
Fast k-Nearest Neighbour on a Navigation Mesh

Shizhe Zhao
Monash University

Melbourne, Australia
szha414 at student.monash.edu

David Taniar
Monash University

Melbourne, Australia
david.taniar at monash.edu

Daniel D. Harabor
Monash University

Melbourne, Australia
daniel.harabor at monash.edu

Abstract

We consider the k-Nearest Neighbour problem in a two-
dimensional Euclidean plane with obstacles (OkNN). Exist-
ing and state of the art algorithms for OkNN are based on
incremental visibility graphs and as such suffer from a well
known disadvantage: costly and online visibility checking
with quadratic worst-case running times. In this work we de-
velop a new OkNN algorithm which avoids these disadvan-
tages by representing the traversable space as a collection
of convex polygons; i.e. a Navigation Mesh. We then adapt
an recent and optimal navigation mesh algorithm, Polyanya,
from the single-source single-target setting to the the multi-
target case. We also give two new heuristics for OkNN. In a
range of empirical comparisons we show that our approach
can be orders of magnitude faster than competing methods
that rely on visibility graphs.

Introduction
Obstacle k-Nearest Neighbour (OkNN) is a common type
of spatial analysis query which can be described as follows:
given a set of target points and a collection of polygonal ob-
stacles, all in two dimensions, find the k closest targets to
an a priori unknown query point q. Such problems appear
in a myriad of practical contexts. For example, in an indus-
trial warehouse setting a machine operator may be interested
to know the k closest storage locations where a specific in-
ventory item can be found. In competitive computer games
meanwhile, agent AIs often rely on nearest-neighbour infor-
mation to make strategic decisions such as during naviga-
tion, combat or resource gathering.

Traditional kNN queries in the plane (i.e. no obstacles) is
a well studied problem (Roussopoulos, Kelley, and Vincent
1995; Cheung and Fu 1998) that can be handled by popular
and well known algorithms including KD-Tree (Ooi, Mc-
Donell, and Sacks-Davis 1987) and R-tree (Guttman 1984).
These methods organise the collection of target points into
a hierarchical structure that serves to: (i) quickly identify
a set of nearest neighbour candidates and; (ii) helps prune
those candidates to return the k closest. A key ingredient
to the success of these algorithms is the Euclidean metric
which provides perfect distance information between any
pair of points. When obstacles are introduced however the

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: We aim to find the nearest neighbour of point q
from among the set of target points A,B,C,D. Black lines
indicate the Euclidean shortest paths from q. NoticeD is the
nearest neighbour of q under the Euclidean metric but also
the furthest neighbour of q when obstacles are considered.

Euclidean metric becomes an often misleading lower-bound.
Figure 1 shows such an example.

Two popular algorithms for OkNN, which can deal with
obstacles, are local visibility graphs (Zhang et al. 2004) and
fast filter (Xia, Hsu, and Tung 2004). Though different in de-
tails, both of these methods are similar in that they depend
on the incremental and online construction of a graph of co-
visible points, and use Dijkstra to compute shortest path. Al-
gorithms of this type are simple to understand, provide opti-
mality guarantees and the promise of fast performance. Such
advantages make incremental visibility graphs attractive to
researchers and, despite more than a decade since their in-
troduction, they continue to appear as ingredients in a vari-
ety of kNN studies from the literature; e.g. (Gao et al. 2011;
2016; Gao and Zheng 2009). However, incremental visibil-
ity graphs also suffer from a number of notable disadvan-
tages including: (i) online visibility checks; (ii) an incre-
mental construction process that has up to quadratic space
and time complexity for the worst case; (iii) duplicated ef-
fort, since the graph is discarded each time the query point
changes.

In this paper we develop a new method for computing

The Eleventh International Symposium on Combinatorial Search
(SoCS 2018)

124

kNN in the presence of obstacles which avoids these same
disadvantages. Our work extends Polyanya (Cui et al. 2017):
a recent and very fast algorithm for computing Euclidean
shortest paths on a navigation mesh: a data structure com-
prised of convex polygons which taken together represent
the entire traversable space. Compared to visibility graphs,
navigation meshes are much cheaper to construct and some-
times available as input “for free” (e.g. in computer game
settings, navigation meshes are often created, at least in
part, by human designers). We describe how Polyanya can
be generalised, from point-to-point problems to the multi-
target case. We also develop along the way two new, effi-
cient heuristics which can be used for OkNN. Finally, we
compare our work against incremental visibility graphs in
a wide range of experimental settings where we show that
Polyanya is in some cases orders of magnitude faster.

