
Searching for Real-Time
Heuristic Search Algorithms

Vadim Bulitko
Department of Computing Science

University of Alberta
Edmonton, Alberta, T6G 2E8, Canada

bulitko@ualberta.ca

Abstract

Heuristic search is a core area of Artificial Intelligence with
applications to planning, scheduling and game playing. Real-
time heuristic search applies to search problems where plan
execution needs to start before a complete solution can be
computed. Since the inception of real-time heuristic search
in the early 1990s a great number of algorithms have been
proposed and evaluated. In this paper we break them down
into building blocks and conduct a search in the space of such
building blocks. Even simple tabulated and iterative searches
find new real-time heuristic search algorithms outperforming
manually crafted contemporary algorithms.

1 Introduction and Related Work

Starting with LRTA* (Korf 1990) real-time heuristic search
agents interleave three processes: local planning, heuristic
learning and move selection. In over the two decades since
LRTA*, researchers have explored different heuristic learn-
ing rules and different move selection mechanisms. Infor-
mation in addition to the heuristic has also been learned.

The number of techniques proposed by the researchers
in the field of real-time heuristic search is overwhelming.
More importantly, the interactions between these techniques
are difficult to analyze theoretically or empirically. Our re-
cent conference paper (Bulitko 2016) framed the problem of
finding a high-performance combination of real-time heuris-
tic search techniques as a search task itself. Unlike human
researchers, such search has no prior expectations, intu-
itions or biases. It simply traverses a large space of real-time
heuristic search algorithms. Yet, preliminary results in the
standard testbed of pathfinding on video-game maps were
promising. A simple search on a desktop computer con-
ducted in under a day led to a new real-time heuristic search
algorithm that outperformed manually crafted algorithms.

Here we explore the space of algorithms and discover
that many randomly chosen algorithms appear to outperform
manually designed published algorithms. Thus, it is no sur-
prise that even a simple search produced a well-performing
algorithm. We confirm the results using a validation set of
problems as well as a slightly different space of algorithms.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2 Problem Formulation and Empirical Setup
We follow the problem formulation and the empirical setup
of Bulitko (2016). An agent is to find a shortest path from a
start state/vertex to a goal state/vertex on a weighted undi-
rected safely explorable graph. For any state under consid-
eration it uses and updates the heuristic – an estimate of the
remaining travel cost. The suboptimality of the found path
(capped at a pre-defined maximum) is the objective func-
tion – values closer to 1 (optimal) are preferred. We evaluate
algorithms’ suboptimality empirically by averaging it over
subsets of the 493298 video-game pathfinding problems sit-
uated on 342 maps (Sturtevant 2012).

3 Space of Search Algorithms
A real-time heuristic search agent interleaves moving to
the next state and updating its heuristic (learning). The
two steps can be implemented with a number of rules,
called building blocks. In this paper we re-use the blocks
from our previous publication (Bulitko 2016). We mod-
ify one of the blocks (heuristic weighting) by adding a
second weight to c and remove backtracking as it tends
to trade first-trial solution cost for convergence. We de-
note any resulting algorithm by listing its building blocks
as w · lopb(wc · c + h)+da+E where the last two parts
(da and E) are optional. Based on exploratory experiments,
we set the ranges for the control parameters as w ∈
[1, 10], wc ∈ [1, 10],da ∈ {true, false},expendable ∈
{true, false}, lop ∈ {min, avg,median,max}, b ∈ [0, 1]
which define a continuous six-dimensional space of real-
time heuristic search algorithms.

To see how algorithms in the space are distributed in terms
of their performance we generated 36400 random algorithms
in the space and ran each on a random subset of 5000
problems. Maximum suboptimality cutoff was set to 1000.
The average of the sample suboptimalities (50.6) is an esti-
mate of the expected performance of an algorithm randomly
sampled from the algorithm space. Remarkably, it is sub-
stantially better than sample suboptimality of RTA* (Korf
1990) (186.7) but worse than that of the more recent daL-
RTA*+E (Hernández and Baier 2012; Sharon, Sturtevant,
and Felner 2013) (30.5). Note that 73.5% of algorithms in
the database have better sample suboptimality than the ex-
pectation for a randomly drawn algorithm (due to the long
tail of the distribution). The classic RTA* is in the bottom

Proceedings of the Ninth International
Symposium on Combinatorial Search (SoCS 2016)

121

5.5% and even the contemporary daLRTA*+E is outper-
formed by 55% of all database algorithms.

4 Search in the Space of Search Algorithms
In this section we use two simple search techniques in the
space of real-time search algorithms. First we use an un-
informed search we call tabulated. Second, we implement
iterative search where previous iterations inform the current
iteration. We used both techniques in our previous publica-
tion (Bulitko 2016). In this paper we extend that work by (i)
applying both techniques to a new space of algorithms, (ii)
validating the results by using a different set of problems.

