
Stochastic Local Search over Minterms on Structured SAT Instances

Wenxiang Chen and Darrell Whitley and Adele Howe and Brian Goldman
Department of Computer Science

Colorado State University
Fort Collins, CO 80523

{chenwx, whitley, howe}@cs.colostate.edu, brianwgoldman@acm.org

Abstract

We observed that Conjunctive Normal Form (CNF) encod-
ings of structured SAT instances often have a set of consec-
utive clauses defined over a small number of Boolean vari-
ables. To exploit the pattern, we propose a transformation of
CNF to an alternative representation, Conjunctive Minterm
Canonical Form (CMCF). The transformation is a two-step
process: CNF clauses are first partitioned into disjoint sub-
sets such that each subset contains CNF clauses with shared
Boolean variables. CNF clauses in each subset are then re-
placed by Minterm Canonical Form (i.e., partial solutions),
which is found by enumeration. We show empirically that a
simple Stochastic Local Search (SLS) solver based on CMCF
can consistently achieve a higher success rate using fewer
evaluations than the SLS solver WalkSAT on two represen-
tative classes of structured SAT problems.

Introduction

Satisfiability (SAT) is an NP-complete problem of deter-
mining whether there exists a variable assignment such that
a propositional logic formula F is true. SAT problem in-
stances are usually defined in Conjunctive Normal Form
(CNF): a conjunction of clauses F =

∧
ci∈C

ci, where each
clause ci is a disjunction of literals ci =

∨
lj∈Li

lj and each
literal is either a Boolean variable b or its negation b.

Encoding structured problems into SAT problems often
introduces dependent variables (Kautz, McAllester, and Sel-
man 1997), whose values are defined by a Boolean function
of other variables. These dependent variables are usually re-
quired by the well-known Tseitin encoding to achieve lin-
ear size conversion of propositional logic formulas to CNFs.
Developing Stochastic Local Search (SLS) techniques that
can effectively handle variable dependencies has been con-
sidered to be a fundamental challenge in propositional rea-
soning and search (Kautz and Selman 2007).

Exploiting Modularity: From CNF to CMCF

Our approach to handling variable dependencies is moti-
vated by the fact that structured SAT instances often con-
tain subsets of clauses consisting of a small set of vari-
ables with different combinations of polarities. To illus-

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

. . . ∧
(−24 ∨ −33 ∨ 124) ∧
(24 ∨ 33 ∨ −124) ∧
(24 ∨ −124) ∧
(33 ∨ −124) ∧

. . . (1)

. . . ∧
(−24 ∧ −33 ∧ −124) ∨
(24 ∧ −33 ∧ −124) ∨
(−24 ∧ 33 ∧ −124) ∨
(24 ∧ 33 ∧ 124) ∧

. . . (2)

Example 1: Replace a subset of CNF clauses with MCF.

trate the modularity, we show a snippet (indices represent
Boolean variables) of the problem of factoring semiprime
1003 in Equation 1 of Example 1. The four CNF clauses
are taken from the problem in their original order; they only
touch three Boolean variables: 24, 33 and 124. These CNF
clauses represent a Boolean function Fi, which we call a
“module”. Minterms is a conjunction (AND) of literals, e.g.,
−24∧−33∧−124. Fi can also be represented by a disjunc-
tion (OR) of the 4 minterms in Equation 2, which is called
Minterm Canonical Form (MCF). In MCF, the minterms
are simply solutions to Fi. Replacing each subset of CNF
clauses with MCF, we obtain an alternative representation of
F , Conjunctive Minterm Canonical Form (CMCF), which is
a conjunction of MCFs.

Roussel (Roussel 2004) proposed a transformation that
uses a local model enumeration similar to ours. Roussel’s
encodes sets of clauses using prime implicants, while ours
encodes them as minterms. However, Roussel did not show
the utility of the new representation in search.

SLS Over CMCF

CMCF-Based Local Search (CMCF-LS) is a CMCF based
SLS analogous to the well-known WalkSAT (Selman,
Kautz, and Cohen 1994). WalkSAT has a straightforward al-
gorithm, is very effective at solving uniform random SAT
instances, and is a good basis for designing a SLS on CMCF
that exploits problem structure. CMCF-LS first converts the
CNF into a compact CMCF and then runs SLS.

Conversion The original CNF is translated to CMCF using
a linear-time algorithm that exploits the natural ordering of
CNF clauses. A module is limited to contain at most 6 vari-
ables. Auxiliary variables are introduced to break the clauses
until they are within the limit. Iterating over clauses, if Mi

can take the clause cj without breaking the limit, cj is added

Proceedings of the Ninth International
Symposium on Combinatorial Search (SoCS 2016)