The rest of the paper is organised as follows: (i) we give
a description of the Obstacle kNN problem and associated
technical terms; (ii) we review key components of Polyanya;
(iii) we give a formal description of our proposed algorithms
including proofs and pseudocode; (iv) experimental results
and discussion and; (v) concluding thoughts.

Problem Statement
OkNN is a spatial query in two dimensions that can be for-
malised as follows:

Definition 1 Obstacle k-Nearest Neighbour (OkNN):
Given a set of points T , a set of obstacles O, a distinguished
point q and and an integer k: return a set kNN = {t|t ∈ T}
such that do(q, t) ≤ do(q, tk) for all t ∈ kNN.

Where:

• O is a set of non-traversable polygonal obstacles.

• T is a set of traversable points called targets.

• q is a traversable point called the query point.

• k is an input parameter that controls the number of nearest
neighbours that will be returned.

• de and do are functions that measure the shortest distance
between two points, as discussed below.

• tk is the kth nearest neighbour of q.

Stated in simple words, the objective is to find the set of k
targets which are closest to q from among all possible can-
didates in T . When discussing distances between two points
q and t we distinguish between two metrics: de(q, t) which
is the well known Euclidean metric (i.e. “straight-line dis-
tance”) and do(q, t) which measures the length of a shortest
path πq,t = 〈q, . . . , t〉 between points q and t such that no
pairwise segment of the path intersects any point inside an
obstacle (i.e. “obstacle avoiding distance”).

Polyanya and the heuristic hp

In this work we extend and generalise Polyanya (Cui et al.
2017), a recent and related algorithm that computes short-
est paths between pairs of traversable points in the plane
and in the presence of polygonal obstacles. At a high level,
Polyanya can be seen as an instance of A*: it performs a

Figure 2: Search nodes in Polyanya. Notice that the interval
I = [a, b] is a contiguous subset of points drawn from an
edge of the navigation mesh. The corresponding root point,
r, is either the query point itself or the vertex of an obstacle.
Taken together they form the search node (I, r).

best-first search using an admissible heuristic function to
prioritise nodes. The mechanical details are however quite
different. Since we will employ a similar search methodol-
ogy to Polyanya, we give herein a brief description of that
algorithm. There are three key components:
• Search Nodes: Conventional search algorithms proceed

from one traversable point to the next. Polyanya, by com-
parison, searches from one edge of the navigation mesh to
another. In this model search nodes are tuples (I, r) where
each I = [a, b] is a contiguous interval of points and r is a
distinguished point called the root. Nodes are constructed
such that each point p ∈ I is visible from r. Meanwhile,
r itself corresponds to the last turning point on the path:
from q to any p ∈ I . Figure 2 shows an example.
• Successors: Successor nodes (I ′, r′) are generated by

“pushing” the current interval I away from its root r and
through the interior of an adjacent and traversable poly-
gon. A successor is said to be observable if each point
p′ ∈ I ′ is visible from r. The successor node in this case
is formed by the tuple (I ′, r). By contrast, a successor is
said to be non-observable if the taut (i.e. locally optimal)
path from r to each p′ ∈ I ′ must pass through one of
the endpoints of current interval I = [a, b]. The successor
node in this case is formed by the tuple (I ′, r′) with r′ as
one of the points a or b. Figure 3 shows an example.
Note that the target point is inserted in the open list as
a special case (observable or non-observable) successor
whenever the search reaches its containing polygon. The
interval of this successor contains only the target.

