP heuristic (Helmert 2010) which adds 1 for ev-
ery two adjacent numbers that are not consecutive (hence a
gap). We created a heavy variant of this puzzle where the
cost of the operator that flips a prefix (V [1] . . . V [i + 1]) is
the maximum among the two elements on the extreme sides
of the prefix, i.e., max(V [1], V [i + 1]).7 As an admissible

7The motivation is that to flip i pancakes you need a spatula that
is big enough to hold the larger side of the flipped set of pancakes,
or else it will topple. Operating a bigger spatula is more costly.

heuristic, we generalized the GAP heuristic to what we re-
fer to as HGAP. For each gap between elements x and y, in
HGAP we add min(x, y) to the heuristic instead of just 1 as
in ordinary GAP.

The Vacuum Cleaner Domain This domain was intro-
duced by Thayer and Ruml (2011) and is inspired by the first
state-space presented in Russell and Norvig’s (1995) text-
book. A vacuum cleaner is working in a grid (200 × 200)
with obstacles (35% of the cells) and there are a number of
dirt spots. The cleaner should find a a tour that cleans all
dirty spots. When carrying dirt, the cleaner becomes heavier
and therefore every dirty spot that was cleaned adds 1 to the
cost of moving the cleaner. This domain resembles the trav-
eling salesman problem (TSP) and we used a heuristic that
is based on the minimum spanning tree heuristic. We also
used a variant of this domain where the cost of moving does
not change after adding dirt, in which case the problem is
basically TSP.

The Dock Robot Domain This domain was also intro-
duced by Thayer and Ruml (2011) and is inspired by Ghal-
lab et al. (2004) and by the depots domain from the IPC.
A robot is tasked to move containers from one location to
another. Similar to the blocksworld domain, containers are
stacked on different piles and only the topmost container on
a pile may be accessed at any time. Stacking and unstacking
a container Z is done by a crane and costs 0.05 times the
height of the related pile that has Z. To move a container be-
tween piles, the robot needs to also load it, which costs 0.1,
drive to the desired pile, which costs the distance between
the piles, and finally the robot unloads the container, again
incurring a cost of 0.05. See Thayer and Ruml (2011) for the
details of how h and d were computed.

6 Experimental Results

WA∗, DPS and EES are all best-first searches that use OPEN
lists. Since our domains are exponential, some of the prob-
lem instances could not be solved under our memory limita-
tions. Therefore, we limited the number of nodes that could
be generated before the problem is solved to 5 million. If the
problem was not solved under this limit, it was marked as
failed. The percentage of problems solved before reaching
this limit is referred to as the “success rate”.

Figure 1 shows the success rate over 100 random in-
stances (y-axis) for representative domains which include:
The regular, heavy and inverse variants of the 15-puzzle, the
regular 101-pancake puzzle, the heavy 16-pancake puzzle,
and the dock robot domain. The x-axis gives the desired sub-
optimality bound (B). These results indicate the following
trends: (1) DPS outperformed EES in the four leftmost do-
mains (Regular and heavy 15-puzzle, 101-pancake and dock
robot). (2) DPS was slightly inferior in one domain (heavy
pancake) and (3) DPS is losing completely in another do-
main (inverse tiles). WA∗ is losing in all these domains and
we focus below on DPS and EES. When we analyzed run-
ning times and number of nodes expanded we saw a clear
trend that usually, whenever there was a win in the success
rate there was a win in the nodes count and running time too.

40

t

(a) Regular tiles (b) Heavy tiles (c) Inverse tiles

(d) 101 pancakes (e) Dock robot (f) 16 heavy pancakes

Figure 1: Success rate (y-axis) for values of B (x-axis) for 6 domains. Vacuum cleaner had 100% success rate and is omitted.