Tabulated Search. We first tabulated the parame-
ter space with 7 equally spaces tabulation points: w ∈
{1, 2.5, 4, 5.5, 7, 8.5, 10}, wc ∈ {1, 2.5, 4, 5.5, 7, 8.5, 10},
da ∈ {true, false}, expendable ∈
{true, false}, lop ∈ {min, avg,median,max},
b ∈ {0, 0.17, 0.33, 0.5, 0.67, 0.83, 1}. This resulted in
5488 algorithms which we ran on a single random set
of 500 problems. The algorithm with the lowest sample
suboptimality of 16.04 was 1 · median1(7 · c + h) + E,
found in 9.4 hours. We then ran it on the entire benchmark
set of 493298 MovingAI problems, against the classic
LRTA*, RTA* (Korf 1990) and its weighted variant
wLRTA* (Rivera, Baier, and Hernández 2015). We also
considered existing algorithms that explicitly aim to es-
cape heuristic depressions quicker than LRTA*: aLRTA*,
daLRTA* (Hernández and Baier 2012), its weighted
version wdaLRTA* (Rivera, Baier, and Hernández 2015)
and its combination with removing expendable states,
daLRTA*+E (Sharon, Sturtevant, and Felner 2013). We did
not include f-LRTA* or f-LRTA*+E in our evaluation since
both versions were found inferior to daLRTA* by Sharon,
Sturtevant, and Felner (2013). All algorithm parameters
have been tuned by running different parameter values
on problems from the benchmark set (Bulitko 2016). The
lookahead was set to 1 in all algorithms. The mean solution
suboptimalities were as follows: LRTA* 459.8, RTA*
358.9, daLRTA* 44.1, wLRTA* 39.7, wdaLRTA* 30.6,
daLRTA*+E 31.8 and median(7 · c+ h)+E 19.3.

The results show that the search algorithm found by
the tabulated search process substantially outperforms
parameter-tuned manually designed algorithms, both classic
and contemporary. We repeated tabulated search two more
times with different 500 problem samples and while differ-
ent algorithms were found, they had similar suboptimality
when evaluated on the entire problem set and thus soundly
outperformed the manually designed competitors. But per-
haps tabulated search overfits its output to the specific prob-
lems used in tabulated search? We created an equally sized
validation set of problems distributed in the same propor-
tions over the same 342 maps. Each problem was generated
randomly (as opposed to being downloaded from the Movin-
gAI website). On the validation set the algorithms ranked in
the same order.

Iterative Search. The tabulated search covers the space
of algorithms in a uniform, grid-like fashion. An alterna-
tive is to conduct beam-like iterative search where each it-
eration’s results define the algorithms used for the next it-

eration. As before (Bulitko 2016), we begin with an initial
set of randomly chosen L algorithms. At each iteration step
there are L algorithms whose performance is evaluated by
running on a random sample of n problems picked from the
benchmark set. The algorithms are then sorted by their sam-
ple suboptimality. The bottom L/2 algorithms are discarded
(die) whereas the top L/2 not only make it to the next iter-
ation (survive) but are also used to create the other L/2 al-
gorithms for the next iteration (reproduction). Specifically,
L/2 times we randomly draw a pair of the parents and ran-
domly combine (crossover) their algorithmic descriptions:
the vectors (w,wc,da,expendable, lop, b) (genes). The
resulting vector is then randomly perturbed (mutated). The
process runs for M steps. The output is the algorithm with
the lowest sample suboptimality.

Such iterative search explores the space of algorithms
non-uniformly, focusing on the more promising areas. Fur-
thermore, since later iterations evaluate better algorithms,
the overall time is reduced since better algorithms solve
problems faster. On the other hand, early iterations may
divert the search to a less-promising area of the space.
We confirmed our earlier results (Bulitko 2016) and were
able to find algorithms with suboptimality similar to that
of the tabulated search. For instance, iterative search with
L = 50 algorithms in the population and M = 50 steps
(sample size 500, suboptimality cutoff 1000) took only 2.3
hours. The agent with the lowest sample suboptimality was
4.774 · min0.321(4.342 · c + h)+E. When evaluated on all
493298 benchmark problems in S493298 the agent had sub-
optimality of 20.08± 0.0653. This is very similar to the per-
formance of the algorithms found by the tabulated search
and substantially better than manually designed algorithms.

Another run of the iterative search with the same param-
eters found a different algorithm (9.813 · max0.266(9.250 ·
c+h)+da+E) but with similar suboptimality: 20.54± 0.0753.
Evaluating the found algorithms on the validation set of
problems gave very similar suboptimality values, just like
it did for the algorithms found by the tabulated search.

5 Conclusions & Future Work

We confirmed earlier results that a simple search in the space
of real-time heuristic search algorithms can produce high-
performance algorithms. Future work will incorporate larger
local search spaces and select algorithms per problem.

References
Bulitko, V. 2016. Evolving real-time heuristic search algorithms.
In ALIFEXV, (in press).
Hernández, C., and Baier, J. A. 2012. Avoiding and escaping de-
pressions in real-time heuristic search. JAIR 43:523–570.
Korf, R. 1990. Real-time heuristic search. AI 42(2–3):189–211.
Rivera, N.; Baier, J. A.; and Hernández, C. 2015. Incorporating
weights into real-time heuristic search. AI 225:1–23.
Sharon, G.; Sturtevant, N. R.; and Felner, A. 2013. Online de-
tection of dead states in real-time agent-centered search. In SoCS,
167–174.
Sturtevant, N. R. 2012. Benchmarks for grid-based pathfinding.
IEEE TCIAIG 4(2):144 – 148.

122