• Evaluation: When prioritising nodes for expansion,
Polyanya makes use of an f -value estimation for a given
search node n = (I, r), and target t:

f(n) = g(n) + hp(n, t)

where g(n) represents the length of a concrete shortest
path from q to r, and hp(n, t) represents the lower-bound
from r to t via some p ∈ I . There are three cases to con-
sider which describe the relative positions of the t in re-
lation to the r. These are illustrated in Figure 4. The ob-
jective in each case is to choose the unique p ∈ I that

125

Figure 3: From (Cui et al. 2017). We expand the node
([b, x], r) which has ([z, g], r) and ([f, y], r) as observable
successors. In addition, the nodes ([c, d], b), ([d, e], b) and
([e, y], b) are non-observable. All other potential successors
can be safely pruned (more details in (Cui et al. 2017)).

minimises the estimate. The tree cases together are suffi-
cient to guarantee that the estimator is admissible.

Similar to A*, Polyanya terminates when the target is ex-
panded or when the open list is empty. In (Cui et al. 2017)
this algorithm is shown to outperform a range of optimal
and sub-optimal competitors, often by orders of magnitude.
In the sections that follow we will extend this algorithm to
multi-target OkNN. Our implementation is based on a pub-
licly available version of Polyanya1 from the original au-
thors.

Multi-target Search
In this section, we discuss how to effectively adapt Polyanya
for OkNN settings where there are multiple candidate tar-
gets (cf. just one). Since Polyanya instantiates A* search,
and since that algorithm is itself a special case of Dijkstra’s
well known technique, there exists a simple modification at
hand: we can simply remove the influence of the cost-to-go
heuristic and allow the search to continue until it has ex-
panded the kth target. All other aspects of the algorithm,
including termination 2, remain unchanged.

The version of Polyanya we have just described is un-
likely to be efficient. Without a heuristic function for guid-
ance, nodes can only be prioritised by the g-value of their
root point, which is settled at the time of expansion. How-
ever, the g-value does not reflect the distance between the
root and its corresponding interval. For example, in Fig-
ure 3, all observable successors would have the same expan-
sion priority. Thus we may expand many nodes, all equally
promising but having distant intervals, and all before reach-
ing a nearby candidate with a slightly higher g-value. To deal
with this problem we develop two heuristics which can be
fruitfully applied to OkNN:
• The Interval Heuristic (hv), which prioritises nodes using

the closest point from its associated interval.
1http://bitbucket.org/dharabor/pathfinding
2There are two cases to consider depending on whether the

query and target points are in the same polygon or in different poly-
gons. Both are described in (Cui et al. 2017)

Figure 4: Polyanya f -value estimator. The current node is
(I, r) with I = [a, b] and each of t1, t2, t3 are possible target
locations. Case 1: the target is t1. In this case the point p ∈ I
with minimum f -value is at the intersection of the interval I
and the line r → t1. Case 2: the target is t2. In this case the
p ∈ I with minimum f -value is one of two endpoints of I .
Case 3: the target is t3. In this case the p ∈ I with minimum
f -value is obtained by first mirroring t3 through [a, b] and
applying Case 1 or Case 2 to the mirrored point (here, t1).
Notice that in this case, simply r to t3 doesn’t give us the
h-value, based on Definition, it must reach the interval first.

• The Target Heuristic (ht), which relies on a Euclidean
nearest-neighbour estimator to provide a target dynami-
cally at the time of expansion.

Each of these heuristics is applied in the usual way compute
a final expansion priority: f(n) = g(n) + h(n) where g(n)
is the (known) distance from the query point to the root, and
h(n) is a lower-bound on the distance to the next target. In
the remainder of this section we explore these ideas in turn.
In the experimental section thereafter we will also consider
a third, even simpler strategy for multi-target search: re-
peatedly call an unmodified point-to-point Polyanya search,
from the query point and to each target (algorithm 3). In a
perhaps surprising result, we will show that each of these
three alternatives yields state of the art performance in cer-
tain contexts.

The Interval Heuristic hv
In some OkNN settings targets are myriad and one simply
requires a fast algorithm to explore the local area. This ap-
proach is in contrast to more sophisticated methods which
apply spatial reasoning to prune the set of candidates. The
idea we introduce for such settings is simple and can be for-
malised as follows:

Definition 2 Given search node n = (I, r), the interval
heuristic hv(n) is the minimum Euclidean distance from r
to any point p ∈ I .

Applying the Interval Heuristic hv requires solving a sim-
ple geometric problem: finding the closest point on a line.
The operation has low constant time complexity and we ap-
ply standard techniques. Algorithm 1 shows an example.