Nodes expanded CPU Time in ms
B #Ins WA∗ EES DPS WA∗ EES DPS

101-pancake
1.11 68 27,612 26,688 912 20,027 24,054 695
1.14 89 11,078 13,062 332 8,383 11,336 230
1.25 100 1,399 626 169 952 494 110
1.50 100 181 147 148 115 100 98

Dock robot
1.10 89 73,753 88,027 56,856 4,114 5,282 2,558
1.50 92 47,460 52,805 23,189 2,110 2,867 824
3.00 99 28,176 47,550 16,451 1,032 2,842 543

Table 3: 101 Pancakes (top). Dock Robot (Bottom).

We show representative results for some of our domains be-
low. The constant time per node was slightly larger for EES
as can be seen in our CPU times reported below.

Our aim in the remainder of this paper is to analyze the re-
sults of Figure 1 and better understand when each algorithm
performs better. For this we provide a number of general
rules on when we expect one of the algorithms to be better
than the others.

6.1 The Strength of d and h

Rule 1: One of the main strengths of EES is that it uses
both d and h and intelligently combines them together. But,
in cases where d = h such as unit-cost domains or when
d and h are very close to each other EES loses its strength.
Naturally, the weakness of EES relatively strengthens DPS
when they compete.

To illustrate Rule 1, consider the results of the 101-

pancake puzzle in Figure 1(d). Note that the largest reported
optimal solver for this domain was for the 85-pancake puz-
zle (Lippi, Ernandes, and Felner 2016). DPS solved all in-
stances of the 101-pancake even for B = 1.11 while EES
could only solve 75% of the instances for B = 1.11. Ta-
ble 3 (top) shows the average number nodes expanded and
CPU time for the instances solved by all algorithms (The
#Ins column shows the number of such instances). Again,
the huge benefit of DPS is observed; it outperformed EES
by a factor of 27. The poor performance of EES compared to
DPS on the 101-pancakes, as well as in the 15-puzzle (Fig-
ure 1a) is expected, as these domains have unit edge costs
and thus d = h and EES loses much of its strength as ex-
plained by Rule 1.

A less intuitive result is that DPS outperforms EES in the
non-unit edge cost dock robot domain (Figure 1e). Nodes
expanded and CPU time are reported in Table 3 (bottom)
and indicate an advantage of up to a factor of 3 for DPS
over EES. A possible explanation is that in this domain the
differences between action costs is not very large, and thus
the difference between d and h is not large too. We discuss
in Section 6.4 how this is related to the performance of DPS.

The results for the heavy tiles are mixed (Figure 1b). For
B ≤ 2 DPS is better but for B > 2 the problem is rel-
atively easy and both DPS and EES had a success rate of
100%. However, EES was able to do so while expanding
many fewer nodes. For example, for B = 2, 3, and 15, DPS
expanded 1.7, 4.3, and 26 times more nodes than EES, re-
spectively. This behavior – EES being faster for large values
of B – can be explained as follows. For large B values al-
most all nodes will lead to a sufficient solution, and the only

41

regular heavy
Nodes expanded CPU Time in ms Nodes expanded CPU Time in ms

B SR WA∗ EES DPS WA∗ EES DPS WA∗ EES DPS WA∗ EES DPS
1.11 100 610,229 481,760 489,647 3,935 3,529 3,118 2,440,032 2,120,931 2,253,327 22,904 22,043 22,827
1.14 100 505,922 363,889 388,107 3,400 2,757 2,616 2,109,272 1,711,585 1,916,903 18,431 18,206 18,318
1.17 100 439,055 300,359 328,699 2,991 2,211 2,106 1,889,898 1,448,847 1,700,742 16,444 14,182 16,079
1.25 100 272,375 159,027 197,225 1,771 1,143 1,251 1,294,335 820,477 1,131,472 10,714 7,408 10,603
1.50 100 77,162 41,025 62,200 445 270 366 464,565 248,497 400,121 3,703 2,067 3,545
2.00 100 30,584 14,492 25,552 176 102 165 185,202 97,591 169,742 1,370 741 1,380
2.33 100 22,468 10,310 20,434 117 59 118 145,459 55,383 138,602 1,056 412 1,136
3.00 100 21,000 8,137 18,714 115 51 132 148,189 18,933 144,171 1,213 131 1,169