125

�

�
�

�
�
���

��
�

�

�

�

�

�
��

�
�

�

�

�

�

� �

� �

�

�

�

�

�
�

�

�

�

��
�

�

�

�
�
�
�
�

�

�

��

�
�
�
��

�
�

�

�
�

�

�

�

��
��

�

�

�

�
�

��

�

�

��

�

�

�

�
��

�

�
�
���
�

�

��

�

�

�
�

��

�
�

�

�

�

�

�
�

�

�

�

�

�

���

�

�

�

�

�

�

�
�

�

�

�
� ������������������������

�

�
��
��
�

��

�

�

�
�

�

�
�
�

�

�

�

�

��

�

���

�

�

�
���
��

�

�

�
�

�

�
�
�

�

��

�

�

�

��

���

�

�

�
�

�

�

�

�

� �

�

�

�

�
�

�

�

����
��

�

��
�

�
��
�

�
�

�
�

�� �
�

�

��

�

�

�

�

�

�

�

� �

� �

�

�

�

�
�

�

�

�

�

� �

�

� � �

�

�

�

� �

�

�

�

�

�

�
�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

� � �

�

�

�

�

� � � �

�

� � � � � � �

1e+04

1e+06

1e+08

58 82 94 14
1

17
7

18
5

20
5

25
9

30
1

37
1

45
1

47
3

48
1

52
7

58
3

61
1

62
9

64
9

67
1

68
9

69
7

76
7

90
1

94
3

10
03

10
07

10
81

11
21

11
89

12
19

12
47

13
57

13
63

14
03

15
17

15
37

15
91

17
63

17
69

18
29

18
91

20
21

21
73

22
57

24
19

25
37

27
73

31
27

32
33

35
99

Semiprime Factoring Instances

Nu
m

be
r o

f E
va

lu
at

io
ns

�

�
�

�

�

���

��

��

�

��

�

�

�
�

�

�

�

�

�

�

�

�

1e+05

1e+07

par8 1 par8 2 par8 3 par8 4 par8 5
Parity Learning Instances

N
um

be
r o

f E
va

lu
at

io
ns

WalkSAT
CMCF-LS

Figure 2: Number of Evaluations spent by WalkSAT (left red boxes) and CMCF-LS (right blue boxes) on Semiprime Instances
and Parity Problem (the lower the better). Y-axis is a log10 scale. Boxplot shows the distribution over 50 runs.

to Mi. Otherwise Mi+1 is created to take cj . Then, two types
of efficient constraint processing are performed.

1) Value constraint propagation. A Boolean variable bi
that has a consistent truth value in a MCF Mj indicates that
it is the only way bi can be set to satisfy Mj . We then prop-
agate the assignment to other MCFs.

2) Equivalency constraint propagation. When two vari-
ables bi and bj satisfy the equivalency or negative equiva-
lency constraint bi = bj or bi = bj in Mk, bj can be elimi-
nated by replacing all occurrences of bj with bi or bi.

Stochastic Local Search With the CMCF representation,
every MCF Mi contributes exactly one minterm si,j , where
si,j ∈ Mi. A candidate solution in the search space of
CMCF-LS is a vector V of minterms si,j .

Instead of flipping one Boolean variable to satisfy one
CNF clause, we change multiple variables at a time to guar-
antee all of the clauses in a module are satisfied. Even
though we are not looking for any specific variable depen-
dencies, dependencies are automatically respected.

To select which module (set of variables) to change, we
define an evaluation function that counts the support for each
value (positive and negative) for each variable across the
MCFs. We use the smaller of the two counts to represent
the degree of disagreement on each Boolean variable.

A minterm si,j from Mi effectively votes for the truth as-
signment for all variables in Mi. Each variable bk imposes a
constraint on a candidate solution such that bk should only
receive a single type of vote (true or false). A candidate so-
lution that does not violate any constraint is a valid solution.

Similar to WalkSAT, CMCF-LS first selects a Boolean
variable bi that has disagreement. With probability p = 0.1,
CMCF-LS makes a random move that forces modules con-
taining bi to reach a consensus state on a random truth value;
with probability (1 − p), CMCF-LS makes a greedy move
that selects a minterm from modules containing bi such that
it yields the highest improvement in the evaluation function.

Results and Conclusions
Two classes of structured problems are used in our evalu-
ation: Semiprime Factoring (https://toughsat.appspot.com/)

and Parity Learning (Crawford, Kearns, and Shapire 1994).
We ran CMCF-LS and WalkSAT each for up to 100 mil-
lion evaluations of candidate solutions, or when a satisfying
assignment is found. Figure 2 presents the number of evalu-
ations required by each of the solvers on the 50 semiprime
and the 5 parity instances. CMCF-LS does equal to or bet-
ter than WalkSAT on all instances larger than 100. The
shape of the two curves after 100 is also similar, which
makes sense since the algorithmic framework of random and
greedy moves is common to both.

For the parity learning problems, there is only one in-
stance (par8-1) for which WalkSAT has a median lower than
the 100 million cutoff. On par8-1, the median number of
evaluations spent by WalkSAT is more than 95 times that of
CMCF-LS. On par8-5, the median CMCF-LS run required
26,521 evaluations, which is over 150× fewer than Walk-
SAT’s best (and only) successful run.

We have shown that a SLS with the CMCF representation
can solve two classes of structured problems more effec-
tively than the CNF-based WalkSAT. CMCF-LS uses fewer
evaluations and is more likely to yield a satisfying solu-
tion. The results presented can also be improved. We used a
brute force form of greedy “best improving” SLS. Methods
to track the greedy pick far more efficiently, additional con-
straint pre-processing and a better heuristic would likely im-
prove the performance. But that also means that the results
reported here leave considerable room for optimizations.

References
Crawford, J. M.; Kearns, M. J.; and Shapire, R. 1994. The minimal
disagreement parity problem as a hard satisfiability problem. AT&T
Bell Labs Technical Report.
Kautz, H., and Selman, B. 2007. The state of SAT. Discrete
Applied Mathematics 155(12):1514 – 1524.
Kautz, H.; McAllester, D.; and Selman, B. 1997. Exploiting vari-
able dependency in local search. In Poster Sessions of IJCAI.
Roussel, O. 2004. Another SAT to CSP conversion. In Proc. of
ICTAI, 558–565. IEEE.
Selman, B.; Kautz, H. A.; and Cohen, B. 1994. Noise strategies
for improving local search. In Proc. of AAAI, 337–343. AAAI.

126