126

Algorithm 1: OkNN: Polyanya with hv
1 while heap not empty do
2 node = heap.pop();
3 if node is a target that not yet reached then
4 result.add(node);
5 if result.size is k then
6 return;
7 continue;
8 if node is a target that has been found then
9 continue;

10 successors = genSuccessors(node);
11 foreach suc in successors do
12 suc.g = node.g+ de(node.root, suc.root);
13 suc.f = suc. g + hv(suc);
14 heap.push(suc);
15 end
16 end

Theorem 1 The interval heuristic hv is consistent.

Proof: Let n = (I, r) be the current search node, and
n′ = (I, r) be any successor. First we show that f(n′) ≥
f(n). We have f(n) = g(r) + hv(r, I), and f(n′) =
g(r) + de(r, r

′) + hv(r
′, I ′). There are two cases:

• If r = r′, since I ′ is generated by pushing away from I ,
we have f(n′)− f(n) = hv(r, I

′)− hv(r, I) ≥ 0,

• If r 6= r′, then r′ ∈ I , and since the Definition 2, we have
hv(r, I) ≤ de(r, r′), so that f(n′)− f(n) ≥ hv(r′, I ′) ≥
0.

Next we show that hv is a lower-bound:

• If there is a target t on I , then hv(r, I) = do(r, t);

• Otherwise, hv(r, I) < do(r, t) for all t ∈ T .

2

Notice that when we expand a search node containing a
candidate point t, we have also found the shortest path from
q to t.

The Target Heuristic ht
In some OkNN settings the set of targets are few (i.e. sparse)
and without a reasonable heuristic guide it is possible to per-
form many redundant expansions in areas where no nearest
neighbour can exist. In such cases more sophisticated spatial
reasoning can help to prune the set of nearest neighbours and
guide the search. The idea we introduce for such settings can
be formalised as follows:

Definition 3 Given a search node n = (I, r), the target
heuristic ht(n) is the distance from n to the closest target
t ∈ T using the heuristic hp(n, t).

A straightforward way to implement this idea is comput-
ing the hp for all t ∈ T and choosing the minimum. Obvi-
ously, this approach has bad scalability. Instead, we can find
the closest target efficiently by using a traditional Euclidean
nearest-neighbour query (i.e. no obstacles). Such queries are
supported by many spatial indexes including R-tree (more

Figure 5: The heuristic hp divides the space
around the current interval into three distinct ar-
eas (areaA, areaB, areaC) and three counterparts
(areaA′, areaB′, areaC ′) which we may reason about by
mirroring points through the current interval I . We will find
a candidate target from each of these areas using just four
Euclidean nearest neighbour queries. To see this notice that
all shortest paths to targets in areaA (resp. areaB) and
areaA′ (resp. areaB′) must intersect the interval endpoint
a (resp. b). Thus we can retrieve a single nearest neighbour
for both these areas. In the case of areaC, all shortest paths
to any candidate target point must intersect the interval
I . We may reason similarly about areaC ′ but only after
mirroring the root point r through the interval I to derive
an equivalent root point r′. The closest candidates then are:
t1, t5, t3 and t7.

details can be found in (Roussopoulos, Kelley, and Vincent
1995; Cheung and Fu 1998)).

Our approach divides the space around the current interval
into a number of areas, as shown in Figure 4. We then find
from each area a target that has minimum distance according
to hp. We will show that by choosing from among these few
candidates the one with smallest distance will also satisfy
Definition 3.

Using the three cases of hp in Figure 4, given a search
node n = (I, r), we have following observations:

• for those t ∈ T such that hp(n, t) = de(r, t), we only
need to consider the nearest neighbour of r;

• for those t ∈ T such that hp(n, t) = de(r, a) + de(a, t)
(equiv. hp(n, t) = de(r, b) + de(b, t)), we only need to
consider the nearest neighbour of a (equiv. b);

• for those t ∈ T such that hp(n, t) = hp(n, t
′) where t′

is the mirror point of t through I , we have hp(n, t′) =
hp(n

′, t) where n′ = (I, r′) and r′ is the mirror point of r
through I . In other words, instead of flipping those t ∈ T ,
we only flip r.

Finally, as show in Figure 5, we can form four areas.