Table 4: Average nodes expanded and runtime for the regular and heavy vacuum with 10 dirty spots

Success rate diff (DPS-EES) Expansion ratio (EES/DPS)
Bound 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

1.10 0 1 43 - - 3.2 14.1 26.4 - -
1.17 0 0 6 57 93 5.6 10.5 135.8 81.8 59.4
1.20 0 0 0 37 83 3.1 7.6 49.6 79.5 180.2
1.33 0 0 0 1 21 1.0 1.4 9.1 43.4 80.5
1.50 0 0 0 0 0 1.0 1.0 1.1 4.6 11.0
2.00 0 0 0 0 0 1.0 1.0 1.0 1.1 1.2

Table 5: Results for 40-pancake with the GAP-X heuristic

challenge is to find any solution as fast as possible. Thus,
EES will converge to Speedy search (Wilt and Ruml 2014)
(using d only) while DPS will converge to GBFS as h will
be a dominating factor in the ud formula (B × fmin − g
remains constant). In the heavy 15-puzzle it is clear that
Speedy search would be much faster as there is no value
in considering h when searching for any solution.

The results for the heavy 16-pancake (Figure 1f), and
especially for the inverse 15-puzzle (Figure 1c) are much
clearer. In these non-unit edge cost domains, DPS is signif-
icantly inferior to EES. These are domains where d is very
different from h and thus EES is especially strong.

6.2 The Impact of a Weaker Heuristic

Rule 2: DPS is robust across heuristics but EES suffers
when weakening the heuristic.

To show this we performed additional experiments on the
pancake puzzle. We chose this puzzle as it has an extremely
accurate heuristic – GAP (Helmert 2010), and recent work
showed a simple way to derive less accurate heuristics from
GAP for scientific purposes, called the GAP-X family of
heuristics (Holte et al. 2016). In GAP-X, we do not count
the gaps involving any of the X smallest elements. For ex-
ample, GAP-2 does not count the gaps involving elements 1
or 2. We further fine tuned the GAP-X family to also include
“half gaps” as follows. In GAP-X we do not count gaps of
any element ≤ X either from its left or its right. We define
GAP − X.5 to include all gaps up to element X − 1 but
only the GAP to the left of element X . For example, assume
the 5-pancake puzzle where the elements appear in the fol-
lowing vector [3, 1, 5, 2, 4]. There are four gaps which occur
on both sides of elements 1 and 2, and one to the right of 4.
Therefore the GAP heuristic will return 5. GAP-1, will only
accumulate the gaps that do not involve element 1 and return

3. Finally, GAP-1.5 will not count the gaps that involve ele-
ment 1 and those that involve element 2 from its left. It will
return 2 (i.e., only the gap (2, 4) and the gap to the right of 4
will be counted.)

Table 5 shows results for the 40-pancake puzzle with
GAP, GAP-0.5 . . . GAP-2. The rows correspond to differ-
ent values of B and columns correspond to the different val-
ues of X . In this domain, DPS always had a success rate of
100%, while for some of values of X EES had a much lower
success rate. The columns under “Success rate diff (DPS-
EES)” show the success rate of DPS minus the success rate
of EES. The columns under “Expansion ratio (EES/DPS)”
show the average number of nodes expanded by EES di-
vided by the average number of nodes expanded by DPS for
the instances solved by both DPS, EES, and WA∗. For both
“success rate diff” and “expansion ratio”, higher numbers
mean a bigger advantage to DPS over EES.

These results confirm Rule 2. When weakening GAP, EES
solves fewer instances and expands more nodes than DPS.
For example, using GAP, EES solves all instances for B =
1.20 but with GAP-1.5 and GAP-2, EES solves 37% and
83% less instances than DPS, respectively. Similarly, with
GAP, EES and DPS expand about the same number of nodes,
but with GAP-1.5 EES expand 79 times more nodes than
DPS. With GAP-2 the expansion ratio is 180.

6.3 The Accuracy of ĥ

Rule 3: EES is very strong when ĥ is relatively accurate.