Theorem 2 The target heuristic ht is consistent.

127

Proof: Let n = (I, r) be the current search node and n′ =
(I ′, r′) be any successor, such that t ∈ T is the closest target
to n and t′ ∈ T is the closest target to n′. First we show
that f(n′) ≥ f(n). We have f(n) = g(r) + hp(n, t), and
f(n′) = g(r) + de(r, r

′) + hp(n
′, t′). There are four cases:

• Case 1: if t = t′ and r = r′, then f(n) = f(n′),

• Case 2: if t = t′ and r 6= r′, then we have de(r, r′) +
hp(n

′, t) ≥ hp(n, t).
• Case 3: if t 6= t′ and r = r′, notice that in order to com-

pute hp(n′, t′) we have to intersect some point p ∈ I be-
fore reaching t′. Thus we have hp(n, t) ≤ hp(n

′, t′) for
any t′ ∈ T and f(n′) − f(n) = hp(n

′, t′) + de(r, r
′) −

hp(n, t) ≥ 0.

• Case 4: if t 6= t′ and r 6= r′, by the Definition 3,
we always choose the closest target to each search
node, so hp(n, t) ≤ hp(n, t

′). Further, since de(r, r′) +
hp(n

′, t′) ≥ hp(n, t′), we have f(n′)−f(n) ≥ de(r, r′)+
hp(n

′, t′)− hp(n, t′) ≥ 0.

Thus, f(n′) ≥ f(n). Next we show that ht is a lower-bound.
To see this, notice that hp is a lower-bound from any node
to any target, and Definition 3 guarantees that we always
choose the closest target that minimises hp for all t ∈ T . 2

Further Refinements for ht
We may notice that the ht described thus far is potentially
costly, compare to the constant time operation in hp and hv .
To mitigate this we could call the function less often. An
observation is that a parent search node and its successor
may use same closest target t in their ht. In this case, instead
of running a new query, the successor can directly inherit
the t from the parent. We call this strategy lazy compute and
apply it throughout our experiments. We find it reduces total
number of generated nodes by approximately 15%.

Lemma 1 Given search node n = (I, r), its successor
n′ = (I ′, r′), and a target t which is the closest target of
n. Further suppose f(n) = f(n′). Then t is also the closest
target of n′.

Proof: If there is a t′ such that hp(n′, t′) < hp(n
′, t) =

hp(n, t), then g(r) + de(r, r
′) + hp(n

′, t′) < g(r) +
de(r, r

′) + hp(n
′, t) = f(n) so that f(n′) < f(n), which

conflict with Theorem 2. Thus, such t′ doesn’t exist. 2

Now, each search node has a target, and the search behaviour
should be broadly similar to the point-to-point setting. But
there is one significant difference: when a nearest neighbour
t has been found, t should no longer influence the search
process. Thus, we need to remove t from search space and
re-assign (i.e. update) all search nodes in the queue which
use t as their closest target. To avoid exploring the entire
queue we propose instead the following simple strategy:
when such a node is dequeued from the open list, we ap-
ply ht to compute a new target and we push the node back
onto open all without generating any successors. We call this
target reassign.

Target reassign doesn’t affect the relative order of expan-
sion. This is easy to see, since ht is consistent and the asso-
ciated target is always valid at the time of the expansion.

In Algorithm 2, we arrive at last at the final form of
Polyanya for OkNN using the heuristic ht.

Algorithm 2: OkNN: Polyanya with ht
1 while heap not empty do
2 node = heap.pop();
3 if node is a target that not yet reached then
4 result.add(node);
5 if result.size is k then
6 return;
7 continue;
8 if node is a target that has been reached then
9 continue;

10 if node.target has been found then
11 // target reassign;
12 node.f = node.g + ht(node);
13 heap.push(node);
14 continue;
15 successors = genSuccessors(node);
16 foreach suc in successors do
17 suc.g = node.g+ de(node.root, suc.root);
18 suc.f = suc. g + ht(suc);
19 heap.push(suc);
20 end
21 end
22 Function ht(node):
23 hValue = hp(node, node.parent.target)
24 if (hValue + node.g) equal f(node.parent) then
25 // lazy compute
26 node.target = node.parent.target
27 return hValue
28 else
29 node.target = get closest target(suc)
30 return hp(node, node.target)
31 end

Empirical Analysis
To evaluate our proposed algorithms we consider two dis-
tinct setups and one large map with containing 9000 polyg-
onal obstacles (this benchmark is described further in the
next section).