DPS may be weaker than EES even in unit edge cost do-
mains. Table 4 shows the average number of nodes expanded
and CPU time required to solve problem instances for the
unit-edge cost Vaccum domain, where dirt does not weigh
(left) and for the non-uniform edge cost variant, where pick-
ing up dirt makes the cleaner heavier (right). These results
show that EES and DPS perform similarly on smaller values
of B, but for larger values of B EES is better than DPS, even
in the unit edge cost variant.

This is explained as follows. A key part of EES are ĥ and
d̂ which are learned during the search, and are expected to
become more accurate as the search progresses. Thayer and
Ruml (2011) suggested to compute the learned heuristics of
a node n by considering the heuristic errors observed along
the path from the start to n.(This is called the path-based

42

Figure 2: The h∗-values (x-axis) plotted against the h-values (y-axis) of states of 6 domains (Right plot taken from Thayer et
al. (2012)).

Figure 3: Varying the dirt for the vacuum cleaner

error correction method (Thayer and Ruml 2011)). We fol-
low their method. Thus, in domains where the solution is
relatively shallow, ĥ will be uninformed, basing its learning
on a small sample. In the vacuum world, solution depths are
significantly larger than in all other domains, averaging over
800 steps (compared to 52 in the 15-puzzle). Moreover, the
heuristic error in the vacuum world is expected to be simi-
lar throughout the search, as the obstacles in this domain are
uniformly distributed. Thus, it is reasonable to learn it and
obtain accurate ĥ. This makes EES strong here despite the
fact that this is a unit-cost domain.

To demonstrate that long paths strengthen ĥ and EES, we
varied the number of dirty locations that the cleaner needs
to pick up. Less dirt means shallower solution depth. Con-
sequently, we expect EES to perform worse as we decrease
the amount of dirt. The results are shown in Figure 3. The x-
axis corresponds to B and the y-axis gives the average ratio
of nodes expanded by EES divided by the average number
of those expanded by DPS (lower values correspond to bet-
ter performance of EES). Different curves shows results for
different amount of dirt. The results support our hypothesis:
indeed, more dirt is better for EES. With low B values, both
algorithm converge to A* and their results are similar.

6.4 Heuristic Error Models

Rule 4: linear relative h-to-h∗ ratio strengthens DPS.
A question that remains not fully answered is: why does

DPS perform well on dock robot, although it is a non-unit
edge cost domain? We argued that EES is expected to be
strong for problems with longer solutions. In our experi-
ments, the average solution depth for a dock robot problem

was 25 (see Table 2). This explains why EES was not very
effective in this domain.

However, there is an additional reason. The motivation for
using DPS is that it expands in every iteration the node that is
most likely (higher potential) to be within the bound. How-
ever, this is true for domains and heuristic that exhibit the
linear relative heuristic error model (Stern et al. 2014). In-
formally, this means that the error of the heuristic can be
modeled as a random variable multiplied by the heuristic
value. This error model will strengthen DPS but will weaken
EES, as we expect nodes with large h-values to have a wider
variance of h∗ values and learning ĥ is more problematic.

To examine which of the evaluated domains exhibits
this heuristic error model, we plotted the heuristic value h
against the optimal solution h∗ for a large number of nodes.
Figure 2 shows the resulting plot. The results match nicely
with the observed performance of the algorithms. The regu-
lar (not heavy) pancake puzzle and the 15-puzzle exhibit a
clear linear-relative h-to-h∗ relation. The dock robot (even
though it is a non-unit edge cost domain) still exhibits this
relation: the h∗ values become more distributed as the value
of h gets larger. This explains why DPS works well in this
domain. Both vacuum and heavy pancake do not show this
h to h∗ behavior. In both domains (more emphasized in the
heavy pancake), the range of h-to-h∗ values is more constant
than linearly dependent on h. Thus, the estimates of DPS of
which node is more likely to be below the bound is less ac-
curate, and this weakens DPS. Indeed, even in the unit-edge
cost variant of Vacuum DPS was outperformed by EES, and
in the heavy pancake EES was the clear winner. Finally, it
is easy to see that the inverse 15-puzzle, certainly the h-to-
h∗ is not linear. This correlates perfectly with DPS’s poor
performance in this domain.

Summary We provided a number of general rules. It is
very hard to predict the net effect of these rules for a given
domain. Nevertheless, based on our study we can summarize
them as follows. DPS is stronger than EES when there is a
linear h-to-h∗ relation and when d ≈ h. EES is stronger
than DPS when d and h are different and when ĥ is expected
to be accurate, e.g., in domains with large solution depth.
In addition, DPS is easier to implement as it only needs a
single OPEN list while EES stores three open lists and needs
to learn d̂ and ĥ.

43

7 Conclusions

In this work we showed how to adapt a general class of BCS
algorithms to solve BSS. In particular, we migrated PS, a
BCS algorithm, to the BSS setting. The resulting algorithm,
DPS, is shown to be very efficient on a variety of domains.
Through an extensive experimental evaluation, we identified
several general guidelines where DPS is expected to perform
well compared to EES and vice versa.

8 Acknowledgements

The research was supported by the Israeli Science Founda-
tion (ISF) under grant #417/13 to Ariel Felner.

References

Bulitko, V.; Björnsson, Y.; Sturtevant, N. R.; and Lawrence,
R. 2011. Real-time heuristic search for pathfinding in video
games. In Applied Research in Artificial Intelligence for
Computer Games. Springer.
Burns, E. A.; Hatem, M.; Leighton, M. J.; and Ruml, W.
2012. Implementing fast heuristic search code. In SoCS.
Ebendt, R., and Drechsler, R. 2009. Weighted A* search -
unifying view and application. Artif. Intell. 173(14):1310–
1342.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
planning: theory & practice. Elsevier.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics SSC-4(2):100–107.
Helmert, M. 2010. Landmark heuristics for the pancake
problem. In Third Annual Symposium on Combinatorial
Search (SoCS).
Holte, R. C.; Felner, A.; Sharon, G.; and Sturtevant, N. R.
2016. Bidirectional search that is guaranteed to meet in the
middle. In Proceedings of the AAAI Conference on Artificial
Intelligence.
Lippi, M.; Ernandes, M.; and Felner, A. 2016. Optimally
solving permutation sorting problems with efficient partial
expansion bidirectional heuristic search. Artificial Intelli-
gence Communication.
Pearl, J., and Kim, J. H. 1982. Studies in semi-
admissible heuristics. IEEE Trans. Pattern Anal. Mach. In-
tell. 4(4):392–399.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial Intelligence 1(3-4):193–204.
Pohl, I. 1973. The avoidance of (relative) catastrophe,
heuristic competence, genuine dynamic weighting and com-
putational issues in heuristic problem solving. In IJCAI, 12–
17.
Russell, S., and Norvig, P. 1995. Artificial intelligence: a
modern approach. Prentice Hall.
Stern, R.; Felner, A.; van den Berg, J.; Puzis, R.; Shah,
R.; and Goldberg, K. 2014. Potential-based bounded-cost
search and anytime non-parametric A∗. Artificial Intelli-
gence 214:1–25.

Stern, R.; Puzis, R.; and Felner, A. 2011. Potential search:
a bounded-cost search algorithm. In ICAPS.
Thayer, J. T., and Ruml, W. 2011. Bounded suboptimal
search: A direct approach using inadmissible estimates. In
IJCAI.
Thayer, J. T.; Stern, R.; Felner, A.; and Ruml, W. 2012.
Faster bounded-cost search using inadmissible estimates. In
ICAPS.
Valenzano, R. A.; Arfaee, S. J.; Thayer, J. T.; Stern, R.; and
Sturtevant, N. R. 2013. Using alternative suboptimality
bounds in heuristic search. In ICAPS.
Wilt, C. M., and Ruml, W. 2014. Speedy versus greedy
search. In Seventh Annual Symposium on Combinatorial
Search.

44