In the first setup, targets are numerous and densely dis-
tributed throughout the map. Our principal point of compar-
ison in this case is LVG (Zhang et al. 2004) which is a state
of the art method based on incremental visibility graphs. In
the second setup, targets are few and sparsely distributed.
Our principal point of comparison in this case is brute-force
point-to-point search with Polyanya. As per Algorithm 3, we

Algorithm 3: Brute-force Polyanya
1 foreach t in targets do
2 polyanya.run(start, t);
3 end

128

run one complete search for each candidate in the target set.
We motivate these decisions as follows:

• When the map is large and targets are many (commonly
the case in spatial database settings) LVG considers only a
small part of map and so its query processing can be very
fast. Brute-force Polyanya meanwhile is infeasible to run
(there are too many searches).

• When the map is large targets are few (≤ 10) LVG builds
a visibility graph for almost entire map, and ends up
with quadratic runtime complexity, which is unaccept-
able. Meanwhile, Brute-force Polyanya, which is a very
fast point-to-point pathfinding algorithm, can be compet-
itive even when called repeatedly. This comparison is
motivated by recent prior work involving kNN queries
on road networks (Abeywickrama, Cheema, and Taniar
2016), where other fast point-to-point algorithms were
shown to provide state-of-the-art performance in multi-
targets scenarios, even when compared against dedicated
kNN algorithms.

In experiments, we examine performance based on
elapsed time and generated search node (in memory). For
LVG, we count the number of generated search node in Di-
jkstra search (in memory as well).

The navigation mesh of map is generated by Constrained
Delaunay Triangulation, which isO(nlogn); the implemen-
tation of such algorithm is in library Fade2D 3, the total time
on such preprocessing is about 6s. We implemented in C++
the LVG algorithm (more details below) as well as two ver-
sions of multi-target Polyanya: one each for Target and In-
terval Heuristic. Our code is compiled with clang-902.0.39.1
using -O3 flag, under x86 64-apple-darwin17.5.0 platform.
All of our source code and test data set are publicly available
4. All experiments are performed on a 2.5 GHz Intel Core i7
machine with 16GB of RAM and running OSX 10.13.4.

Implementation of LVG
As discussed LVG is our primary competitor in experiments
with dense targets. However, since there is no publicly avail-
able implementation, we write one ourselves. We imple-
ment the method as per the description in the original pa-
per (Zhang et al. 2004). The only differences is in construc-
tion of the visibility graph: LVG uses the rotational plane-
sweeping algorithm from (Sharir and Schorr 1986) which
runs worst case O(n2logn) time. In our work we opted to
simplify development complexity and use a R*-tree (Beck-
mann et al. 1990) query for visibility checking. Each such
query runs in log(n) time and we perform one check for
each unique pair of vertices. Thus the total complexity to
build a visibility graph is alsoO(n2logn). This implementa-
tion, as with the rest of our code, is made publicly available.

The implementation of R∗-tree we use is also pub-
licly available 5, and appears in other recently published
work (Wang et al. 2016).

3http://www.geom.at/fade2d/html
4http://bitbucket.org/dharabor/pathfinding
5https://github.com/safarisoul/ResearchProjects/tree/master/

2016-ICDE-RkFN

Figure 6: A generated map with many targets. Polygons are
obstacles, black crosses are targets

Benchmark
The data set from our main competitor LVG(Zhang et al.
2004) is no longer available on the public Internet so we
opt to generate new benchmark problems. We extract the
shape of all parks in Australia from OpenStreetMap(Open-
StreetMap contributors 2017) and use these shapes as polyg-
onal obstacles. There are about 9000 such polygons in total.
Next we generate a map by tiling all obstacles in the empty
square plane. For the tiling, we first divide the square plane
into grid having d

√
|O|e number of rows and columns. Then

we assign each polygon to a single grid cell and normalise
the shape of polygon by to fit inside the cell.Figure 6 gives an
example a map generated in this way. For each experiment,
we’re using 1000 random query points, grouping results by
x-axis, and computing average; the size of each bucket is at
least 10.

One thing needs to be highlighted is that, unlike LVG
(Zhang et al. 2004) where obstacles are always rectangu-
lar, we consider polygons of arbitrary shape, which is more
realistic and potentially more challenging as there are more
vertices to consider. The total number of vertices across all
polygons is more than 100,000.

Experiment 1: lower bounds on performance
The aim of this experiment is to examine the performance of
proposed algorithms in the easiest case, which is k = 1.

Results for the dense targets scenario are given in Fig-
ure 7a (time) and Figure 7b (nodes). We find that both
Polyanya variants outperform LVG in terms of space and
time. Results for the sparse targets scenario are given in Fig-
ure 7c (time) and Figure 7d (nodes). We find that while the
target heuristic has the smallest number of nodes generated,
both it and the interval heuristic are outperformed in runtime

129

(a) (b)

Dense experiment: |T | ≈ |O|, k = 1

(c) (d)

Sparse experiment: |T | = 5, k = 1

Figure 7: Experiment 1: we fix |T | and k and examine performance as obstacle distance to the kth nearest neighbour (dist)
increases.

(a) (b)

Dense: k ∈ [1, ...10], |T | ≈ |O|

(c) (d)

Sparse: k ∈ [1, ...10], |T | = 10

Figure 8: Experiment 2: we fix the number of targets and examine performance as k increases (from 1 to 10)

by Brute-force Polyanya. These results suggest the interval
heuristic has a large search space, and the target heuristic
has a costly heuristic function. Result also show that Brute-
force Polyanya is not sensitive to dist, the reason being that
it has to run a point-to-point search to all targets no matter
where the nearest neighbour is.

Experiment 2: computing more nearest neighbours
The aim of this experiment is to examine the performance of
algorithm as queries become harder (k increasing).

Results for the dense scenario are given in Figure 8a
(time) and Figure 8b (nodes).j We find that the proposed al-
gorithms continue to outperform LVG and by similarly large
margins. In the sparse targets scenario (Figure 8c (time) and
Figure 8d (nodes)), results show that Brute-force Polyanya
usually has a convincing runtime advantage and does not ap-
pear to be sensitive to k. Meanwhile each of the two OkNN
variants generate increasing numbers of nodes and become
quickly outperformed. A side effect of target heuristic in this
experiment is that as k increases target reassign causes more
nodes to be generated.

Experiment 3: changing number of targets
This experiment is run only on the sparse target set. The aim
of this experiment is to examine the scalability of the pro-
posed algorithms with an increasing (but still sparse) num-
ber of targets.

Results are given in Figure 9a (time) and Figure 9b
(nodes). We find that the target and interval heuristics grad-
ually outperform Brute-force Polyanya in terms of both time

(a) (b)

Figure 9: Experiment 3: we fix k = 1 and examine perfor-
mance as |T | increases (from 1 to 10)

and number of generated nodes. This implies that these al-
gorithms are much better choices when the set of targets in-
crease. Also notice that nodes generated decreases as |T |
goes large. The reason for this is that with more targets the
search quickly finds the desired k candidates and often in the
vicinity of the query point. In the case of target heuristic we
may further infer that the R-tree queries on which it depends
have good scalability; e.e. adding more targets doesn’t make
these queries significantly slower. Although we have seen in
other experiments that Brute-force Polyanya has an advan-
tage when k is large, this advantage disappears as |T | grows.
In some practical settings |T | can be in the hundreds or thou-
sands e.g. (Abeywickrama, Cheema, and Taniar 2016) while
k is usually orders of magnitude smaller.

Conclusion and Future work
In this work we consider efficient algorithms for OkNN:
the problem of finding k nearest neighbours in the Eu-

130

clidean plane and in the presence of obstacles. We describe
three new OkNN algorithms, all based on Polyanya (Cui et
al. 2017), a recent and very fast algorithm for computing
Euclidean-optimal shortest paths in the plane. The first vari-
ant involves brute force search (one query per target point).
The second and third variants involves running Polyanya as
a multi-target algorithm but with added heuristic guidance.
We develop two new and consistent heuristics for this pur-
pose: the Interval Heuristic hvand the Target Heuristic ht.

We compare these variant algorithms against one another
and against LVG (Zhang et al. 2004), an influential and
state of the art OkNN method based on incremental visi-
bility graphs. The headline result from our experiments is
that OkNN with Polyanya can be up to orders of magni-
tude faster than LVG. Moreover, each of the three variants
appears best suited to particular OkNN settings: brute force
search is highly effective when the number of candidates is
small (independent of k); the Interval Heuristic works well
when targets are many (again, independent of k); the Tar-
get Heuristic works well when targets are few and k is also
small.

Due to their fast performance, we believe these algorithms
can be used to speed up other types of spatial queries which
need to compute obstacle distance; e.g. as described in (Gao
et al. 2016; Gao and Zheng 2009). Another interesting direc-
tion for future work is finding ways to further improve the
Target Heuristic. In our experiments calls to this heuristic
can account for approximately 80% of total search time. One
possible approach to this end involves combining the four
R-tree queries required at present into one. Finally, we no-
tice that Brute-force Polyanya sometimes outperforms other
proposed algorithms in sparse scenarios. This suggests an-
other possible direction: instead of considering every target
we might try to apply a pruning strategy such that the search
can terminate earlier.

References
Abeywickrama, T.; Cheema, M. A.; and Taniar, D. 2016.
K-nearest neighbors on road networks: a journey in experi-
mentation and in-memory implementation. Proceedings of
the VLDB Endowment 9(6):492–503.
Beckmann, N.; Kriegel, H.-P.; Schneider, R.; and Seeger, B.
1990. The r*-tree: an efficient and robust access method for
points and rectangles. In Acm Sigmod Record, volume 19,
322–331. ACM.
Cheung, K. L., and Fu, A. W.-C. 1998. Enhanced near-
est neighbour search on the r-tree. ACM SIGMOD Record
27(3):16–21.
Cui, M. L.; Harabor, D. D.; Grastien, A.; and Data61, C.
2017. Compromise-free pathfinding on a navigation mesh.
IJCAI.
Gao, Y., and Zheng, B. 2009. Continuous obstructed nearest
neighbor queries in spatial databases. In Proceedings of the
2009 ACM SIGMOD International Conference on Manage-
ment of data, 577–590. ACM.
Gao, Y.; Yang, J.; Chen, G.; Zheng, B.; and Chen, C. 2011.
On efficient obstructed reverse nearest neighbor query pro-

cessing. In Proceedings of the 19th ACM SIGSPATIAL inter-
national conference on advances in Geographic Information
Systems, 191–200. ACM.
Gao, Y.; Liu, Q.; Miao, X.; and Yang, J. 2016. Reverse
k-nearest neighbor search in the presence of obstacles. In-
formation Sciences 330:274–292.
Guttman, A. 1984. R-trees: A dynamic index structure for
spatial searching, volume 14. ACM.
Ooi, B. C.; McDonell, K. J.; and Sacks-Davis, R. 1987. Spa-
tial kd-tree: An indexing mechanism for spatial databases. In
IEEE COMPSAC, volume 87, 85. sn.
OpenStreetMap contributors. 2017. Planet dump retrieved
from https://planet.osm.org . https://www.openstreetmap.
org.
Roussopoulos, N.; Kelley, S.; and Vincent, F. 1995. Nearest
neighbor queries. In ACM sigmod record, volume 24, 71–79.
ACM.
Sharir, M., and Schorr, A. 1986. On shortest paths in poly-
hedral spaces. SIAM Journal on Computing 15(1):193–215.
Wang, S.; Cheema, M. A.; Lin, X.; Zhang, Y.; and Liu, D.
2016. Efficiently computing reverse k furthest neighbors. In
Data Engineering (ICDE), 2016 IEEE 32nd International
Conference on, 1110–1121. IEEE.
Xia, C.; Hsu, D.; and Tung, A. K. 2004. A fast filter for ob-
structed nearest neighbor queries. In British National Con-
ference on Databases, 203–215. Springer.
Zhang, J.; Papadias, D.; Mouratidis, K.; and Zhu, M. 2004.
Spatial queries in the presence of obstacles. Advances in
Database Technology-EDBT 2004 567–568.

131

